SIMULATION METHOD OF LOW CYCLE RECIPROCATING LOADING OF PIER COLUMN CONSIDERING BOND-SLIP EFFECT
-
摘要: 针对桥梁墩柱和承台内的粘结滑移现象,基于fib混凝土规范(fib Model Code)推荐的混凝土粘结滑移模型,推导了纵筋滑移量的计算公式,并通过对墩柱塑性区域受拉纵筋的应力-应变本构进行修正,以引入墩柱塑性区域和承台内的纵筋滑移量,作为一种等效方法,以考虑粘结滑移对墩柱地震响应的影响,并用试验结果验证了该方法的合理性。此外,还对所提等效方法和零长度截面单元法的计算结果进行了对比。结果表明:未考虑粘结滑移会高估墩柱的侧向刚度、累计滞回耗能和残余位移,且无法客观反映滑移导致的墩柱强度退化问题;零长度截面单元法和所提等效方法均能考虑强度退化问题,但前者对粘结滑移的模拟效果受纵筋直径影响显著,后者则能合理捕捉滑移影响下的墩柱往复加载过程。Abstract: Based on the stress-slip model of concrete proposed by fib Model Code, the slip of rebar was derived and formulated to consider the bond-slip phenomenon occurring both in the column and in the footing. Furthermore, the stress-strain constitutive model of the tensile rebars located within the plastic zone of the column was modified to incorporate the rebar slips in the column and in the footing. In this way, the effect of bond-slip on the seismic responses of the column can be equivalently considered. The feasibility of this method was verified by experimental results. Besides, the comparison was made of the results between the proposed method and the Zero-Length Section Element (ZLSE) method. It can be concluded that the lateral stiffness, the cumulative hysteretic energy, and the residual displacement are all overestimated without considering the bond-slip phenomenon. Apart from that, the strength degradation of the column is unable to reflect objectively. Both the ZLSE method and the proposed equivalent method have the capability to resolve the issue of strength degradation. However, the former method yields the numerical results prominently susceptible to the rebar diameter, while the latter one can efficaciously capture the reciprocating loading process of the column affected by the bond-slip phenomenon.
-
表 1 等效钢筋本构的关键参数计算
Table 1. Key parameters of the equivalent constitutive law of rebar
试件名称 纵筋应力状态 关键参数计算过程 /mm 墩柱
L407屈服 Lei=16.5d=262.4, s0=0.119, εse=0.00117, La=127.5, Lb=130.8, se=0.204, sy=0.441, Lp=153, $ E_{ \rm{s} }' = 0.{\text{286} }{E_{ \rm{s} } } $, $ \varepsilon _{\rm{sy}}' $=0.00807; 断裂 Lej=29.5d=469, s0=0.0605, εse=0.00097, La=90.6, Lb=152.9, se=0.121, sy=0.372, su=12.027,$ {b'} $=0.0038, $ \varepsilon _{ { \rm{su} } }' $=0.227. 墩柱
TP5屈服 Lei=20d=400, s0=0.106, εse=0.00122, La=202.5, Lb=190, se=0.225, sy=0.603, Lp=138, $ E_{\rm {s} }' = 0.{\text{219} }{E_{\rm {s} } } $, $ \varepsilon _{ {\rm {sy} } }' $=0.0117; 断裂 Lej=32d=640, s0=0.066, εse=0.00125, La=172, Lb=185, se=0.197, sy=0.549, su=14.731, $ {b'} $=0.0026, $ \varepsilon _{ { \rm{su} } }' $=0.323 表 2 受压钢筋本构屈曲后参数计算
Table 2. Post-buckling parameters of the compressive constitutive law of rebar
试件名称 纵筋屈曲长度Leff/d 无量纲参数λ 中间点应变ε*/εsy 墩柱L407 8.0 17.2 15.5 墩柱TP5 5.5 12.4 26.4 表 3 墩柱累计滞回耗能的模拟值与试验值对比
Table 3. Comparison of the cumulative hysteretic energies of the columns obtained from the finite element models and the tests
试件
名称漂移
比/(%)试验结果 未考虑
滑移效应零长度
截面单元等效钢筋
本构法累计
耗能/
(kN·m)累计
耗能/
(kN·m)相对
误差/
(%)累计
耗能/
(kN·m)相对
误差/
(%)累计
耗能/
(kN·m)相对
误差/
(%)墩柱L407 1.1 2.16 2.41 11.3 1.52 −29.8 1.86 −13.8 1.6 5.63 6.45 14.4 4.96 −12.0 5.35 −5.0 2.1 8.68 10.67 22.9 8.96 3.2 8.06 −7.2 3.1 16.89 19.92 17.9 18.04 6.8 16.50 −2.3 5.2 34.69 40.70 17.3 37.25 7.4 34.72 0.1 墩柱TP5 1.7 13.76 16.08 16.8 12.48 −9.3 12.46 −9.5 3.0 20.77 35.05 68.7 30.21 45.4 23.98 15.4 4.6 40.73 56.98 39.9 52.50 28.9 45.73 12.3 表 4 墩柱残余位移的模拟值与试验值对比
Table 4. Comparison of the residual displacements of the columns obtained from the finite element models and the tests
试件名称 漂移比/(%) 墩柱残余位移/mm 试验结果 未考虑滑移效应 零长度截面单元 等效钢筋本构法 正向
加载反向
加载正向
加载相对
误差/(%)反向
加载相对
误差/(%)正向
加载相对
误差/(%)反向
加载相对
误差/(%)正向
加载相对
误差/(%)反向
加载相对
误差/(%)墩柱L407 1.1 3.1 −3.3 4.2 35.5 −5.5 65.3 3.0 −4.5 −2.9 −13.3 3.1 −0.4 −3.0 −11.2 1.6 9.5 −11.6 13.8 45.1 −13.8 18.9 10.7 12.9 −10.9 −6.1 9.1 −4.1 −10.8 −6.8 2.1 16.5 −20.0 23.8 44.6 −23.7 18.6 19.9 21.1 −19.9 −0.1 17.2 4.6 −18.3 −8.3 3.1 33.7 −38.5 45.2 34.0 −44.8 16.5 39.8 18.0 −39.3 2.0 37.1 10.0 −37.2 −3.4 5.2 73.7 −81.6 91.9 24.8 −91.7 12.3 87.2 18.4 −86.2 5.6 80.5 9.2 −80.8 −1.0 墩柱TP5 1.7 15.9 −3.4 18.0 13.2 −4.8 42.1 12.6 −20.5 −2.0 −40.6 13.4 −15.6 −2.4 −27.3 3.0 26.0 −22.4 35.1 35.1 −36.4 62.7 29.9 15.1 −31.2 39.3 27.4 5.4 −28.2 26.0 4.6 46.4 −44.8 58.0 25.1 −60.1 34.2 52.8 13.8 −55.2 23.4 47.3 2.0 −48.8 9.1 -
[1] PRIESTLEY M J N. Performance based seismic design [J]. Bulletin of the New Zealand Society for Earthquake Engineering, 2000, 33(3): 325 − 346. doi: 10.5459/bnzsee.33.3.325-346 [2] 陆本燕, 刘伯权, 邢国华, 等. 桥梁结构基于性能的抗震设防目标与性能指标研究[J]. 工程力学, 2011, 28(11): 96 − 103.LU Benyan, LIU Boquan, XING Guohua, et al. Study on fortification criterion and quantified performance index for reinforced concrete bridge structures in performance-based seismic design [J]. Engineering Mechanics, 2011, 28(11): 96 − 103. (in Chinese) [3] 付国, 何斌, 刘伯权. 钢筋混凝土框架柱延性破坏准则研究[J]. 工程力学, 2021, 38(11): 122 − 133. doi: 10.6052/j.issn.1000-4750.2020.10.0780FU Guo, HE Bin, LIU Boquan. Research on ductility failure criterion of reinforced concrete frame columns [J]. Engineering Mechanics, 2021, 38(11): 122 − 133. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.10.0780 [4] 周颖, 吴浩, 顾安琪. 地震工程: 从抗震、减隔震到可恢复性[J]. 工程力学, 2019, 36(6): 1 − 12. doi: 10.6052/j.issn.1000-4750.2018.07.ST09ZHOU Ying, WU Hao, GU Anqi. Earthquake engineering: from earthquake resistance, energy dissipation and, isolation to resilience [J]. Engineering Mechanics, 2019, 36(6): 1 − 12. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.ST09 [5] WANG Z, WANG J Q, ZHAO G T, et al. Numerical study on seismic behavior of precast bridge columns with large-diameter bars and UHPC grout considering the bar-slip effect [J]. Bulletin of Earthquake Engineering, 2020, 18: 4963 − 4984. doi: 10.1007/s10518-020-00880-6 [6] PRIESTLEY M J N, SEIBLE F, CALVI G M. Seismic design and retrofit of bridges [M]. New York: John Wiley & Sons, 1996. [7] ZHAO J, SRITHARAN S. Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures [J]. ACI Materials Journal, 2007, 104(2): 133 − 141. [8] TAZARV M. Next generation of bridge columns for accelerated bridge construction in high seismic zones [M]. Nevada: University of Nevada, Reno, 2014. [9] 杨红, 徐海英, 王志军. 考虑柱底纵筋滑移的纤维模型及框架地震反应分析[J]. 建筑结构学报, 2009, 30(4): 130 − 137.YANG Hong, XU Haiying, WANG Zhijun. Seismic responses analysis of RC frame based on fiber model considering bar slippage at column bottom section [J]. Journal of Building Structures, 2009, 30(4): 130 − 137. (in Chinese) [10] DE TERÁN J R D, HAACH V G. Equivalent stress-strain law for embedded reinforcements considering bond-slip effects [J]. Engineering Structures, 2018, 165: 247 − 253. doi: 10.1016/j.engstruct.2018.03.045 [11] SHARIFI A, BANAN M R, BANAN M R. A macro-method for including bond–slip flexibility within fibre element formulation for simulating hysteretic behaviour of RC beam–column members [J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2020, 44: 631 − 643. [12] FENG D C, XU J. An efficient fiber beam-column element considering flexure–shear interaction and anchorage bond-slip effect for cyclic analysis of RC structures [J]. Bulletin of Earthquake Engineering, 2018, 16(11): 5425 − 5452. doi: 10.1007/s10518-018-0392-y [13] ABOUKIFA M, MOUSTAFA M A. Experimental seismic behavior of ultra-high performance concrete columns with high strength steel reinforcement [J]. Engineering Structures, 2021, 232: 111885. doi: 10.1016/j.engstruct.2021.111885 [14] WANG Z, WANG J Q, LIU J Z, et al. Large-scale quasi-static testing of precast bridge column with pocket connections using noncontact lap-spliced bars and UHPC grout [J]. Bulletin of Earthquake Engineering, 2019, 17(9): 5021 − 5044. doi: 10.1007/s10518-019-00649-6 [15] FIB(International Federation for Structural Concrete). FIB model code for concrete structures 2010 [M]. Hoboken, New Jersey: Ernst & Sohn, 2013. [16] ALSIWAT J M, SAATCIOGLU M. Reinforcement anchorage slip under monotonic loading [J]. Journal of Structural Engineering, 1992, 118(9): 2421 − 2438. doi: 10.1061/(ASCE)0733-9445(1992)118:9(2421) [17] BAE S, BAYRAK O. Plastic hinge length of reinforced concrete columns [J]. ACI Structural Journal, 2008, 105(3): 290 − 300. [18] BERRY M, PARRISH M, EBERHARD M. The structural performance database [DB]. https://nisee.berkeley.edu/spd/, 2016. [19] LEHMAN D E, MOEHLE J P. Seismic performance of well-confined concrete bridge columns [R]. Berkeley: University of California, 1998. [20] TANAKA H. Effect of lateral confining reinforcement on the ductile behaviour of reinforced concrete columns [D]. New Zealand: University of Canterbury, 1990. [21] Team OpenSees. Open system for earthquake engineering simulation (OpenSees): ver. 3.2. 2 [DB]. Berkeley, CA: Pacific Earthquake Engineering Research Center (PEER), University of California, 2020. [22] TAUCER F, SPACONE E, FILIPPOU F C. A fiber beam-column element for seismic response analysis of reinforced concrete structures [M]. Berkeley, CA: Earthquake Engineering Research Center, College of Engineering, University of California, 1991. [23] COLEMAN J, SPACONE E. Localization issues in force-based frame elements [J]. Journal of Structural Engineering, 2001, 127(11): 1257 − 1265. doi: 10.1061/(ASCE)0733-9445(2001)127:11(1257) [24] KENT D C, PARK R. Flexural members with confined concrete [J]. Journal of the Structural Division, 1971, 97(7): 1969 − 1990. doi: 10.1061/JSDEAG.0002957 [25] MENEGOTTO M, PINTO P E. Method of analysis for cyclically loaded reinforced concrete plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending [C]. Lisbon: Proceedings, IABSE Symposium on Resistance and Ultimate Deformability of Structures, 1973: 15 − 22. [26] DHAKAL R P, MAEKAWA K. Reinforcement stability and fracture of cover concrete in reinforced concrete members [J]. Journal of Structural Engineering, 2002, 128(10): 1253 − 1262. doi: 10.1061/(ASCE)0733-9445(2002)128:10(1253) [27] DHAKAL R P, MAEKAWA K. Modeling for postyield buckling of reinforcement [J]. Journal of Structural Engineering, 2002, 128(9): 1139 − 1147. doi: 10.1061/(ASCE)0733-9445(2002)128:9(1139) [28] KASHANI M M, LOWES L N, CREWE A J, et al. Nonlinear fiber element modeling of RC bridge piers considering inelastic buckling of reinforcement [J]. Engineering Structures, 2016, 116: 163 − 177. doi: 10.1016/j.engstruct.2016.02.051 [29] KOH S K, STEPHENS R I. Mean stress effects on low cycle fatigue for a high strength steel [J]. Fatigue & Fracture of Engineering Materials & Structures, 1991, 14(4): 413 − 428. [30] TRIPATHI M, DHAKAL R P, DASHTI F, et al. Low-cycle fatigue behaviour of reinforcing bars including the effect of inelastic buckling [J]. Construction and Building Materials, 2018, 190: 1226 − 1235. doi: 10.1016/j.conbuildmat.2018.09.192 [31] MINER M A. Cumulative damage in fatigue [J]. Journal of Applied Mechanics, 1945, 12: 149 − 164. doi: 10.1115/1.4009456 [32] XU W J, MA B, DUAN X Z, et al. Experimental investigation of seismic behavior of UHPC connection between precast columns and footings in bridges [J]. Engineering Structures, 2021, 239: 112344. doi: 10.1016/j.engstruct.2021.112344 [33] THOMAS D J, SRITHARAN S. An evaluation of seismic design guidelines proposed for precast jointed wall systems [M]. Ames: Iowa State University, 2004. -