EXPERIMENTAL INVESTIGATION OF PLASMA FLOW CONTROL ON A FLYING WING MODEL BASED ON MICROSECOND PULSED EXCITATION
-
摘要: 为了改善飞翼布局的大迎角气动特性,采用飞翼全模和半模分别在低速和跨声速风洞中开展了微秒脉冲介质阻挡放电等离子体流动控制的试验研究。通过流动显示和测力的试验方法研究了等离子体流动控制的主要作用机制和激励频率与激励电压等对飞翼模型失速特性的影响规律,验证了微秒脉冲介质阻挡放电等离子体流动控制技术从低速到亚声速的有效性,有效的试验最高马赫数Ma达到0.6、雷诺数Re达到3.05×106。试验研究表明:微秒脉冲介质阻挡放电等离子体通过非定常微尺度压缩波扰动的形式作用于翼面流场,通过频率耦合机制减弱模型的前缘分离涡、抑制翼面的流动分离;无量纲频率F+是影响等离子体流动控制效果的重要参数;在低速风洞试验风速V=30 m/s时,无量纲频率F+=0.35~1.06的控制效果较好,可将模型的最大升力系数提高25%以上、失速迎角推迟4°;在跨声速风洞试验马赫数Ma=0.6时,无量纲频率F+=0.22和F+=0.44的控制效果较好,可将模型的最大升力系数分别提高4.72%、4.77%,失速迎角分别推迟2°、1°;激励电压越高激励强度越大、等离子体流动控制效果越好。Abstract: In order to improve the aerodynamic performance of flying wing layout aircrafts at high attack angles , an experimental study of microsecond pulsed dielectric barrier discharge (μs-DBD) plasma flow control was carried out in low-speed and transonic wind tunnels, using both full and half models of a flying wing. Flow visualization and force measurements are deployed to reveal the main mechanisms of plasma flow control and, to analyze the effects of excitation frequency and voltage on the stall characteristics of the flying wing model. The effectiveness of μs-DBD plasma in manipulating low-speed to subsonic flows is successfully verified, with the highest test Mach number and Reynolds number tested being 0.6 and 3.05×106, respectively. Results show that μs-DBD plasma perturbs the model airfoil flow field by unsteady micro-scale compressive wave. These wave perturbations weaken the front separation vortex of the model and suppresses the flow separation by frequency coupling, thus leaving dimensionless frequency as a key parameter which influences the effectiveness of plasma flow control. In a low-speed wind regime (wind speed: 30 m/s), the optimal dimensionless frequency range is 0.35 to 1.06, accompanied by more than 25% in the maximum lift coefficient and 4 degrees postponement in the stall attack angle. As a comparison, in the transonic regime of Mach 0.6, the favorable dimensionless frequency drops to 0.22 and 0.44, with the maximum lift coefficient increased by 4.72% and 4.77%, respectively, and the stall attack angle postponed by 1 and 2 degrees, respectively. Additionally, since the excitation voltage of plasma affects the intensity of the compressive wave perturbation, the higher the excitation voltage is, the better the effect of plasma flow control will be.
-
Key words:
- fluid mechanics /
- flow control /
- wind tunnel test /
- flow separation /
- plasma /
- flying wing
-
表 1 低速风洞天平量程和相对误差
Table 1. Measurement range and relative error of the balance in low speed wind tunnel
项目 Y X Z My Mx Mz 天平量程 ±300 ±150 ±100 ±12 ±10 ±12 相对误差/(%) 0.09 0.22 0.30 0.29 0.14 0.11 表 2 亚声速风洞天平量程和相对误差
Table 2. Measurement range and relative error of the balance in subsonic wind tunnel
项目 Y X My Mx Mz 天平量程 ±5000 ±300 ±84 ±500 ±200 相对误差/(%) 0.06 0.18 0.34 0.08 0.13 -
[1] WOOD R M, BAUER S X S. Flying wings/Flying fuselages [C]. Reno: 39th AIAA Aerospace Sciences Meeting & Exhibit, 2001. [2] LEHMKUEHLER K, WONG K C, VERSTRAETE D. Design and test of a UAV blended wing body configuration [C]. Brisbane: 28th Congress of the International Council of the Aeronautical Sciences, 2012. [3] PATIL M J, HODGES D H. Flight dynamics of highly flexible flying wings [J]. Journal of Aircraft, 2006, 43(6): 1790 − 1798. [4] XU X P, ZHOU Z. Active separation control for the flying-wing UAV using synthetic jet [J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 497 − 504. [5] 张子健, 安国锋, 刘斌. 飞翼飞行器气动伺服弹性耦合动力学特性研究[J]. 工程力学, 2014, 31(11): 231 − 236. doi: 10.6052/j.issn.1000-4750.2013.05.0426ZHANG Zijian, AN Guofeng, LIU Bin. Investigation of aeroservoelatic dynamic characteristics of elastic flight-wings [J]. Engineering Mechanics, 2014, 31(11): 231 − 236. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.05.0426 [6] 张庆, 叶正寅. 排式双翼布局低雷诺数气动特性计算研究[J]. 工程力学, 2019, 36(10): 244 − 256. doi: 10.6052/j.issn.1000-4750.2018.09.0514ZHANG Qing, YE Zhengyin. Computational investigations for aerodynamic characteristic analysis of low renolds number doubly-tandem wing configurations [J]. Engineering Mechanics, 2019, 36(10): 244 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.09.0514 [7] 安朝, 谢长川, 孟杨, 等. 多体组合式无人机飞行力学稳定性分析及增稳控制研究[J]. 工程力学, 2021, 38(11): 248 − 256. doi: 10.6052/j.issn.1000-4750.2020.11.0820AN Chao, XIE Changchuan, MENG Yang, et al. Flight dynamics and stable control analyses of multi-body aircraft [J]. Engineering Mechanics, 2021, 38(11): 248 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0820 [8] NANGIA R K, PALMER M E. Flying wings (Blended Wing Bodies) with AFT- & forward- sweep relating design camber & twist to longitudinal control [C]// Monterey, California: AIAA Atmospheric Flight Mechanics Conference & Exhibit, 2002: AIAA 2002-4616. https://doi.org/10.2514/6.2002-4616 [9] PATEL M P, NG T T, VASUDEVAN S, et al. Plasma actuators for hingeless aerodynamic control of an unmanned air vehicle [J]. Journal of Aircraft, 2007, 44(4): 1264 − 1274. doi: 10.2514/1.25368 [10] WANG J J, CHOI KWING-SO, FENG L H, et al. Recent developments in DBD plasma flow control [J]. Progress in Aerospace Sciences, 2013, 62(4): 52 − 78. [11] KOZLOV A V, THOMAS F O. Active noise control of bluff-body flows using dielectric barrier discharge plasma actuators [C]// 30th AIAA Aeroacoustics Conference. Miami, Florida, AIAA, 2009. DOI: 10.2514/6.2009-3245 [12] DENNIS K, SUZEN Y B. Simulations of plasma flow control in low-pressure turbines [C]// 46th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, AIAA, 2008. DOI: 10.2514/6.2008-543 [13] VAN NESS II D K, CORKE T C, MORRIS S C. Tip clearance flow control in a linear turbine cascade using plasma actuation [C]// 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Orlando, Florida, AIAA, 2009. DOI: 10.2514/6.2009-300 [14] VAN NESS II D K, CORKE T C, MORRIS S C. Turbine tip clearance flow control using plasma actuators [C]// 44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, AIAA, 2006. DOI: 10.2514/6.2006-21 [15] LITTLE J, TAKASHIMA K, NISHIHARA M, et al. Separation control with nanosecond-pulse-driven dielectric barrier discharge plasma actuators [J]. AIAA Journal, 2012, 50(50): 350 − 365. [16] GRUNDMANN S, TROPEA S. Delay of boundary-layer transition using plasma actuators [C]// 46th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, AIAA, 2008. DOI: 10.2514/6.2008-1369 [17] ROTH J R, SHERMAN D M, WILKINSON S P. Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma [C]// 36th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, AIAA, 1998. DOI: 10.2514/6.1998-328 [18] ROTH J R. Aerodynamic flow acceleration using paraelectric and peristaltic electrohydrodynamic effects of a one atmosphere uniform glow discharge plasma [J]. Physics of Plasmas, 2003, 10(5): 2117 − 2126. doi: 10.1063/1.1564823 [19] SEIFERT A, PACK L G. Oscillatory excitation of unsteady compressible flows over airfoils at flight Reynolds numbers [C]// 37th Aerospace Sciences Meeting and Exhibit. Reno, Nevada, AIAA, 1999. DOI: 10.2514/6.1999-925 [20] POST M L, CORKE T C. Separation control on high angle of attack airfoil using plasma actuators [J]. AIAA Journal, 2012, 42(11): 2177 − 2184. [21] PATEL M P, SOWLE Z H, CORKE T C, et al. Autonomous sensing and control of wing stall using a smart plasma slat [J]. Journal of Aircraft, 2007, 44(2): 516 − 527. doi: 10.2514/1.24057 [22] ROUPASSOV D V, NIKIPELOV A A, NUDNOVA M M, et al. Flow separation control by plasma actuator with nanosecond pulse-periodic discharge [J]. AIAA Journal, 2009, 47(1): 168 − 185. doi: 10.2514/1.38113 [23] RETHMEL C. Airfoil leading edge flow separation control using nanosecond pulse dbd plasma actuators [D]. USA: Department of Mechanical Engineering, The Ohio State University, 2011. [24] YADALA S, HEHNER M T, SERPIERI J, et al. Swept-wing transition control using DBD plasma actuators [C]// 2018 Flow Control Conference. Atlanta, Georgia, AIAA, 2018. DOI: 10.2514/6.2018-3215 [25] PESCINI E, FRANCIOSO L, GIORGI M G D, et al. Investigation of a micro dielectric barrier discharge plasma actuator for regional aircraft active flow control [J]. IEEE Transactions on Plasma Science, 2015, 43(10): 3668 − 3680. doi: 10.1109/TPS.2015.2461016 [26] LOPERA J, NG T T, CORKE T C. Aerodynamic control of 1303 UAV using windward surface plasma actuators on a separation ramp [J]. Journal of Aircraft, 2007, 44(44): 1889 − 1895. [27] KAPAROS P, KOLTSAKIDIS S, PANAGIOTOU P, et al. Experimental investigation of DBD plasma actuators on a BWB aerial vehicle model [C]// 2018 Flow Control Conference. Atlanta, Georgia, AIAA, 2018. DOI: 10.2514/6.2018-4028 [28] ZHAO G, LI Y, HUA L, et al. Flow separation control on swept wing with nanosecond pulse driven DBD plasma actuators [J]. Chinese Journal of Aeronautics, 2015, 28(2): 368 − 376. [29] 李应红, 梁华, 马清源, 等. 脉冲等离子体气动激励抑制翼型吸力面流动分离的实验[J]. 航空学报, 2008, 30(6): 1429 − 1435.LI Yinghong, LIANG Hua, MA Qingyuan, et al. Experimental investigation on airfoil suction side flow separation by pulse plasma aerodynamic actuation [J]. Acta Aeronauticaet Astronautica Sinica, 2008, 30(6): 1429 − 1435. (in Chinese) [30] 牛中国, 赵光银, 梁华, 等. 三角翼DBD等离子体流动控制研究进展[J]. 航空学报, 2019, 40(3): 022201.NIU Zhongguo, ZHAO Guanggen, LIANG Hua, et al. A review of vortical flow control over delta wings using DBD plasma actuation [J]. Acta Aeronauticaet Astronautica Sinica, 2019, 40(3): 022201. (in Chinese) [31] 牛中国, 胡秋琦, 梁华, 等. 飞翼模型微秒脉冲等离子体控制低速风洞试验研究[J]. 推进技术, 2019, 40(12): 2816 − 2826.NIU Zhongguo, HU Qiuqi, LIANG Hua, et al. Study of low speed wind tunnel test using microsecond pulsed plasma actuation on flying wing model [J]. Journal of Propulsion Technology, 2019, 40(12): 2816 − 2826. (in Chinese) [32] NIU Z, LIU J, LIANG H, et al. Flying wing flow separation control by microsecond pulsed dielectric barrier discharge at high Reynolds number [J]. AIP Advances 9, 2019: 125120. doi: 10.1063/1.5125847 [33] 刘汝兵, 牛中国, 王萌萌, 等. 等离子体射流控制机翼气动力矩的实验研究[J]. 工程力学, 2016, 33(3): 232 − 238. doi: 10.6052/j.issn.1000-4750.2014.07.0631LIU Rubing, NIU Zhongguo, WANG Mengmeng, et al. Aerodynamic moments control of wing model using plasma jet [J]. Engineering Mechanics, 2016, 33(3): 232 − 238. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.07.0631 [34] 刘汝兵, 孙伟, 牛中国, 等. 火花放电等离子体射流实验研究[J]. 推进技术, 2015, 36(3): 372 − 377.LIU Rubing, SUN Wei, NIU Zhongguo, et al. Experimental investigation on spark discharge plasma jet [J]. Jounal of Propulsion Technology, 2015, 36(3): 372 − 377. (in Chinese) [35] 何伟, 牛中国, 潘波, 等. 等离子抑制翼尖涡实验研究[J]. 工程力学, 2013, 30(5): 277 − 281. doi: 10.6052/j.issn.1000-4750.2011.10.0718HE Wei, NIU Zhongguo, PAN Bo, et al. Study on experiments for suppressing wingtip vortices with plasma [J]. Engineering Mechanics, 2013, 30(5): 277 − 281. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.10.0718 [36] ZHAO Z, LI J, ZHENG J, et al. Study of shock and induced flow dynamics by nanosecond dielectric-barrier-discharge plasma actuators [J]. AIAA Journal, 2014, 53(5): 1336 − 1348. [37] 龙玥霄, 刘国政, 孟宣市, 等. 飞翼布局纵向气动特性的等离子体激励控制[J]. 高电压技术, 2018, 44(9): 3049 − 3057.LONG Yuexiao, LIU Guozheng, MENG Xuanshi, et al. Longitudinal aerodynamic control over flying wing using plasma actuators [J]. High Voltage Engineering, 2018, 44(9): 3049 − 3057. (in Chinese) [38] HU H, LI H, MENG X, et al. Phase-locked schlieren of periodic nanosecond-pulsed DBD actuation in quiescent air [C]// 54th AIAA Aerospace Sciences Meeting. San Diego, California, AIAA, 2016. DOI: 10.2514/6.2016-1696. -