留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

装配式减震节点转动型阻尼器抗震性能及恢复力模型研究

吴从晓 列文琛 吴昌根 李常虹 李定斌 吴从永

吴从晓, 列文琛, 吴昌根, 李常虹, 李定斌, 吴从永. 装配式减震节点转动型阻尼器抗震性能及恢复力模型研究[J]. 工程力学, 2023, 40(2): 97-111. doi: 10.6052/j.issn.1000-4750.2021.08.0623
引用本文: 吴从晓, 列文琛, 吴昌根, 李常虹, 李定斌, 吴从永. 装配式减震节点转动型阻尼器抗震性能及恢复力模型研究[J]. 工程力学, 2023, 40(2): 97-111. doi: 10.6052/j.issn.1000-4750.2021.08.0623
WU Cong-xiao, LIE Wen-chen, WU Chang-gen, LI Chang-hong, LI Ding-bin, WU Cong-yong. STUDY ON SEISMIC PERFORMANCE AND HYSTERETIC MODEL OF ROTATIONAL DAMPER FOR ENERGY-DISSIPATIVE PRECAST CONCRETE JOINTS[J]. Engineering Mechanics, 2023, 40(2): 97-111. doi: 10.6052/j.issn.1000-4750.2021.08.0623
Citation: WU Cong-xiao, LIE Wen-chen, WU Chang-gen, LI Chang-hong, LI Ding-bin, WU Cong-yong. STUDY ON SEISMIC PERFORMANCE AND HYSTERETIC MODEL OF ROTATIONAL DAMPER FOR ENERGY-DISSIPATIVE PRECAST CONCRETE JOINTS[J]. Engineering Mechanics, 2023, 40(2): 97-111. doi: 10.6052/j.issn.1000-4750.2021.08.0623

装配式减震节点转动型阻尼器抗震性能及恢复力模型研究

doi: 10.6052/j.issn.1000-4750.2021.08.0623
基金项目: 四川省科技计划项目(2021YJ0074);广州市科技计划项目(202102010506);国家自然科学基金项目(52178466)
详细信息
    作者简介:

    吴从晓(1981−),男,江西九江人,副教授,博士,主要从事结构抗震与消能减震技术研究(E-mail: wu-congxiao@163.com)

    吴昌根(1979−),男,四川广安人,高工,学士,主要从事装配式结构施工研究(E-mail: 25950041@qq.com)

    李常虹(1980−),男,河南南阳人,高工,硕士,主要从事结构设计及分析研究(E-mail: lid9@xnjz.com)

    李定斌(1993−),男,河南洛阳人,博士生,主要从事结构抗震与消能减震技术研究(E-mail: li-dingbin@e.gzhu.edu.cn)

    吴从永(1962−),男,江西九江人,高工,学士,主要从事结构设计及分析研究(E-mail: 315427965@qq.com)

    通讯作者:

    列文琛(1997−),男,广东广州人,硕士生,主要从事结构抗震与消能减震技术研究(E-mail: 438171766@qq.com)

  • 中图分类号: TU375.4

STUDY ON SEISMIC PERFORMANCE AND HYSTERETIC MODEL OF ROTATIONAL DAMPER FOR ENERGY-DISSIPATIVE PRECAST CONCRETE JOINTS

  • 摘要: 提出一种可用于预制装配式结构中梁柱连接和耗能的转动型阻尼器——扭转钢管阻尼器。设计了5个不同参数的扭转钢管阻尼器试件并对其进行了拟静力低周往复加载试验,结果表明:试件整体绕销轴发生转动变形,具有良好的转动变形能力,极限转角均在0.06 rad以上,延性系数均大于规范要求的4.0;试件的滞回曲线饱满,具有明显的等向强化特征,等效黏滞阻尼系数达到0.5左右,具有良好的耗能能力;试件的壁厚和外径越大、有效管长越小,其转动强度越大;试件在等幅循环加载下各项疲劳性能指标基本在±15%的规范要求内,具有良好的抗疲劳性能。在此基础上,对Bouc-Wen模型进行改进以模拟阻尼器的滞回行为,采用量子粒子群算法对试验滞回曲线进行了参数识别,识别结果表明改进Bouc-Wen模型能更好地适应试件的等向强化特性,具有比Bouc-Wen模型更高的模拟精度,可用于整体结构的抗震分析计算。
  • 图  1  扭转钢管阻尼器示意图

    Figure  1.  Schematic diagram of the torsional steel tube damper

    图  2  耗能钢管截面及连接示意图

    Figure  2.  Section of energy-dissipated tube

    图  3  试件设计尺寸 /mm

    Figure  3.  Dimensions of specimens

    图  4  试验加载装置

    Figure  4.  Test setup

    图  5  应变花及应变片布置示意图

    Figure  5.  Layout of strain gauges

    图  6  试验现象

    Figure  6.  Test phenomenon

    图  7  耗能钢管的剪切断裂

    Figure  7.  Shear fracture of energy-dissipated tube

    图  8  弯矩-转角(M-θ)滞回曲线

    Figure  8.  M-θ hysteretic curves

    图  9  弯矩-转角(M-θ)骨架曲线

    Figure  9.  M-θ skeleton curves

    图  10  刚度退化

    Figure  10.  Stiffness degradation

    图  11  强度退化

    Figure  11.  Strength degradation

    图  12  耗能特性

    Figure  12.  Energy dissipation characteristics

    图  13  耗能钢管管壁应变主方向

    Figure  13.  Principal direction of strain on tube wall

    图  14  耳板端部应变

    Figure  14.  Strain on end of the ear plat

    图  15  试件TSTD-5的滞回曲线

    Figure  15.  Hysteretic curve of specimen TSTD-5

    图  16  疲劳性能指标

    Figure  16.  Fatigue performance

    图  17  Bouc-Wen及其改进模型

    Figure  17.  Bouc-Wen model and modified Bouc-Wen model

    图  18  等向强化的实现方式

    Figure  18.  Realization of isotropic hardening

    图  19  循环加载中的累积塑性位移计算

    Figure  19.  Calculation of accumulative plastic displacement

    图  20  粒子群算法求解流程

    Figure  20.  Solution flow of PSO

    图  21  Bouc-Wen模型模拟结果

    Figure  21.  Simulation results of the Bouc-Wen model

    图  23  识别骨架曲线与试验结果对比

    Figure  23.  Comparison of skeleton curves

    图  22  改进Bouc-Wen模型模拟结果

    Figure  22.  Simulation results of the modified Bouc-Wen model

    图  24  适应度值的演化过程

    Figure  24.  Evolution of fitness values

    表  1  耗能钢管设计参数

    Table  1.   Dimensions of the energy-dissipated tube /mm

    试件编号 壁厚δ 外径Dout 有效管长L0 加载方式
    TSTD-1 6 140 35 变幅循环
    TSTD-2 4 140 35
    TSTD-3 6 100 35
    TSTD-4 6 140 65
    TSTD-5 6 140 35 等幅循环
    下载: 导出CSV

    表  2  加载制度LP-1

    Table  2.   Loading protocol of LP-1

    工况123456i(i>6)
    位移角/rad0.003750.0050.00750.010.0150.020.02+0.01×(i-6)
    循环次数6664222
    作动器位移/mm5.77.611.415.222.830.415.2×i-60.8
    注:1) 从第7个工况开始,每个工况的位移角比上一个工况大0.01 rad,循环2次;
    2) 作动器位移等于位移角乘以加载作用线到阻尼器底部的距离(图4(a)中的H2)。
    下载: 导出CSV

    表  3  骨架曲线特征值

    Table  3.   Feature points on skeleton curves

    试件编号方向屈服点峰值荷载点延性系数特征承载力Mf/(kN∙m)
    My/(kN∙m)θy/radMu/(kN∙m)θu/rad
    TSTD-1+60.750.012797.770.0746>5.7393.20
    62.040.013098.630.074694.68
    平均61.390.012998.200.074693.94
    TSTD-2+43.520.012266.410.0656>5.3765.13
    41.650.009568.960.064667.60
    平均42.590.010967.690.065166.36
    TSTD-3+31.670.017850.230.09555.3845.37
    31.750.016051.980.094447.17
    平均31.710.016951.110.094946.27
    TSTD-4+61.340.014493.180.0888>6.1887.00
    60.980.013596.910.086190.04
    平均61.160.014095.040.087588.52
    下载: 导出CSV

    表  4  粒子位置取值范围

    Table  4.   Range for position

    参数Fyuyαnμλ
    上界1000.030.03211
    下界200.0030000
    下载: 导出CSV

    表  5  参数识别结果

    Table  5.   Identification results of parameters

    试件恢复力模型屈服力Fy屈服位移uy刚度比α弹塑性过渡段控制参数n等向强化控制参数μ等向强化控制参数λ
    TSTD-1 Bouc-Wen 83.1685 0.0084 0.0181 0.6710
    改进Bouc-Wen 64.6684 0.0070 0.0177 1.2271 0.4692 0.0153
    TSTD-2 Bouc-Wen 56.7087 0.0061 0.0139 0.5525
    改进Bouc-Wen 45.5456 0.0053 0.0122 0.9454 0.5105 0.0081
    TSTD-3 Bouc-Wen 44.4703 0.0088 0.0100 0.4540
    改进Bouc-Wen 34.8033 0.0074 0.0100 0.7570 0.4885 0.0073
    TSTD-4 Bouc-Wen 78.3645 0.0091 0.0220 0.9018
    改进Bouc-Wen 57.9884 0.0071 0.0194 1.9979 0.5005 0.0235
    下载: 导出CSV
  • [1] TONIOLO G, COLOMBO A. Precast concrete structures: the lessons learned from the L'Aquila earthquake [J]. Structural Concrete, 2012, 13(2): 73 − 83. doi: 10.1002/suco.201100052
    [2] KURAMA Y C, SRITHARAN S, FLEISCHMAN R B, et al. Seismic-resistant precast concrete structures: state of the art [J]. Journal of Structural Engineering, 2018, 144(4): 03118001-1 − 03118001-18.
    [3] MAGLIULO G, ERCOLINO M, PETRONE C, et al. The Emilia earthquake: Seismic performance of precast reinforced concrete buildings [J]. Earthquake Spectra the Professional Journal of the Earthquake Engineering Research Institute, 2014, 30(2): 891 − 912.
    [4] BELLERI A, BRUNESI E, NASCIMBENE R, et al. Seismic performance of precast industrial facilities following major earthquakes in the Italian Territory [J]. Journal of Performance of Constructed Facilities, 2015, 29(5): 04014135. doi: 10.1061/(ASCE)CF.1943-5509.0000617
    [5] MORGEN B G, KURAMA Y C. A friction damper for post-tensioned precast concrete moment frames [J]. PCI Journal, 2004, 49(4): 112 − 133. doi: 10.15554/pcij.07012004.112.133
    [6] WU C, LI D, DENG X, et al. Experimental study on precast concrete moment‐resisting frame system with sector lead viscoelastic dampers [J]. Structural Control and Health Monitoring, 2021, 28 (7): e2746.
    [7] ZHANG C, HUANG W Y, ZHOU Y, et al. Experimental and numerical investigation on seismic performance of retrofitted RC frame with sector lead viscoelastic damper [J]. Journal of Building Engineering, 2021, 44: 103218. doi: 10.1016/j.jobe.2021.103218
    [8] LI Y D, GENG F F, DING Y L, et al. Experimental and numerical study of low-damage self-centering precast concrete frame connections with replaceable dampers [J]. Engineering Structures, 2020, 220: 111011.
    [9] 朱云青, 吴京, 童超, 等. 带可更换耗能钢棒的装配式混凝土单侧屈服梁柱节点抗震性能试验研究[J]. 工程力学, 2022, 39(7): 205 − 216, 256. doi: 10.6052/j.issn.1000-4750.2021.04.0280

    ZHU Yunqing, WU Jing, TONG Chao, et al. Experimental study on hysteretic performance of single-side yielding precast concrete beam–column connection with replaceable energy dissipation bars [J]. Engineering Mechanics, 2022, 39(7): 205 − 216, 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.04.0280
    [10] 吴从晓, 李定斌, 张骞, 等. PCF-MDC体系技术方案及抗震性能试验研究[J]. 工程力学, 2020, 37(4): 105 − 117. doi: 10.6052/j.issn.1000-4750.2019.06.0300

    WU Congxiao, LI Dingbin, ZHANG Qian, et al. Technical solution and seismic performance test of PCF-MDC system [J]. Engineering Mechanics, 2020, 37(4): 105 − 117. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.06.0300
    [11] XU L H, ZHANG G, XIAO S J, et al. Development and experimental verification of damage controllable energy dissipation beam to column connection [J]. Engineering Structures, 2019, 199: 109660. doi: 10.1016/j.engstruct.2019.109660
    [12] HU G X, HUANG W, XIE H Q. Mechanical behavior of a replaceable energy dissipation device for precast concrete beam-column connections [J]. Journal of Constructional Steel Research, 2020, 164: 105816. doi: 10.1016/j.jcsr.2019.105816
    [13] 郑莲琼, 颜桂云, 魏常贵, 等. 钢质往复弯曲耗能铰滞回性能试验研究及理论分析[J]. 土木工程学报, 2020, 53(12): 29 − 43.

    ZHENG Lianqiong, YAN Guiyun, WEI Changgui, et al. Experimental and numerical investigation of steel energy-dissipating hinge under cyclic loading [J]. China Civil Engineering Journal, 2020, 53(12): 29 − 43. (in Chinese)
    [14] QI Y H, TENG J, SHAN Q F, et al. Seismic performance of a novel prefabricated beam-to-column steel joint considering buckling behaviour of dampers [J]. Engineering Structures, 2021, 229: 111591. doi: 10.1016/j.engstruct.2020.111591
    [15] LI Z H, QI Y H, TENG J. Experimental investigation of prefabricated beam-to-column steel joints for precast concrete structures under cyclic loading [J]. Engineering Structures, 2020, 209: 110217. doi: 10.1016/j.engstruct.2020.110217
    [16] 颜桂云, 袁宇琴, 郑莲琼, 等. 装配式钢质塑性可控铰抗震性能试验研究[J]. 建筑结构学报, 2022, 43(1): 86 − 94.

    YAN Guiyun, YUAN Yuqin, ZHENG Lianqiong, et al. Experiment on seismic performance of plastic controllable prefabricated steel hinges [J]. Journal of Building Structures, 2022, 43(1): 86 − 94. (in Chinese)
    [17] LI C, WU J, ZHANG J, et al. Experimental study on seismic performance of precast concrete frame with replaceable energy-dissipating connectors [J]. Engineering Structures, 2021, 231: 111719. doi: 10.1016/j.engstruct.2020.111719
    [18] PENG H, OU J P, MAHIN S. Design and numerical analysis of a damage-controllable mechanical hinge beam-to-column connection [J]. Soil Dynamics and Earthquake Engineering, 2020, 133: 106149. doi: 10.1016/j.soildyn.2020.106149
    [19] 叶建峰, 郑莲琼, 颜桂云, 等. 装配式可更换耗能铰滞回性能试验研究[J]. 工程力学, 2021, 38(8): 42 − 54. doi: 10.6052/j.issn.1000-4750.2020.07.0531

    YE Jianfeng, ZHENG Lianqiong, YAN Guiyun, et al. Experimental study on hysteretic performance of replaceable energy-dissipating prefabricated hinges [J]. Engineering Mechanics, 2021, 38(8): 42 − 54. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0531
    [20] 王晨. 预制装配梁端钢板耗能铰节点及其弱梁强柱框架抗震性能[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    WANG Chen. Seismic performance of prefabricated beam-to-column connection with hinge and energy-dissipating plates and the weak beam strong column frames [D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
    [21] 李定斌. 预制装配式混凝土框架金属消能减震连接体系抗震性能研究[D]. 广州: 广州大学, 2019.

    LI Dingbin. Study on the seismic performance of the precast concrete frame system using metal damper connector [D]. Guangzhou: Guangzhou University, 2019. (in Chinese)
    [22] GB/T 699−2015, 优质碳素结构钢[S]. 北京: 中国标准出版社, 2015.

    GB/T 699−2015, Quality carbon structure steels [S]. Beijing: China Standards Press, 2015. (in Chinese)
    [23] GB/T 228.1−2010, 金属材料拉伸试验 第1部分: 室温试验方法[S]. 北京: 中国标准出版社, 2010.

    GB/T 228.1−2010, Metallic materials―Tensile testing―Part 1: Method of test at room temperature [S]. Beijing: China Standards Press, 2010. (in Chinese)
    [24] ACI 374.1-05, Acceptance criteria for moment frames based on structural testing and commentary [S]. Farmington Hills, Michigan: ACI, 2014.
    [25] ANSI/AISC 360-16, Specification for structural steel buildings [S]. Chicago: American Institute of Steel Construction, 2014.
    [26] 过镇海, 时旭东. 钢筋混凝土原理和分析[M]. 北京: 清华大学出版社, 2003.

    GUO Zhenhai, SHI Xudong. Reinforced concrete theory and analyse [M]. Beijing: Tsinghua University Press, 2003. (in Chinese)
    [27] BOUC R. Forced vibration of mechanical systems with hysteresis [C]// Proceedings of the Fourth Conference on Nonlinear Oscillations. Prague, Czechoslovakia, 1967.
    [28] WEN Y K. Method for random vibration of hysteretic systems [J]. Journal of the Engineering Mechanics Division, 1976, 102(2): 249 − 263. doi: 10.1061/JMCEA3.0002106
    [29] MA F, ZHANG H, BOCKSTEDTE A, et al. Parameter analysis of the differential model of hysteresis [J]. Journal of Applied Mechanics, 2004, 71(3): 342 − 349. doi: 10.1115/1.1668082
    [30] CONSTANTINOU M C, KNEIFATI M C. Dynamics of soil-base-isolated-structure systems [J]. Journal of Structural Engineering, 1988, 114(1): 211 − 221.
    [31] CHARALAMPAKIS A, KOUMOUSIS V. On the response and dissipated energy of Bouc–Wen hysteretic model [J]. Journal of Sound and Vibration, 2008, 309(3/4/5): 887 − 895. doi: 10.1016/j.jsv.2007.07.080
    [32] IKHOUANE F, RODELLAR J. On the hysteretic Bouc–Wen Model [J]. Nonlinear Dynamics, 2005, 42(1): 63 − 78. doi: 10.1007/s11071-005-0069-3
    [33] 孙俊. 量子行为粒子群优化算法研究[D]. 无锡: 江南大学, 2009.

    SUN Jun. Particle swarm optimization with particles having quantum behavior [D]. Wuxi: Jiangnan University, 2009. (in Chinese)
  • 加载中
图(24) / 表(5)
计量
  • 文章访问数:  296
  • HTML全文浏览量:  65
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-11
  • 录用日期:  2021-11-18
  • 修回日期:  2021-11-10
  • 网络出版日期:  2021-11-18
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回