留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空间特性的台风风灾害评估

任贺贺 柯世堂 杨杰

任贺贺, 柯世堂, 杨杰. 基于空间特性的台风风灾害评估[J]. 工程力学, 2022, 39(12): 212-221. doi: 10.6052/j.issn.1000-4750.2021.08.0625
引用本文: 任贺贺, 柯世堂, 杨杰. 基于空间特性的台风风灾害评估[J]. 工程力学, 2022, 39(12): 212-221. doi: 10.6052/j.issn.1000-4750.2021.08.0625
REN He-he, KE Shi-tang, YANG Jie. TYPHOON WIND DISASTER ASSESSMENT BASED ON SPATIAL CHARACTERISTICS[J]. Engineering Mechanics, 2022, 39(12): 212-221. doi: 10.6052/j.issn.1000-4750.2021.08.0625
Citation: REN He-he, KE Shi-tang, YANG Jie. TYPHOON WIND DISASTER ASSESSMENT BASED ON SPATIAL CHARACTERISTICS[J]. Engineering Mechanics, 2022, 39(12): 212-221. doi: 10.6052/j.issn.1000-4750.2021.08.0625

基于空间特性的台风风灾害评估

doi: 10.6052/j.issn.1000-4750.2021.08.0625
基金项目: 国家重点研发计划项目(2019YFB1503701);国家自然科学基金项目(52108456,52078251);江苏省自然科学基金项目(BK20211518,BK20210309);中央高校基本科研业务费专项资金项目(NS2021050,NE2020007)
详细信息
    作者简介:

    任贺贺(1990−),男,河南人,讲师,博士,硕导,主要从事风工程与结构抗风研究(E-mail: vjjrenhehe@nuaa.edu.cn)

    杨 杰(1976−),男,山东人,副教授,博士,硕导,主要从事结构工程研究(E-mail: yangjie@nuaa.edu.cn)

    通讯作者:

    柯世堂(1982−),男,安徽人,教授,博士,博导,主要从事风工程与结构抗风研究(E-mail: keshitang@163.com)

  • 中图分类号: P447;P425.6+1

TYPHOON WIND DISASTER ASSESSMENT BASED ON SPATIAL CHARACTERISTICS

  • 摘要: 针对仅考虑强度相关单因素的风灾害评估方法不能准确表征台风风灾害程度问题,该文依据三种不同沿海基础设施抗风等级对应的风灾害指标因子公式,通过开展基于面积积分风灾害评估方法研究台风空间特性对灾害评估的重要性。网格分辨率影响风灾害评估指标因子,分辨率越高,该指标因子越高;海表温度也是风灾害评估指标因子的影响因素,海表温度越高,该指标因子越高;且分辨率约为200 m甚至500 m时可准确表征台风风灾害。研究表明:基于面积积分风灾害评估方法相较传统单因素评估方法能够更准确表征台风风灾害程度;但外围小风速对风灾害评估影响较大,SST-27、SST-28和SST-29风灾害程度最高约为65%,SST-26最高约为90%。因此,针对风速小但尺寸大和风速大但尺寸小台风风灾害评估问题,引用切入风速概念后,小风速对风灾害评估影响显著降低,SST-27、SST-28和SST-29风灾害程度最高约为13%,SST-26最高约为3%,解决了小风速区间占比过大但对结构损伤无作用问题。
  • 图  1  各嵌套层划分示意图及区域面积 /km

    Figure  1.  Each nesting domain schematic diagram and area

    图  2  10 m高度处最大平均持续风速

    Figure  2.  The maximum mean sustained wind speed at a height of 10 m

    图  3  10 m高度处最大平均持续风速

    Figure  3.  The maximum mean sustained wind speed at a height of 10 m

    图  4  各算例各嵌套层积分动能灾害指标表征( $IK{E_{ > 0}}{\rm TJ}$ )

    Figure  4.  Integral kinetic energy disaster index characterization for each nesting level of each case ( $IK{E_{ > 0}}{\rm TJ}$ )

    图  5  基于D06面积积分的风灾害评估结果 /( $ \times {10^9}$ )

    Figure  5.  Wind disaster assessment results based on D06 area integral

    图  6  基于D03面积积分的风灾害评估结果 /( $ \times {10^9}$ )

    Figure  6.  Wind disaster assessment results based on D03 area integral

    图  7  引入切入风速的基于D06面积积分的风灾害评估结果 /( $ \times {10^9}$ )

    Figure  7.  Wind disaster assessment results based on D06 area integral with cut-in wind speed

    图  8  引入切入风速的基于D03面积积分的风灾害评估结果 /( $ \times {10^9}$ )

    Figure  8.  Wind disaster assessment results based on D03 area integral with cut-in wind speed

    表  1  WRF数值模拟参数设置

    Table  1.   WRF numerical simulation parameter setting

    模拟时长 嵌套层 算法 水平网格距/km 水平网格数 竖向网格数 时间步长/s
    2007-09-01 00:00:00 ~ 2007-09-07 00:00:00 D01 WRF 15.000 405×405 87 60.00
    D02 5.000 301×301 20.00
    D03 1.670 598×598 6.67
    D04 WRF-LES 0.560 598×598 2.22
    D05 0.180 598×598 0.74
    D06 0.062 967×
    967
    0.25
    下载: 导出CSV
  • [1] WEBSTER P J, HOLLAND G J, CURRY J A, et al. Changes in tropical cyclone number, duration, and intensity in a warming environment [J]. Science, 2005, 309(5742): 1844 − 1846. doi: 10.1126/science.1116448
    [2] EMANUEL K. Increasing destructiveness of tropical cyclones over the past 30 years [J]. Nature, 2005, 436(7051): 686 − 688. doi: 10.1038/nature03906
    [3] 史文海, 董大治, 李正农. 沿海地区近地边界层强/台风的统计特征分析[J]. 工程力学, 2013, 30(增刊 1): 30 − 33.

    SHI Wenhai, DONG Dazhi, LI Zhengnong. Statistical characteristics analysis of boundary layer strong wind of typhoon in coastal areas [J]. Engineering Mechanics, 2013, 30(Suppl 1): 30 − 33. (in Chinese)
    [4] 王浩, 李爱群, 黄瑞新, 等. 润扬悬索桥桥址区韦帕台风特性现场实测研究[J]. 工程力学, 2009, 26(4): 128 − 133+138.

    WANG Hao, LI Aiqun, HUANG Ruixin, et al. Field measurements on wind characteristics of typhoon Wipha at the Runyang suspension bridge [J]. Engineering Mechanics, 2009, 26(4): 128 − 133+138. (in Chinese)
    [5] 黄国庆, 赵晨旭, 周绪红, 等. 改进的台风下单桩海上风机易损性分析方法及应用[J]. 振动工程学报, 2021: 1 − 11.

    HUANG Guoqing, ZHAO Chenxu, ZHOU Xuhong, et al. Improved wind-induced fragility assessment method of offshore wind turbines under typhoon and its application [J]. Journal of Vibration Engineering, 2021: 1 − 11. (in Chinese)
    [6] 楼文娟, 余江, 潘小涛. 风力机叶片挥舞摆振气弹失稳分析[J]. 工程力学, 2015, 32(11): 236 − 242. doi: 10.6052/j.issn.1000-4750.2014.05.0359

    LOU Wenjuan, YU Jiang, PAN Xiaotao. Calculating for aerodynamic stability response of wind turbine in flapwise and engewise [J]. Engineering Mechanics, 2015, 32(11): 236 − 242. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.05.0359
    [7] FERESHTEHNEJAD E, GIDARIS I, ROSENHEIM N, et al. Probabilistic risk assessment of coupled natural-physical-social systems: Cascading impact of hurricane-induced damages to civil infrastructure in Galveston, Texas [J]. Natural Hazards Review, 2021, 22(3): 04021013.
    [8] 陈伏彬, 翁兰溪, 肖雁, 等. 近海山地台风风场特性实测研究[J]. 工程力学, 2021(8): 33 − 41. doi: 10.6052/j.issn.1000-4750.2020.07.0524

    CHEN Fubin, WENG Lanxi, XIAO Yan, et al. Field measurement of typhoon wind characteristics in offshore mountainous areas [J]. Engineering Mechanics, 2021(8): 33 − 41. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0524
    [9] SIMPSON R H. The hurricane disaster potential scale [J]. Weatherwise, 1974, 27: 169–186.
    [10] SAFFIR H. Low cost construction resistant to earthquakes and hurricanes [R]. New York, United Nations: ST/ESA/23, 1975.
    [11] MAHENDRAN M. Cyclone intensity categories [J]. Weather Forecasting, 1998, 13: 878 − 883. doi: 10.1175/1520-0434(1998)013<0878:CIC>2.0.CO;2
    [12] KANTHA L. Time to replace the Saffir-Simpson hurricane scale? [J]. Eos, Transactions American Geophysical Union, 2006, 87(1): 3 − 6. doi: 10.1029/2006EO010003
    [13] POWELL M D, REINHOLD T A. Tropical cyclone destructive potential by integrated kinetic energy [J]. Bulletin of the American Meteorological Society, 2007, 88(4): 513 − 526. doi: 10.1175/BAMS-88-4-513
    [14] IRISH J L, RESIO D T. A hydrodynamics-based surge scale for hurricanes [J]. Ocean Engineering, 2010, 37(1): 69 − 81. doi: 10.1016/j.oceaneng.2009.07.012
    [15] BELL G D, HALPERT M S, SCHNELL R C, et al. Climate assessment for 1999 [J]. Bulletin of the American Meteorological Society, 2000, 81: 1328 − 1378. doi: 10.1175/1520-0477(2000)081<1328:CAF>2.3.CO;2
    [16] WEATHERFORD C L, GRAY W M. Typhoon structure as revealed by aircraft reconnaissance. Part I: Data analysis and climatology [J]. Monthly Weather Review, 1988, 116(5): 1032 − 1043. doi: 10.1175/1520-0493(1988)116<1032:TSARBA>2.0.CO;2
    [17] CROXFORD M, BARNES G M. Inner core strength of Atlantic tropical cyclones [J]. Monthly Weather Review, 2002, 130(1): 127 − 139. doi: 10.1175/1520-0493(2002)130<0127:ICSOAT>2.0.CO;2
    [18] BUSINGER S, BUSINGER J A. Viscous dissipation of turbulence kinetic energy in storms [J]. Journal of the Atmospheric Sciences, 2001, 58(24): 3793 − 3796. doi: 10.1175/1520-0469(2001)058<3793:VDOTKE>2.0.CO;2
    [19] MISRA V, DINAPOLI S, POWELL M. The track integrated kinetic energy of Atlantic tropical cyclones [J]. Monthly Weather Review, 2013, 141(7): 2383 − 2389. doi: 10.1175/MWR-D-12-00349.1
    [20] POWELL M D, MURILLO S, DODGE P, et al. Reconstruction of Hurricane Katrina's wind fields for storm surge and wave hindcasting [J]. Ocean Engineering, 2010, 37(1): 26 − 36. doi: 10.1016/j.oceaneng.2009.08.014
    [21] BASS B, IRZA J N, PROFT J, et al. Fidelity of the integrated kinetic energy factor as an indicator of storm surge impacts [J]. Natural Hazards, 2017, 85(1): 575 − 595. doi: 10.1007/s11069-016-2587-3
    [22] ZHAI A R, JIANG J H. Dependence of US hurricane economic loss on maximum wind speed and storm size [J]. Environmental Research Letters, 2014, 9(6): 064019. doi: 10.1088/1748-9326/9/6/064019
    [23] BAKKENSEN L A, MENDELSOHN R O. Risk and adaptation: Evidence from global hurricane damages and fatalities [J]. Journal of the Association of Environmental and Resource Economists, 2016, 3(3): 555 − 587. doi: 10.1086/685908
    [24] KLOTZBACH P J, BELL M M, BOWEN S G, et al. Surface pressure a more skillful predictor of normalized hurricane damage than maximum sustained wind [J]. Bulletin of the American Meteorological Society, 2020, 101(6): E830 − E846. doi: 10.1175/BAMS-D-19-0062.1
    [25] PILKINGTON S F, MAHMOUD H N. Using artificial neural networks to forecast economic impact of multi-hazard hurricane-based events [J]. Sustainable and Resilient Infrastructure, 2016, 1(1-2): 63 − 83. doi: 10.1080/23789689.2016.1179529
    [26] WALKER A M, TITLEY D W, MANN M E, et al. A fiscally based scale for tropical cyclone storm surge [J]. Weather Forecasting, 2018, 33: 1709 − 1723. doi: 10.1175/WAF-D-17-0174.1
    [27] REN H, DUDHIA J, LI H. Large-eddy simulation of idealized hurricanes at different sea surface temperatures [J]. Journal of Advances in Modeling Earth Systems, 2020, 12(9): e2020MS002057.
    [28] 魏凯, 沈忠辉, 吴联活, 等. 强台风作用下近岸海域波浪-风暴潮耦合数值模拟[J]. 工程力学, 2019, 36(11): 139 − 146. doi: 10.6052/j.issn.1000-4750.2018.12.0646

    WEI Kai, SHEN Zhonghui, WU Lianhuo, et al. Coupled numerical simulation on wave and storm surge in coastal areas under strong typhoons [J]. Engineering Mechanics, 2019, 36(11): 139 − 146. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.12.0646
    [29] SKAMAROCK W C, KLEMP J B, DUDHIA J, et al. A description of the advanced research WRF version 3 [R]. Boulder: NCAR Technical note-475+ STR, 2008.
    [30] HONG S Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes [J]. Monthly Weather Review, 2006, 134(9): 2318 − 2341. doi: 10.1175/MWR3199.1
    [31] HONG S Y, LIM J O J. The WRF Single-Moment 6-Class microphysics scheme (WSM6) [J]. Journal of the Korean Meteorological Society, 2006, 42(2): 129 − 151.
    [32] JIMENEZ P A, DUDHIA J, GONZALEZ-ROUCO J F, et al. A revised scheme for the WRF surface layer formulation [J]. Monthly Weather Review, 2012, 140(3): 898 − 918. doi: 10.1175/MWR-D-11-00056.1
    [33] ROTUNNO R, CHEN Y, WANG W, et al. Large-eddy simulation of an idealized tropical cyclone [J]. Bulletin of the American Meteorological Society, 2009, 90(12): 1783 − 1788. doi: 10.1175/2009BAMS2884.1
    [34] DONELAN M A, HAUS B K, REUL N, et al. On the limiting aerodynamic roughness of the ocean in very strong winds [J]. Geophysical Research Letters, 2004, 31: L18306. doi: 10.1029/2004GL019460
    [35] 李利孝, 肖仪清, 宋丽莉, 等. 基于风观测塔和风廓线雷达实测的强台风黑格比风剖面研究[J]. 工程力学, 2012, 29(9): 284 − 293. doi: 10.6052/j.issn.1000-4750.2011.01.0012

    LI Lixiao, XIAO Yiqing, SONG Lili, et al. Study on wind profile of typhoon Hagupit using wind observed tower and wind profile radar measurement [J]. Engineering Mechanics, 2012, 29(9): 284 − 293. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.01.0012
    [36] 雷鹰, 李涛, 张建国, 等. 厦门地区台风风场特性的数值模拟[J]. 工程力学, 2014, 31(1): 122 − 128. doi: 10.6052/j.issn.1000-4750.2012.08.0614

    LEI Ying, LI Tao, ZHANG Jianguo, et al. Numerical simulation of the characteristics of typhoon wind-field in Xiamen region [J]. Engineering Mechanics, 2014, 31(1): 122 − 128. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.08.0614
    [37] 孙富学, 许向楠, 史文海, 等. 温州滨海平坦地貌近地台风特性实测研究[J]. 工程力学, 2018, 35(9): 73 − 80,96. doi: 10.6052/j.issn.1000-4750.2017.05.0330

    SUN Fuxue, XU Xiangnan, SHI Wenhai, et al. Field measurements of typhoon characteristics near ground in Wenzhou coastal flat terrain [J]. Engineering Mechanics, 2018, 35(9): 73 − 80,96. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.05.0330
    [38] ROTUNNO R, EMANUEL K A. An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model [J]. Journal of the Atmospheric Sciences, 1987, 44(3): 542 − 561. doi: 10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  45
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-11
  • 录用日期:  2021-12-10
  • 修回日期:  2021-11-19
  • 网络出版日期:  2021-12-10
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回