A SYNTHESIS METHOD FOR REGIONAL-SPECIFIC GROUND MOTIONS TIME HISTORY BASED ON FEATURE EXTRACTION AND SPECTRAL MATCHING OPTIMIZATION
-
摘要: 地震的区域构造背景和传播路径有较大差异特征,因而实际观测的地震动具有显著的区域性差异。在结构动力时程分析时,虽然人工合成方法能够提供匹配设计谱的输入地震动,但是其并不能体现出地震动的区域特征。为了模拟考虑目标区域特征且完美匹配目标谱的地震动,该文提出了一种基于智能算法的地震动合成新方法。该方法应用主成分分析算法获取目标区域地震动的区域特征,由最大方差理论提取目标区域的种子地震动,再用基于粒子群算法优化的时域反应谱匹配方法调整种子地震动的反应谱,最终构造出包含区域特征和谱匹配的地震动时程。以四川地区为例验证了该方法的合理性和有效性,合成的地震动在时域和频域上均与该区域实际地震动特征一致。该文提出的方法的优点在于合成的地震动具有显著的区域特征,且与目标谱有更好的匹配效果和更高的匹配效率,可为结构动力反应分析提供考虑区域性差异、具有低不确定性的地震动输入。Abstract: Due to the influence of regional seismic source structures, the actual observed ground motion has significant regional differences. In the current structural dynamic time-history analysis, although the synthetic method can provide the spectra-compatible ground motion input, it cannot reflect the actual ground motion characteristics in the target area. In order to synthesize the ground motion, which contains the characteristics of the target region and is perfectly compatible with the target spectrum, a new method for ground motion synthesis based on intelligent algorithm is proposed. In this method, the principal component analysis algorithm was used to obtain the actual regional ground motion characteristics, the maximum variance theory was used to extract the seeds ground motion in the target area, the response spectrum of seed ground motion was adjusted by time domain response spectrum matching method optimized by particle swarm optimization algorithm, and the spectra-compatible ground motion time history containing regional characteristics was finally constructed. The rationality and effectiveness of this method are verified by taking Sichuan area as an example, and the characteristics of the synthesized ground motion in time domain and frequency domain are consistent with the actual ground motion in this area. The advantage of the proposed method is that the synthesized ground motion has significant regional characteristics, and has better matching effect and higher matching efficiency with the target spectrum, which can provide low uncertainty ground motion input considering regional differences for structural dynamic response analyses.
-
表 1 误差函数的定义
Table 1. Definition of error function
误差函数 反应谱差值(ERR1) 反应谱差值与目标谱之比(ERR2) 总体平均值(ERRmean) $ERR_{ {\rm{mean} } }^1 = \dfrac{1}{N}\displaystyle\sum\limits_{i = 1}^N {|S{a_{\rm c}}({T_i}) - S{a_{\rm t}}({T_i})} |$ $ERR_{ {\rm{mean} } }^2 = \dfrac{1}{N}\displaystyle\sum\limits_{i = 1}^N \left|\dfrac{ {S{a_{\rm c}}({T_i}) - S{a_{\rm t}}({T_i})} }{ {S{a_{\rm t}}({T_i})} } \right|$ 个体最大值(ERRmax) $ERR_{\max }^1 = \max \{ |S{a_{\rm c}}({T_i}) - S{a_{\rm t}}({T_i})|\}$ $ERR_{\max }^2 = \max \left\{ \left|\dfrac{ {S{a_{\rm c}}({T_i}) - S{a_{\rm t}}({T_i})} }{ {S{a_{\rm t}}({T_i})} }\right|\right\}$ 表 2 区域地震动信息
Table 2. Regional ground motion information
地震名称 地震时间 北纬/(°) 东经/(°) 震源深度/km 震级/Ms 数目/条 四川雅安余震 2013.4.20 30.389 103.010 12 4.5 1 四川雅安余震 2013.4.20 30.180 102.930 19 4.5 2 四川雅安余震 2013.4.20 30.280 102.930 15 4.8 1 四川雅安余震 2013.4.20 30.250 102.830 16 4.7 2 四川雅安余震 2013.4.20 30.170 102.989 19 4.8 2 四川雅安余震 2013.4.20 30.190 102.949 17 4.6 1 四川雅安余震 2013.4.20 30.280 102.989 15 4.9 3 四川雅安余震 2013.4.20 30.129 102.839 17 4.7 3 四川雅安余震 2013.4.20 30.250 103.010 17 4.7 5 四川雅安余震 2013.4.20 30.239 102.940 15 5.4 4 四川雅安余震 2013.4.21 30.360 103.050 27 5.4 2 四川雅安余震 2013.4.21 30.260 103.000 17 4.9 5 四川雅安余震 2013.4.21 30.340 103.000 17 5.4 3 -
[1] IERVOLINO I, MADDALONI G, COSENZA E. Eurocode 8 compliant real record sets for seismic analysis of structures [J]. Journal of Earthquake Engineering, 2008, 12(1): 54 − 90. doi: 10.1080/13632460701457173 [2] HOUSNER G W. Characteristics of strong-motion earthquakes [J]. Bulletin of the Seismological Society of America, 1947, 37(1): 19 − 31. doi: 10.1785/BSSA0370010019 [3] 胡聿贤, 何训. 考虑相位谱的人造地震动反应谱拟合[J]. 地震工程与工程振动, 1986, 6(2): 37 − 51.HU Yuxian, HE Xun. Phase angle consideration in generation response spectrum-compatible ground motion [J]. Earthquake Engineering and Engineering Vibration, 1986, 6(2): 37 − 51. (in Chinese) [4] LIANG J W, CHAUDHURI S R, SHINOZUKA M. Simulation of nonstationary stochastic processes by spectral representation [J]. Journal of Engineering Mechanics, 2007, 133(6): 616 − 627. doi: 10.1061/(ASCE)0733-9399(2007)133:6(616) [5] HARTZELL S H. Earthquake aftershocks as Green's functions [J]. Geophysical Research Letters, 1978, 5(1): 1 − 4. doi: 10.1029/GL005i001p00001 [6] NOZU A, IRIKURA K. Strong-motion generation areas of a great subduction-zone earthquake: waveform inversion with empirical Green's functions for the 2003 Tokachi-oki earthquake [J]. Bulletin of the Seismological Society of America, 2008, 98(1): 180 − 197. doi: 10.1785/0120060183 [7] MOTAZEDIAN D, ATKINSON G M. Stochastic finite-fault modeling based on a dynamic corner frequency [J]. Bulletin of the Seismological Society of America, 2005, 95(3): 995 − 1010. doi: 10.1785/0120030207 [8] 党鹏飞, 刘启方, 王冲, 等. 地震动随机有限断层模拟方法综述[J]. 地震工程与工程振动, 2020, 40(6): 131 − 139. doi: 10.13197/j.eeev.2020.06.131.dangpf.013DANG Pengfei, LIU Qifang, WANG Chong, et al. Review on the stochastic finite-fault ground motion simulation method [J]. Earthquake Engineering and Engineering Vibration, 2020, 40(6): 131 − 139. (in Chinese) doi: 10.13197/j.eeev.2020.06.131.dangpf.013 [9] 曹泽林, 陶夏新. 基于频率波数域格林函数的宽频带地震动合成方法综述[J]. 地震工程与工程振动, 2018, 38(5): 33 − 40.CAO Zelin, TAO Xiaxin. Review on broadband ground motion simulation based on frequency-wavenumber Green's function [J]. Earthquake Engineering and Engineering Vibration, 2018, 38(5): 33 − 40. (in Chinese) [10] 李四光. 地质学概论[M]. 北京: 科学出版社, 1973.LI Siguang. Introduction to geology [M]. Beijing: Science Press, 1973. (in Chinese) [11] 张齐. 地震动衰减关系的区域性差异研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2016.ZHANG Qi. Study on regional differentiation of ground motion attenuation relationship [D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2016. (in Chinese) [12] 刘诗尧. 地震动随机合成中两种考虑场地影响方法的研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2020.LIU Shiyao. On two ways to consider site effect in random synthesis of ground motion [D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2020. (in Chinese) [13] MONTEJO L A, SUAREZ L E. An improved CWT-based algorithm for the generation of spectrum-compatible records [J]. International Journal of Advanced Structural Engineering, 2013, 5(1): 1 − 7. doi: 10.1186/2008-6695-5-1 [14] LI Y N, WANG G X. Simulation and generation of spectrum-compatible ground motions based on wavelet packet method [J]. Soil Dynamics and Earthquake Engineering, 2016, 87: 44 − 51. doi: 10.1016/j.soildyn.2016.04.008 [15] YANG L L, XIE W C, XU W Y, et al. Generating drift-free, consistent, and perfectly spectrum-compatible time histories [J]. Bulletin of the Seismological Society of America, 2019, 109(5): 1674 − 1690. doi: 10.1785/0120190005 [16] AL ATIK L, ABRAHAMSON N A. An improved method for nonstationary spectral matching [J]. Earthquake Spectra, 2010, 26(3): 601 − 617. doi: 10.1193/1.3459159 [17] KAUL M K. Spectrum-consistent time-history generation [J]. Journal of the Engineering Mechanics Division, 1978, 104(4): 781 − 788. doi: 10.1061/JMCEA3.0002379 [18] LILHANAND K, TSENG W S. Development and application of realistic earthquake time histories compatible with multiple damping response spectra [C]// The Ninth World Conference on Earthquake Engineering. Tokyo, Japan, Japan Association for Earthquake Engineering, 1988, 2: 819 − 824. [19] ABRAHAMSON N A. Non-stationary spectral matching [J]. Seismological Research Letters, 1992, 63(1): 30. [20] HANCOCK J, WATSON-LAMPREY J, ABRAHAMSON N A, et al. An improved method of matching response spectra of recorded earthquake ground motion using wavelets [J]. Journal of Earthquake Engineering, 2006, 10: 67 − 89. [21] 张郁山, 赵凤新. 基于小波函数的地震动反应谱拟合方法[J]. 土木工程学报, 2014, 47(1): 70 − 81. doi: 10.15951/j.tmgcxb.2014.01.010ZHANG Yushan, ZHAO Fengxin. Matching method of ground-motion response spectrum based on the wavelet function [J]. China Civil Engineering Journal, 2014, 47(1): 70 − 81. (in Chinese) doi: 10.15951/j.tmgcxb.2014.01.010 [22] ADEKRISTI A, EATHERTON M R. Time-domain spectral matching of earthquake ground motions using broyden updating [J]. Journal of Earthquake Engineering, 2015, 20(5): 679 − 698. [23] HONG L L, HUANG Y C. A new algorithm in generating spectrum-compatible ground accelerograms [J]. Journal of the Chinese Institute of Engineers, 2020, 43(3): 241 − 248. doi: 10.1080/02533839.2019.1708808 [24] ZENGIN E, ABRAHAMSON N A. A procedure for matching the near-fault ground motions based on spectral accelerations and instantaneous power [J]. Earthquake Spectra, 2021, 37(4): 2545 − 2561. doi: 10.1177/87552930211014540 [25] 胡进军, 谢礼立. 汶川地震近场加速度基本参数的方向性特征[J]. 地球物理学报, 2011, 54(10): 2581 − 2589. doi: 10.3969/j.issn.0001-5733.2011.10.015HU Jinjun, XIE Lili. Directivity in the basic parameters of the near-field acceleration ground motions during the Wenchuan earthquake [J]. Chinese Journal of Geophysics, 2011, 54(10): 2581 − 2589. (in Chinese) doi: 10.3969/j.issn.0001-5733.2011.10.015 [26] 徐培彬. 基于我国强震动数据Flatfile的地震动不确定性研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2019.XU Peibin. Study on the ground motion uncertainty based on the Chinese flatfile [D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2019. (in Chinese) [27] IERVOLINO I, LUCA F D, COSENZA E. Spectral shape-based assessment of SDOF nonlinear response to real, adjusted and artificial accelerograms [J]. Engineering Structures, 2010, 32(9): 2776 − 2792. doi: 10.1016/j.engstruct.2010.04.047 [28] ABDI H, WILLIAMS L J. Principal component analysis [J]. Wiley Interdisciplinary Reviews Computational Statistics, 2010, 2(4): 433 − 459. doi: 10.1002/wics.101 [29] 胡进军, 张辉, 靳超越, 等. 基于PCA及PSO智能算法的地震动合成方法——以中国西部中强地震为例[J]. 工程力学, 2021, 38(3): 159 − 168. doi: 10.6052/j.issn.1000-4750.2020.05.0293HU Jinjun, ZHANG Hui, JIN Chaoyue, et al. A method to simulate ground motion based on PCA and PSO intelligent algorithms—— a case study of moderate magnitude earthquakes in western China [J]. Engineering Mechanics, 2021, 38(3): 159 − 168. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.0293 [30] ALIMORADI A, BECK J L. Machine-learning methods for earthquake ground motion analysis and simulation [J]. Journal of Engineering Mechanics, 2014, 141(4): 04014147. [31] SHI Y, EBERHART R. A modified particle swarm optimizer [C]// Proceeding of 1998 IEEE International Conference on Evolutionary Computation. Anchorage, AK, USA, IEEE, 1998: 69 − 73. [32] 任叶飞, 尹建华, 温瑞智, 等. 结构抗倒塌易损性分析中地震动输入不确定性影响研究[J]. 工程力学, 2020, 37(1): 115 − 125. doi: 10.6052/j.issn.1000-4750.2019.01.0042REN Yefei, YIN Jianhua, WEN Ruizhi, et al. The impact of ground motion inputs on the uncertainty of structural collapse fragility [J]. Engineering Mechanics, 2020, 37(1): 115 − 125. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.01.0042 [33] 王中伟, 胡进军, 张辉, 等. 川滇地区地震动预测模型及其对2021年漾濞6.4级地震的适用性[J]. 地震工程与工程振动, 2022, 42(1): 200 − 209.WANG Zhongwei, HU Jinjun, ZHANG Hui, et al. Ground motion prediction model in Sichuan-Yunnan region and its applicability to the 2021 Ms 6.4 Yangbi earthquake [J]. Earthquake Engineering and Engineering Vibration, 2022, 42(1): 200 − 209. (in Chinese) -