留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑粘结滑移效应的墩柱低周往复加载模拟方法

高健峰 李建中 梁博

高健峰, 李建中, 梁博. 考虑粘结滑移效应的墩柱低周往复加载模拟方法[J]. 工程力学, 2023, 40(2): 74-84. doi: 10.6052/j.issn.1000-4750.2021.08.0612
引用本文: 高健峰, 李建中, 梁博. 考虑粘结滑移效应的墩柱低周往复加载模拟方法[J]. 工程力学, 2023, 40(2): 74-84. doi: 10.6052/j.issn.1000-4750.2021.08.0612
GAO Jian-feng, LI Jian-zhong, LIANG Bo. SIMULATION METHOD OF LOW CYCLE RECIPROCATING LOADING OF PIER COLUMN CONSIDERING BOND-SLIP EFFECT[J]. Engineering Mechanics, 2023, 40(2): 74-84. doi: 10.6052/j.issn.1000-4750.2021.08.0612
Citation: GAO Jian-feng, LI Jian-zhong, LIANG Bo. SIMULATION METHOD OF LOW CYCLE RECIPROCATING LOADING OF PIER COLUMN CONSIDERING BOND-SLIP EFFECT[J]. Engineering Mechanics, 2023, 40(2): 74-84. doi: 10.6052/j.issn.1000-4750.2021.08.0612

考虑粘结滑移效应的墩柱低周往复加载模拟方法

doi: 10.6052/j.issn.1000-4750.2021.08.0612
基金项目: 国家自然科学基金重点项目(51838010)
详细信息
    作者简介:

    高健峰 (1995−),男,山东人,博士生,主要从事桥梁抗震研究(E-mail: 474452440@qq.com)

    梁 博 (1989−),男,山西人,工程师,学士,主要从事桥梁工程研究(E-mail: 765127966@qq.com)

    通讯作者:

    李建中 (1963−),男,湖北人,教授,博士,博导,主要从事桥梁抗震研究(E-mail: lijianzh@tongji.edu.cn)

  • 中图分类号: TU375.3

SIMULATION METHOD OF LOW CYCLE RECIPROCATING LOADING OF PIER COLUMN CONSIDERING BOND-SLIP EFFECT

  • 摘要: 针对桥梁墩柱和承台内的粘结滑移现象,基于fib混凝土规范(fib Model Code)推荐的混凝土粘结滑移模型,推导了纵筋滑移量的计算公式,并通过对墩柱塑性区域受拉纵筋的应力-应变本构进行修正,以引入墩柱塑性区域和承台内的纵筋滑移量,作为一种等效方法,以考虑粘结滑移对墩柱地震响应的影响,并用试验结果验证了该方法的合理性。此外,还对所提等效方法和零长度截面单元法的计算结果进行了对比。结果表明:未考虑粘结滑移会高估墩柱的侧向刚度、累计滞回耗能和残余位移,且无法客观反映滑移导致的墩柱强度退化问题;零长度截面单元法和所提等效方法均能考虑强度退化问题,但前者对粘结滑移的模拟效果受纵筋直径影响显著,后者则能合理捕捉滑移影响下的墩柱往复加载过程。
  • 图  1  锚固段纵筋应变、滑移、粘结应力分布示意图

    Figure  1.  Distribution diagrams of bar strain, slip and bond stress along the anchorage

    图  2  钢筋隔离体力学示意图

    Figure  2.  Free body diagram of rebar

    图  3  原式与近似式的拟合程度

    Figure  3.  The fitting degree between the original and the approximate curves

    图  4  等效钢筋本构参数计算流程图

    Figure  4.  The flowchart of parameter computations for the equivalent constitutive law of rebar

    图  5  墩柱截面构造及纤维划分 /mm

    Figure  5.  Cross-sectional configuration and fiber discretization of the columns

    图  6  独柱墩有限元纤维模型

    Figure  6.  The finite element fiber model of the single column

    图  7  受压钢筋应力-应变模型[27]

    Figure  7.  The stress-strain model of the compressive rebar[27]

    图  8  钢筋应力-滑移模型[7]

    Figure  8.  The stress-slip constitutive model of rebar[7]

    图  9  有限元模拟所得墩柱侧向力-位移滞回曲线与试验曲线的对比

    Figure  9.  Comparison of the lateral force-drift hysteretic curves of the columns obtained from the finite element models and the tests

    图  10  墩柱累计耗能的模拟值与试验值对比

    Figure  10.  Comparison of the cumulative energies of the columns obtained from the finite element models and the tests

    图  11  墩柱规则化残余位移的模拟值与试验值对比

    Figure  11.  Comparison of the regularized residual drifts of the columns obtained from the finite element models and the tests

    表  1  等效钢筋本构的关键参数计算

    Table  1.   Key parameters of the equivalent constitutive law of rebar

    试件名称纵筋应力状态关键参数计算过程 /mm
    墩柱
    L407
    屈服 Lei=16.5d=262.4, s0=0.119, εse=0.00117, La=127.5, Lb=130.8, se=0.204, sy=0.441, Lp=153, $ E_{ \rm{s} }' = 0.{\text{286} }{E_{ \rm{s} } } $, $ \varepsilon _{\rm{sy}}' $=0.00807;
    断裂 Lej=29.5d=469, s0=0.0605, εse=0.00097, La=90.6, Lb=152.9, se=0.121, sy=0.372, su=12.027,$ {b'} $=0.0038, $ \varepsilon _{ { \rm{su} } }' $=0.227.
    墩柱
    TP5
    屈服 Lei=20d=400, s0=0.106, εse=0.00122, La=202.5, Lb=190, se=0.225, sy=0.603, Lp=138, $ E_{\rm {s} }' = 0.{\text{219} }{E_{\rm {s} } } $, $ \varepsilon _{ {\rm {sy} } }' $=0.0117;
    断裂 Lej=32d=640, s0=0.066, εse=0.00125, La=172, Lb=185, se=0.197, sy=0.549, su=14.731, $ {b'} $=0.0026, $ \varepsilon _{ { \rm{su} } }' $=0.323
    下载: 导出CSV

    表  2  受压钢筋本构屈曲后参数计算

    Table  2.   Post-buckling parameters of the compressive constitutive law of rebar

    试件名称纵筋屈曲长度Leff/d无量纲参数λ中间点应变ε*/εsy
    墩柱L4078.017.215.5
    墩柱TP55.512.426.4
    下载: 导出CSV

    表  3  墩柱累计滞回耗能的模拟值与试验值对比

    Table  3.   Comparison of the cumulative hysteretic energies of the columns obtained from the finite element models and the tests

    试件
    名称
    漂移
    比/(%)
    试验结果未考虑
    滑移效应
    零长度
    截面单元
    等效钢筋
    本构法
    累计
    耗能/
    (kN·m)
    累计
    耗能/
    (kN·m)
    相对
    误差/
    (%)
    累计
    耗能/
    (kN·m)
    相对
    误差/
    (%)
    累计
    耗能/
    (kN·m)
    相对
    误差/
    (%)
    墩柱L407 1.1 2.16 2.41 11.3 1.52 −29.8 1.86 −13.8
    1.6 5.63 6.45 14.4 4.96 −12.0 5.35 −5.0
    2.1 8.68 10.67 22.9 8.96 3.2 8.06 −7.2
    3.1 16.89 19.92 17.9 18.04 6.8 16.50 −2.3
    5.2 34.69 40.70 17.3 37.25 7.4 34.72 0.1
    墩柱TP5 1.7 13.76 16.08 16.8 12.48 −9.3 12.46 −9.5
    3.0 20.77 35.05 68.7 30.21 45.4 23.98 15.4
    4.6 40.73 56.98 39.9 52.50 28.9 45.73 12.3
    下载: 导出CSV

    表  4  墩柱残余位移的模拟值与试验值对比

    Table  4.   Comparison of the residual displacements of the columns obtained from the finite element models and the tests

    试件名称漂移比/(%)墩柱残余位移/mm
    试验结果未考虑滑移效应零长度截面单元等效钢筋本构法
    正向
    加载
    反向
    加载
    正向
    加载
    相对
    误差/(%)
    反向
    加载
    相对
    误差/(%)
    正向
    加载
    相对
    误差/(%)
    反向
    加载
    相对
    误差/(%)
    正向
    加载
    相对
    误差/(%)
    反向
    加载
    相对
    误差/(%)
    墩柱L407 1.1 3.1 −3.3 4.2 35.5 −5.5 65.3 3.0 −4.5 −2.9 −13.3 3.1 −0.4 −3.0 −11.2
    1.6 9.5 −11.6 13.8 45.1 −13.8 18.9 10.7 12.9 −10.9 −6.1 9.1 −4.1 −10.8 −6.8
    2.1 16.5 −20.0 23.8 44.6 −23.7 18.6 19.9 21.1 −19.9 −0.1 17.2 4.6 −18.3 −8.3
    3.1 33.7 −38.5 45.2 34.0 −44.8 16.5 39.8 18.0 −39.3 2.0 37.1 10.0 −37.2 −3.4
    5.2 73.7 −81.6 91.9 24.8 −91.7 12.3 87.2 18.4 −86.2 5.6 80.5 9.2 −80.8 −1.0
    墩柱TP5 1.7 15.9 −3.4 18.0 13.2 −4.8 42.1 12.6 −20.5 −2.0 −40.6 13.4 −15.6 −2.4 −27.3
    3.0 26.0 −22.4 35.1 35.1 −36.4 62.7 29.9 15.1 −31.2 39.3 27.4 5.4 −28.2 26.0
    4.6 46.4 −44.8 58.0 25.1 −60.1 34.2 52.8 13.8 −55.2 23.4 47.3 2.0 −48.8 9.1
    下载: 导出CSV
  • [1] PRIESTLEY M J N. Performance based seismic design [J]. Bulletin of the New Zealand Society for Earthquake Engineering, 2000, 33(3): 325 − 346. doi: 10.5459/bnzsee.33.3.325-346
    [2] 陆本燕, 刘伯权, 邢国华, 等. 桥梁结构基于性能的抗震设防目标与性能指标研究[J]. 工程力学, 2011, 28(11): 96 − 103.

    LU Benyan, LIU Boquan, XING Guohua, et al. Study on fortification criterion and quantified performance index for reinforced concrete bridge structures in performance-based seismic design [J]. Engineering Mechanics, 2011, 28(11): 96 − 103. (in Chinese)
    [3] 付国, 何斌, 刘伯权. 钢筋混凝土框架柱延性破坏准则研究[J]. 工程力学, 2021, 38(11): 122 − 133. doi: 10.6052/j.issn.1000-4750.2020.10.0780

    FU Guo, HE Bin, LIU Boquan. Research on ductility failure criterion of reinforced concrete frame columns [J]. Engineering Mechanics, 2021, 38(11): 122 − 133. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.10.0780
    [4] 周颖, 吴浩, 顾安琪. 地震工程: 从抗震、减隔震到可恢复性[J]. 工程力学, 2019, 36(6): 1 − 12. doi: 10.6052/j.issn.1000-4750.2018.07.ST09

    ZHOU Ying, WU Hao, GU Anqi. Earthquake engineering: from earthquake resistance, energy dissipation and, isolation to resilience [J]. Engineering Mechanics, 2019, 36(6): 1 − 12. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.ST09
    [5] WANG Z, WANG J Q, ZHAO G T, et al. Numerical study on seismic behavior of precast bridge columns with large-diameter bars and UHPC grout considering the bar-slip effect [J]. Bulletin of Earthquake Engineering, 2020, 18: 4963 − 4984. doi: 10.1007/s10518-020-00880-6
    [6] PRIESTLEY M J N, SEIBLE F, CALVI G M. Seismic design and retrofit of bridges [M]. New York: John Wiley & Sons, 1996.
    [7] ZHAO J, SRITHARAN S. Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures [J]. ACI Materials Journal, 2007, 104(2): 133 − 141.
    [8] TAZARV M. Next generation of bridge columns for accelerated bridge construction in high seismic zones [M]. Nevada: University of Nevada, Reno, 2014.
    [9] 杨红, 徐海英, 王志军. 考虑柱底纵筋滑移的纤维模型及框架地震反应分析[J]. 建筑结构学报, 2009, 30(4): 130 − 137.

    YANG Hong, XU Haiying, WANG Zhijun. Seismic responses analysis of RC frame based on fiber model considering bar slippage at column bottom section [J]. Journal of Building Structures, 2009, 30(4): 130 − 137. (in Chinese)
    [10] DE TERÁN J R D, HAACH V G. Equivalent stress-strain law for embedded reinforcements considering bond-slip effects [J]. Engineering Structures, 2018, 165: 247 − 253. doi: 10.1016/j.engstruct.2018.03.045
    [11] SHARIFI A, BANAN M R, BANAN M R. A macro-method for including bond–slip flexibility within fibre element formulation for simulating hysteretic behaviour of RC beam–column members [J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2020, 44: 631 − 643.
    [12] FENG D C, XU J. An efficient fiber beam-column element considering flexure–shear interaction and anchorage bond-slip effect for cyclic analysis of RC structures [J]. Bulletin of Earthquake Engineering, 2018, 16(11): 5425 − 5452. doi: 10.1007/s10518-018-0392-y
    [13] ABOUKIFA M, MOUSTAFA M A. Experimental seismic behavior of ultra-high performance concrete columns with high strength steel reinforcement [J]. Engineering Structures, 2021, 232: 111885. doi: 10.1016/j.engstruct.2021.111885
    [14] WANG Z, WANG J Q, LIU J Z, et al. Large-scale quasi-static testing of precast bridge column with pocket connections using noncontact lap-spliced bars and UHPC grout [J]. Bulletin of Earthquake Engineering, 2019, 17(9): 5021 − 5044. doi: 10.1007/s10518-019-00649-6
    [15] FIB(International Federation for Structural Concrete). FIB model code for concrete structures 2010 [M]. Hoboken, New Jersey: Ernst & Sohn, 2013.
    [16] ALSIWAT J M, SAATCIOGLU M. Reinforcement anchorage slip under monotonic loading [J]. Journal of Structural Engineering, 1992, 118(9): 2421 − 2438. doi: 10.1061/(ASCE)0733-9445(1992)118:9(2421)
    [17] BAE S, BAYRAK O. Plastic hinge length of reinforced concrete columns [J]. ACI Structural Journal, 2008, 105(3): 290 − 300.
    [18] BERRY M, PARRISH M, EBERHARD M. The structural performance database [DB]. https://nisee.berkeley.edu/spd/, 2016.
    [19] LEHMAN D E, MOEHLE J P. Seismic performance of well-confined concrete bridge columns [R]. Berkeley: University of California, 1998.
    [20] TANAKA H. Effect of lateral confining reinforcement on the ductile behaviour of reinforced concrete columns [D]. New Zealand: University of Canterbury, 1990.
    [21] Team OpenSees. Open system for earthquake engineering simulation (OpenSees): ver. 3.2. 2 [DB]. Berkeley, CA: Pacific Earthquake Engineering Research Center (PEER), University of California, 2020.
    [22] TAUCER F, SPACONE E, FILIPPOU F C. A fiber beam-column element for seismic response analysis of reinforced concrete structures [M]. Berkeley, CA: Earthquake Engineering Research Center, College of Engineering, University of California, 1991.
    [23] COLEMAN J, SPACONE E. Localization issues in force-based frame elements [J]. Journal of Structural Engineering, 2001, 127(11): 1257 − 1265. doi: 10.1061/(ASCE)0733-9445(2001)127:11(1257)
    [24] KENT D C, PARK R. Flexural members with confined concrete [J]. Journal of the Structural Division, 1971, 97(7): 1969 − 1990. doi: 10.1061/JSDEAG.0002957
    [25] MENEGOTTO M, PINTO P E. Method of analysis for cyclically loaded reinforced concrete plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending [C]. Lisbon: Proceedings, IABSE Symposium on Resistance and Ultimate Deformability of Structures, 1973: 15 − 22.
    [26] DHAKAL R P, MAEKAWA K. Reinforcement stability and fracture of cover concrete in reinforced concrete members [J]. Journal of Structural Engineering, 2002, 128(10): 1253 − 1262. doi: 10.1061/(ASCE)0733-9445(2002)128:10(1253)
    [27] DHAKAL R P, MAEKAWA K. Modeling for postyield buckling of reinforcement [J]. Journal of Structural Engineering, 2002, 128(9): 1139 − 1147. doi: 10.1061/(ASCE)0733-9445(2002)128:9(1139)
    [28] KASHANI M M, LOWES L N, CREWE A J, et al. Nonlinear fiber element modeling of RC bridge piers considering inelastic buckling of reinforcement [J]. Engineering Structures, 2016, 116: 163 − 177. doi: 10.1016/j.engstruct.2016.02.051
    [29] KOH S K, STEPHENS R I. Mean stress effects on low cycle fatigue for a high strength steel [J]. Fatigue & Fracture of Engineering Materials & Structures, 1991, 14(4): 413 − 428.
    [30] TRIPATHI M, DHAKAL R P, DASHTI F, et al. Low-cycle fatigue behaviour of reinforcing bars including the effect of inelastic buckling [J]. Construction and Building Materials, 2018, 190: 1226 − 1235. doi: 10.1016/j.conbuildmat.2018.09.192
    [31] MINER M A. Cumulative damage in fatigue [J]. Journal of Applied Mechanics, 1945, 12: 149 − 164. doi: 10.1115/1.4009456
    [32] XU W J, MA B, DUAN X Z, et al. Experimental investigation of seismic behavior of UHPC connection between precast columns and footings in bridges [J]. Engineering Structures, 2021, 239: 112344. doi: 10.1016/j.engstruct.2021.112344
    [33] THOMAS D J, SRITHARAN S. An evaluation of seismic design guidelines proposed for precast jointed wall systems [M]. Ames: Iowa State University, 2004.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  155
  • HTML全文浏览量:  88
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-09
  • 录用日期:  2022-04-01
  • 修回日期:  2021-12-06
  • 网络出版日期:  2022-04-01
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回