STUDY ON SEISMIC PERFORMANCE AND HYSTERETIC MODEL OF ROTATIONAL DAMPER FOR ENERGY-DISSIPATIVE PRECAST CONCRETE JOINTS
-
摘要: 提出一种可用于预制装配式结构中梁柱连接和耗能的转动型阻尼器——扭转钢管阻尼器。设计了5个不同参数的扭转钢管阻尼器试件并对其进行了拟静力低周往复加载试验,结果表明:试件整体绕销轴发生转动变形,具有良好的转动变形能力,极限转角均在0.06 rad以上,延性系数均大于规范要求的4.0;试件的滞回曲线饱满,具有明显的等向强化特征,等效黏滞阻尼系数达到0.5左右,具有良好的耗能能力;试件的壁厚和外径越大、有效管长越小,其转动强度越大;试件在等幅循环加载下各项疲劳性能指标基本在±15%的规范要求内,具有良好的抗疲劳性能。在此基础上,对Bouc-Wen模型进行改进以模拟阻尼器的滞回行为,采用量子粒子群算法对试验滞回曲线进行了参数识别,识别结果表明改进Bouc-Wen模型能更好地适应试件的等向强化特性,具有比Bouc-Wen模型更高的模拟精度,可用于整体结构的抗震分析计算。
-
关键词:
- 预制装配式混凝土结构 /
- 转动型阻尼器 /
- 拟静力试验 /
- 抗震性能 /
- 改进Bouc-Wen模型 /
- 参数识别
Abstract: A novel rotational damper named torsional steel-tube damper is proposed, which can be implemented to the beam-column connection with energy dissipated in precast concrete structures. Five damper specimens with different parameters are designed and tested under quasi-static cyclic loading. Test results show that the specimens rotate around the pin shaft and have excellent rotational deformation. The limit angle is more than 0.06 rad, and the ductility factor is larger than 4.0 required by the specification. The hysteretic curves of the specimens are plump, and apparent isotropic hardening behaviour can be observed. The equivalent viscous damping factors of the specimens are about 0.5, indicating that the damper has good energy dissipation capacity. The specimen with a larger wall thickness and outer diameter and smaller effective tube length has larger rotational strength. Under cyclic loading with a constant amplitude, all fatigue performance parameters of the specimens are basically within the specification requirements of ±15%, and the specimen has good anti-fatigue performance. The modified Bouc-Wen model is introduced to simulate the cyclic behaviour of the damper, and the quantum particle swarm optimization algorithm is used to identify the model parameters. The identification results show that the modified Bouc-Wen model can well adapt to the specimens' isotropic hardening behaviour and has higher simulation accuracy than that of Bouc-Wen model. The modified model can be used for the seismic analysis of monolithic structures. -
表 1 耗能钢管设计参数
Table 1. Dimensions of the energy-dissipated tube
/mm 试件编号 壁厚δ 外径Dout 有效管长L0 加载方式 TSTD-1 6 140 35 变幅循环 TSTD-2 4 140 35 TSTD-3 6 100 35 TSTD-4 6 140 65 TSTD-5 6 140 35 等幅循环 表 2 加载制度LP-1
Table 2. Loading protocol of LP-1
工况 1 2 3 4 5 6 i(i>6) 位移角/rad 0.00375 0.005 0.0075 0.01 0.015 0.02 0.02+0.01×(i-6) 循环次数 6 6 6 4 2 2 2 作动器位移/mm 5.7 7.6 11.4 15.2 22.8 30.4 15.2×i-60.8 注:1) 从第7个工况开始,每个工况的位移角比上一个工况大0.01 rad,循环2次;
2) 作动器位移等于位移角乘以加载作用线到阻尼器底部的距离(图4(a)中的H2)。表 3 骨架曲线特征值
Table 3. Feature points on skeleton curves
试件编号 方向 屈服点 峰值荷载点 延性系数 特征承载力Mf/(kN∙m) My/(kN∙m) θy/rad Mu/(kN∙m) θu/rad TSTD-1 + 60.75 0.0127 97.77 0.0746 >5.73 93.20 − 62.04 0.0130 98.63 0.0746 94.68 平均 61.39 0.0129 98.20 0.0746 93.94 TSTD-2 + 43.52 0.0122 66.41 0.0656 >5.37 65.13 − 41.65 0.0095 68.96 0.0646 67.60 平均 42.59 0.0109 67.69 0.0651 66.36 TSTD-3 + 31.67 0.0178 50.23 0.0955 5.38 45.37 − 31.75 0.0160 51.98 0.0944 47.17 平均 31.71 0.0169 51.11 0.0949 46.27 TSTD-4 + 61.34 0.0144 93.18 0.0888 >6.18 87.00 − 60.98 0.0135 96.91 0.0861 90.04 平均 61.16 0.0140 95.04 0.0875 88.52 表 4 粒子位置取值范围
Table 4. Range for position
参数 Fy uy α n μ λ 上界 100 0.03 0.03 2 1 1 下界 20 0.003 0 0 0 0 表 5 参数识别结果
Table 5. Identification results of parameters
试件 恢复力模型 屈服力Fy 屈服位移uy 刚度比α 弹塑性过渡段控制参数n 等向强化控制参数μ 等向强化控制参数λ TSTD-1 Bouc-Wen 83.1685 0.0084 0.0181 0.6710 − − 改进Bouc-Wen 64.6684 0.0070 0.0177 1.2271 0.4692 0.0153 TSTD-2 Bouc-Wen 56.7087 0.0061 0.0139 0.5525 − − 改进Bouc-Wen 45.5456 0.0053 0.0122 0.9454 0.5105 0.0081 TSTD-3 Bouc-Wen 44.4703 0.0088 0.0100 0.4540 − − 改进Bouc-Wen 34.8033 0.0074 0.0100 0.7570 0.4885 0.0073 TSTD-4 Bouc-Wen 78.3645 0.0091 0.0220 0.9018 − − 改进Bouc-Wen 57.9884 0.0071 0.0194 1.9979 0.5005 0.0235 -
[1] TONIOLO G, COLOMBO A. Precast concrete structures: the lessons learned from the L'Aquila earthquake [J]. Structural Concrete, 2012, 13(2): 73 − 83. doi: 10.1002/suco.201100052 [2] KURAMA Y C, SRITHARAN S, FLEISCHMAN R B, et al. Seismic-resistant precast concrete structures: state of the art [J]. Journal of Structural Engineering, 2018, 144(4): 03118001-1 − 03118001-18. [3] MAGLIULO G, ERCOLINO M, PETRONE C, et al. The Emilia earthquake: Seismic performance of precast reinforced concrete buildings [J]. Earthquake Spectra the Professional Journal of the Earthquake Engineering Research Institute, 2014, 30(2): 891 − 912. [4] BELLERI A, BRUNESI E, NASCIMBENE R, et al. Seismic performance of precast industrial facilities following major earthquakes in the Italian Territory [J]. Journal of Performance of Constructed Facilities, 2015, 29(5): 04014135. doi: 10.1061/(ASCE)CF.1943-5509.0000617 [5] MORGEN B G, KURAMA Y C. A friction damper for post-tensioned precast concrete moment frames [J]. PCI Journal, 2004, 49(4): 112 − 133. doi: 10.15554/pcij.07012004.112.133 [6] WU C, LI D, DENG X, et al. Experimental study on precast concrete moment‐resisting frame system with sector lead viscoelastic dampers [J]. Structural Control and Health Monitoring, 2021, 28 (7): e2746. [7] ZHANG C, HUANG W Y, ZHOU Y, et al. Experimental and numerical investigation on seismic performance of retrofitted RC frame with sector lead viscoelastic damper [J]. Journal of Building Engineering, 2021, 44: 103218. doi: 10.1016/j.jobe.2021.103218 [8] LI Y D, GENG F F, DING Y L, et al. Experimental and numerical study of low-damage self-centering precast concrete frame connections with replaceable dampers [J]. Engineering Structures, 2020, 220: 111011. [9] 朱云青, 吴京, 童超, 等. 带可更换耗能钢棒的装配式混凝土单侧屈服梁柱节点抗震性能试验研究[J]. 工程力学, 2022, 39(7): 205 − 216, 256. doi: 10.6052/j.issn.1000-4750.2021.04.0280ZHU Yunqing, WU Jing, TONG Chao, et al. Experimental study on hysteretic performance of single-side yielding precast concrete beam–column connection with replaceable energy dissipation bars [J]. Engineering Mechanics, 2022, 39(7): 205 − 216, 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.04.0280 [10] 吴从晓, 李定斌, 张骞, 等. PCF-MDC体系技术方案及抗震性能试验研究[J]. 工程力学, 2020, 37(4): 105 − 117. doi: 10.6052/j.issn.1000-4750.2019.06.0300WU Congxiao, LI Dingbin, ZHANG Qian, et al. Technical solution and seismic performance test of PCF-MDC system [J]. Engineering Mechanics, 2020, 37(4): 105 − 117. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.06.0300 [11] XU L H, ZHANG G, XIAO S J, et al. Development and experimental verification of damage controllable energy dissipation beam to column connection [J]. Engineering Structures, 2019, 199: 109660. doi: 10.1016/j.engstruct.2019.109660 [12] HU G X, HUANG W, XIE H Q. Mechanical behavior of a replaceable energy dissipation device for precast concrete beam-column connections [J]. Journal of Constructional Steel Research, 2020, 164: 105816. doi: 10.1016/j.jcsr.2019.105816 [13] 郑莲琼, 颜桂云, 魏常贵, 等. 钢质往复弯曲耗能铰滞回性能试验研究及理论分析[J]. 土木工程学报, 2020, 53(12): 29 − 43.ZHENG Lianqiong, YAN Guiyun, WEI Changgui, et al. Experimental and numerical investigation of steel energy-dissipating hinge under cyclic loading [J]. China Civil Engineering Journal, 2020, 53(12): 29 − 43. (in Chinese) [14] QI Y H, TENG J, SHAN Q F, et al. Seismic performance of a novel prefabricated beam-to-column steel joint considering buckling behaviour of dampers [J]. Engineering Structures, 2021, 229: 111591. doi: 10.1016/j.engstruct.2020.111591 [15] LI Z H, QI Y H, TENG J. Experimental investigation of prefabricated beam-to-column steel joints for precast concrete structures under cyclic loading [J]. Engineering Structures, 2020, 209: 110217. doi: 10.1016/j.engstruct.2020.110217 [16] 颜桂云, 袁宇琴, 郑莲琼, 等. 装配式钢质塑性可控铰抗震性能试验研究[J]. 建筑结构学报, 2022, 43(1): 86 − 94.YAN Guiyun, YUAN Yuqin, ZHENG Lianqiong, et al. Experiment on seismic performance of plastic controllable prefabricated steel hinges [J]. Journal of Building Structures, 2022, 43(1): 86 − 94. (in Chinese) [17] LI C, WU J, ZHANG J, et al. Experimental study on seismic performance of precast concrete frame with replaceable energy-dissipating connectors [J]. Engineering Structures, 2021, 231: 111719. doi: 10.1016/j.engstruct.2020.111719 [18] PENG H, OU J P, MAHIN S. Design and numerical analysis of a damage-controllable mechanical hinge beam-to-column connection [J]. Soil Dynamics and Earthquake Engineering, 2020, 133: 106149. doi: 10.1016/j.soildyn.2020.106149 [19] 叶建峰, 郑莲琼, 颜桂云, 等. 装配式可更换耗能铰滞回性能试验研究[J]. 工程力学, 2021, 38(8): 42 − 54. doi: 10.6052/j.issn.1000-4750.2020.07.0531YE Jianfeng, ZHENG Lianqiong, YAN Guiyun, et al. Experimental study on hysteretic performance of replaceable energy-dissipating prefabricated hinges [J]. Engineering Mechanics, 2021, 38(8): 42 − 54. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0531 [20] 王晨. 预制装配梁端钢板耗能铰节点及其弱梁强柱框架抗震性能[D]. 哈尔滨: 哈尔滨工业大学, 2016.WANG Chen. Seismic performance of prefabricated beam-to-column connection with hinge and energy-dissipating plates and the weak beam strong column frames [D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese) [21] 李定斌. 预制装配式混凝土框架金属消能减震连接体系抗震性能研究[D]. 广州: 广州大学, 2019.LI Dingbin. Study on the seismic performance of the precast concrete frame system using metal damper connector [D]. Guangzhou: Guangzhou University, 2019. (in Chinese) [22] GB/T 699−2015, 优质碳素结构钢[S]. 北京: 中国标准出版社, 2015.GB/T 699−2015, Quality carbon structure steels [S]. Beijing: China Standards Press, 2015. (in Chinese) [23] GB/T 228.1−2010, 金属材料拉伸试验 第1部分: 室温试验方法[S]. 北京: 中国标准出版社, 2010.GB/T 228.1−2010, Metallic materials―Tensile testing―Part 1: Method of test at room temperature [S]. Beijing: China Standards Press, 2010. (in Chinese) [24] ACI 374.1-05, Acceptance criteria for moment frames based on structural testing and commentary [S]. Farmington Hills, Michigan: ACI, 2014. [25] ANSI/AISC 360-16, Specification for structural steel buildings [S]. Chicago: American Institute of Steel Construction, 2014. [26] 过镇海, 时旭东. 钢筋混凝土原理和分析[M]. 北京: 清华大学出版社, 2003.GUO Zhenhai, SHI Xudong. Reinforced concrete theory and analyse [M]. Beijing: Tsinghua University Press, 2003. (in Chinese) [27] BOUC R. Forced vibration of mechanical systems with hysteresis [C]// Proceedings of the Fourth Conference on Nonlinear Oscillations. Prague, Czechoslovakia, 1967. [28] WEN Y K. Method for random vibration of hysteretic systems [J]. Journal of the Engineering Mechanics Division, 1976, 102(2): 249 − 263. doi: 10.1061/JMCEA3.0002106 [29] MA F, ZHANG H, BOCKSTEDTE A, et al. Parameter analysis of the differential model of hysteresis [J]. Journal of Applied Mechanics, 2004, 71(3): 342 − 349. doi: 10.1115/1.1668082 [30] CONSTANTINOU M C, KNEIFATI M C. Dynamics of soil-base-isolated-structure systems [J]. Journal of Structural Engineering, 1988, 114(1): 211 − 221. [31] CHARALAMPAKIS A, KOUMOUSIS V. On the response and dissipated energy of Bouc–Wen hysteretic model [J]. Journal of Sound and Vibration, 2008, 309(3/4/5): 887 − 895. doi: 10.1016/j.jsv.2007.07.080 [32] IKHOUANE F, RODELLAR J. On the hysteretic Bouc–Wen Model [J]. Nonlinear Dynamics, 2005, 42(1): 63 − 78. doi: 10.1007/s11071-005-0069-3 [33] 孙俊. 量子行为粒子群优化算法研究[D]. 无锡: 江南大学, 2009.SUN Jun. Particle swarm optimization with particles having quantum behavior [D]. Wuxi: Jiangnan University, 2009. (in Chinese) -