留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于齿轮机构的SMA-摩擦阻尼器试验研究及数值模拟

杜永峰 韩博 李虎

杜永峰, 韩博, 李虎. 基于齿轮机构的SMA-摩擦阻尼器试验研究及数值模拟[J]. 工程力学, 2022, 39(12): 190-201. doi: 10.6052/j.issn.1000-4750.2021.07.0564
引用本文: 杜永峰, 韩博, 李虎. 基于齿轮机构的SMA-摩擦阻尼器试验研究及数值模拟[J]. 工程力学, 2022, 39(12): 190-201. doi: 10.6052/j.issn.1000-4750.2021.07.0564
DU Yong-feng, HAN Bo, LI Hu. EXPERIMENTAL AND NUMBERICAL SIMULATION OF SMA-FRICTION DAMPER BASED ON GEAR MECHANISM[J]. Engineering Mechanics, 2022, 39(12): 190-201. doi: 10.6052/j.issn.1000-4750.2021.07.0564
Citation: DU Yong-feng, HAN Bo, LI Hu. EXPERIMENTAL AND NUMBERICAL SIMULATION OF SMA-FRICTION DAMPER BASED ON GEAR MECHANISM[J]. Engineering Mechanics, 2022, 39(12): 190-201. doi: 10.6052/j.issn.1000-4750.2021.07.0564

基于齿轮机构的SMA-摩擦阻尼器试验研究及数值模拟

doi: 10.6052/j.issn.1000-4750.2021.07.0564
基金项目: 国家自然科学基金项目(51778276)
详细信息
    作者简介:

    杜永峰(1962−),男,甘肃正宁人,教授,博士,博导,主要从事结构健康监测及减隔震控制研究(E-mail: dooyf@lut.cn)

    李 虎(1990−),男,甘肃会宁人,博士,主要从事预制装配式混凝土结构研究(E-mail: 1365563246@qq.com)

    通讯作者:

    韩 博(1994−),男,甘肃漳县人,博士生,主要从事结构减隔震控制研究(E-mail: 1377458801@qq.com)

  • 中图分类号: TU352.1

EXPERIMENTAL AND NUMBERICAL SIMULATION OF SMA-FRICTION DAMPER BASED ON GEAR MECHANISM

  • 摘要: 基于齿轮机构对形状记忆合金(SMA)丝非比例拉伸的特点,提出了一种新型SMA-摩擦阻尼器,并阐述了该阻尼器的基本构造和工作原理。对SMA丝进行循环拉伸试验,考察了加载幅值、加载速率对其力学性能的影响规律;分别对齿轮摩擦单元和SMA-摩擦阻尼器试件进行了低周往复荷载下的力学性能试验,得到了摩擦材料、预紧力以及位移幅值对单次循环耗能、割线刚度、等效阻尼比和自复位率等力学性能指标的影响规律;建立了SMA-摩擦阻尼器的简化力学模型并进行了数值模拟。研究结果表明:所用复合树脂材料较黄铜材料出力更大,性能更稳定;新型阻尼器具有良好的耗能能力、承载能力及自复位能力,可实现大行程设计;利用OpenSees有限元模型计算得到的滞回曲线与试验曲线吻合较好,验证了力学模型和材料本构二次开发的正确性。
  • 图  1  SMA-摩擦阻尼器构造示意图

    Figure  1.  Schematic diagram of the SMA-friction damper

    图  2  SMA-摩擦阻尼器工作原理示意图

    Figure  2.  Working principle diagram of the SMA-friction damper

    图  3  不同设计参数比下θ与伸长率λ和位移变化系数β的关系

    Figure  3.  Relationship between θ and elongation λ and displacement variation coefficient β under different design parameter ratios

    图  4  SMA丝拉伸试验

    Figure  4.  Tensile test of SMA wire

    图  5  SMA丝应力-应变曲线示意图

    Figure  5.  Schematic of SMA wire stress-strain curve

    图  6  SMA丝训练应力-应变曲线

    Figure  6.  Training stress-strain curve of SMA wire

    图  7  SMA丝变幅加载应力-应变曲线

    Figure  7.  The stress-strain curve of SMA wire under variable loading amplitude

    图  8  SMA丝变速率加载应力-应变曲线

    Figure  8.  The stress-strain curve of SMA wire under variable loading rate

    图  9  阻尼器试件实物图

    Figure  9.  physical diagram of the damper specimen

    图  10  阻尼器试验装置

    Figure  10.  Testing apparatus of the damper

    图  11  加载制度

    Figure  11.  Loading sequence

    图  12  FDG的滞回曲线

    Figure  12.  Hysteretic curves of FDG

    图  13  滑动摩擦力变异系数影响因素分析

    Figure  13.  Influence factors analysis of coefficient of variation of sliding friction

    图  14  SFDG的滞回曲线

    Figure  14.  Hysteretic curves of SFDG

    图  15  不同位移幅值下试件SFDG-1力学性能参数变化曲线

    Figure  15.  Test curve of mechanical property parameters with various loading amplitudes for SFDG-1

    图  16  不同预紧力下试件SFDG-1力学性能参数变化曲线

    Figure  16.  Test curves of mechanical property parameters with various preloading forces for SFDG-1

    图  17  简化分析模型

    Figure  17.  Simplified analysis model

    图  18  材料层次架构图

    Figure  18.  Material hierarchy diagram

    图  19  阻尼器试验曲线与模拟曲线对比

    Figure  19.  Comparison between the experimental and numerical curves of the damper

    表  1  SMA丝试验工况

    Table  1.   SMA test conditions

    序号 丝材直径/
    mm
    丝材长度/
    mm
    加载速率/
    (mm/min)
    应变幅值/
    (%)
    总循环次数/
    1 1.8 200 20 7 20
    2 1.8 200 20 2~8 7
    3 1.8 200 10~60 7 6
    注:工况2应变幅值增量为1%,各级加载循环一次;工况3加载速率增量为10 mm/min,各级加载循环一次。
    下载: 导出CSV

    表  2  SMA丝训练前后力学参数对比

    Table  2.   Comparison of mechanical parameters of SMA wire before and after training

    N/
    σMs/
    MPa
    σMf/
    MPa
    σAs/
    MPa
    σAf/
    MPa
    ΔW/
    J
    Ks/
    (N/mm)
    ξeq/
    (%)
    1 674.69 781.63 364.87 193.44 12.93 147.83 7.11
    20 520.56 619.64 305.10 169.85 6.66 133.02 4.07
    注:N为循环次数;σMs为马氏体相变起点应力;σMf为马氏体相变终点应力;σAs为奥氏体相变起点应力;σAf为奥氏体相变终点应力;ΔW为单次循环耗能;Ks为割线刚度;ξeq为等效阻尼比。
    下载: 导出CSV

    表  3  SMA丝变幅加载力学参数

    Table  3.   Mechanical parameters of SMA wire under variable loading amplitude

    Am/
    (%)
    σMs/
    MPa
    σMf/
    MPa
    σAs/
    MPa
    σAf/
    MPa
    ΔW/
    J
    Ks/
    (N/mm)
    ξeq/
    (%)
    2 531.57 553.59 303.53 152.55 0.99 352.01 0.23
    3 520.56 600.77 289.38 150.98 2.65 255.59 0.81
    4 512.70 613.35 305.10 152.55 3.98 184.65 1.75
    5 514.27 586.62 309.82 154.12 5.42 150.92 2.92
    6 506.41 605.49 308.25 161.99 6.50 139.72 3.78
    7 503.26 687.27 292.52 147.83 8.15 132.39 5.00
    8 503.26 690.41 281.51 139.97 9.90 125.76 6.40
    注:Am为应变幅值;σMs为马氏体相变起点应力;σMf为马氏体相变终点应力;σAs为奥氏体相变起点应力;σAf为奥氏体相变终点应力;ΔW为单次循环耗能;Ks为割线刚度;ξeq为等效阻 尼比。
    下载: 导出CSV

    表  4  SMA丝变速率加载力学参数

    Table  4.   Mechanical parameters of SMA wire under variable loading rate

    V/
    (mm/min)
    σMs/
    MPa
    σMf/
    MPa
    σAs/
    MPa
    σAf/
    MPa
    ΔW/
    J
    Ks/
    (N/mm)
    ξeq/
    (%)
    10 504.05 661.32 307.46 148.62 8.36 130.12 5.22
    20 508.77 666.04 304.32 147.05 7.31 132.45 4.48
    30 507.20 645.60 299.60 150.20 6.88 131.99 4.23
    40 508.77 650.31 302.74 154.91 6.78 138.53 3.98
    50 500.9 634.58 313.75 151.77 6.51 130.60 4.05
    60 493.04 647.17 320.04 158.06 6.34 132.28 3.89
    注:V为加载速率;σMs为马氏体相变起点应力;σMf为马氏体相变终点应力;σAs为奥氏体相变起点应力;σAf为奥氏体相变终点应力;ΔW为单次循环耗能;Ks为割线刚度;ξeq为等效阻尼比。
    下载: 导出CSV

    表  5  阻尼器试验工况

    Table  5.   Cases of the specimens

    序号 试件编号 SMA数量 SMA面积/mm2 摩擦材料 预紧力/kN
    1 FDG-1 0 0.00 刹车片 0.5 2 5
    2 FDG-2 0 0.00 黄铜 0.5 2 5
    3 SFDG-1 2 5.09 刹车片 0.5 2 5
    4 SFDG-2 2 5.09 黄铜 0.5 2 5
    下载: 导出CSV

    表  6  FDG试件力学性能参数

    Table  6.   Mechanical property parameters of FDG

    试件 位移幅值/mm 预紧力0.5 kN 预紧力2.0 kN 预紧力5.0 kN
    ΔW/J Ks/(kN/mm) ξeq/(%) ΔW/J Ks/(kN/mm) ξeq/(%) ΔW/J Ks/(kN/mm) ξeq/(%)
    FDG-1 10 19.25 0.051 58.87 87.15 0.226 59.85 187.16 0.499 58.09
    15 27.95 0.033 58.83 133.47 0.154 60.26 287.58 0.339 59.33
    20 37.55 0.026 55.83 178.84 0.119 59.19 383.67 0.250 60.20
    25 46.67 0.022 54.73 221.39 0.097 57.54 477.64 0.200 60.42
    FDG-2 10 9.97 0.028 54.29 56.48 0.146 59.40 128.53 0.338 59.63
    15 15.53 0.020 53.27 84.76 0.100 58.36 199.22 0.227 60.72
    20 20.22 0.015 52.51 111.08 0.076 57.32 268.64 0.171 61.30
    25 26.00 0.013 49.63 136.03 0.058 59.18 341.29 0.141 61.50
    注:ΔW为单次循环耗能;Ks为割线刚度;ξeq为等效阻尼比。
    下载: 导出CSV

    表  7  SFDG试件力学性能参数

    Table  7.   Mechanical property parameters of SFDG

    试件 位移幅值/mm 预紧力0.5 kN 预紧力2.0 kN 预紧力5.0 kN
    ΔW/J Ks/(kN/mm) ξeq/(%) δ/(%) ΔW/J Ks/(kN/mm) ξeq/(%) δ/(%) ΔW/J Ks/(kN/mm) ξeq/(%) δ/(%)
    SFDG-1 10 33.07 0.207 24.71 3.89 88.31 0.317 43.29 2.81 214.51 0.660 50.37 4.93
    15 61.06 0.197 21.64 13.14 140.82 0.259 37.82 3.07 338.03 0.481 48.74 3.96
    20 93.34 0.177 20.79 18.27 196.81 0.226 34.21 3.28 461.04 0.392 46.26 3.05
    25 132.53 0.187 17.89 23.19 256.98 0.221 29.25 4.71 588.11 0.363 40.97 2.78
    SFDG-2 10 23.11 0.154 23.88 5.18 64.81 0.245 40.87 3.20 165.82 0.513 50.02 4.63
    15 41.37 0.166 17.40 20.17 104.23 0.210 34.61 3.34 263.48 0.390 46.85 3.99
    20 65.70 0.154 16.81 28.87 148.75 0.185 31.68 3.53 363.44 0.316 45.21 2.93
    25 95.32 0.163 14.78 30.80 195.20 0.184 26.77 7.32 462.48 0.290 40.22 2.84
    注:ΔW为单次循环耗能;Ks为割线刚度;ξeq为等效阻尼比;自复位率δ=(DD0)/DD为最大加载位移,D0为残余位移。
    下载: 导出CSV

    表  8  数值模拟参数

    Table  8.   Parameters selected for numerical simulation

    SMA丝参数 摩擦单元参数
    L0=182 mm E=33 000 MPa k=650,2200,5600 N/mm
    Y=550 MPa n=3 λ=0.01
    As=5.087 mm2 α=0.01 Dy=1
    ft=1.3 a=200 A=8
    c=0.001 fm=10 000 B=2
    m=3 εmf =0.09 γ=2,η=7
    注:预紧力为0.5 kN、2.0 kN和5.0 kN工况所对应的k值用逗号
    隔开。
    下载: 导出CSV

    表  9  试验结果和数值模拟结果对比

    Table  9.   Comparison between experimental and numerical results

    预紧力
    /kN
    位移幅值/mm ΔW/J 误差/(%) Ks/(kN/mm) 误差/(%) ξeq/(%) 误差/(%) δ/(%) 误差/(%)
    试验 模拟 试验 模拟 试验 模拟 试验 模拟
    0.5 10 33.07 31.27 5.76 0.207 0.214 3.27 24.71 23.40 5.60 3.89 12.64 69.22
    15 61.06 59.31 2.95 0.197 0.194 1.55 21.64 21.38 1.22 13.14 18.53 29.09
    20 93.34 94.62 1.35 0.177 0.188 5.85 20.79 19.65 5.80 18.27 20.86 12.41
    25 132.53 136.53 2.93 0.187 0.196 4.59 17.89 17.48 2.35 23.19 21.03 10.27
    2.0 10 88.31 86.50 2.09 0.317 0.320 0.94 43.29 41.44 4.46 2.81 7.71 63.55
    15 140.82 138.91 1.38 0.259 0.253 2.37 37.82 37.86 0.11 3.07 5.89 47.88
    20 196.81 195.06 0.90 0.226 0.220 2.72 34.21 34.63 1.21 3.28 4.96 33.87
    25 256.98 254.42 1.01 0.221 0.222 0.45 29.25 28.73 1.81 4.71 6.02 21.76
    5.0 10 214.51 213.19 0.62 0.660 0.649 1.69 50.37 50.41 0.08 4.93 6.63 25.64
    15 338.03 332.13 1.78 0.481 0.475 1.26 48.74 48.27 0.97 3.96 4.74 16.46
    20 461.04 453.60 1.64 0.392 0.390 0.51 46.26 45.46 1.76 3.05 3.89 21.59
    25 588.11 577.46
    1.84 0.363 0.378 3.96 40.97 38.40 6.69 2.78 3.48 20.12
    注:ΔW为单次循环耗能;Ks为割线刚度;ξeq为等效阻尼比;自复位率δ=(DD0)/DD为最大加载位移,D0为残余位移。
    下载: 导出CSV
  • [1] 刘明明, 李宏男, 付兴. 一种新型自复位SMA-剪切型铅阻尼器的试验及其数值分析[J]. 工程力学, 2018, 35(6): 52 − 57, 67. doi: 10.6052/j.issn.1000-4750.2017.01.0066

    LIU Mingming, LI Hongnan, FU Xing. Experimental and numerical analysis of an innovative re-centering shape memory alloys-shearing lead damper [J]. Engineering Mechanics, 2018, 35(6): 52 − 57, 67. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.01.0066
    [2] COLAJANNI P, MENDOLA L L, MONACO A, et al. Design of RC joints equipped with hybrid trussed beams and friction dampers [J]. Engineering Structures, 2021, 227: 111442. doi: 10.1016/j.engstruct.2020.111442
    [3] GHORBANI H R, ROFOOEI F R. A novel double slip loads friction damper to control the seismic response of structures [J]. Engineering Structures, 2020, 225: 111273. doi: 10.1016/j.engstruct.2020.111273
    [4] VEISMORADI S, YOUSEF-BEIK M M, ZARNANI P, et al. Development and parametric study of a new self-centering rotational friction damper [J]. Engineering Structures, 2021, 235: 112097. doi: 10.1016/j.engstruct.2021.112097
    [5] 张爱林, 王杰, 张艳霞, 等. 箱形柱芯筒式双法兰刚性连接节点平面框架拟静力试验研究[J]. 工程力学, 2021, 38(9): 146 − 160. doi: 10.6052/j.issn.1000-4750.2020.09.0649

    ZHANG Ailin, WANG Jie, ZHANG Yanxia, et al. Comparative analysis of experiments on plane steel frame and damped steel frame with double flanged rigid connections containing core tube [J]. Engineering Mechanics, 2021, 38(9): 146 − 160. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.09.0649
    [6] 吕西林, 陈云, 毛苑君. 结构抗震设计的新概念—可恢复功能结构[J]. 同济大学学报(自然科学版), 2011, 39(7): 941 − 948. doi: 10.3969/j.issn.0253-374x.2011.07.001

    LYU Xilin, CHEN Yun, MAO Yuanjun. New concept of structural seismic design: earthquake resilient structures [J]. Journal of Tongji University (Natural Science), 2011, 39(7): 941 − 948. (in Chinese) doi: 10.3969/j.issn.0253-374x.2011.07.001
    [7] OZBULUT O E, HURLEBAUS S. Re-centering variable friction device for vibration control of structures subjected to near-field earthquakes [J]. Mechanical Systems & Signal Processing, 2011, 25(8): 2849 − 2862.
    [8] ZHANG Z, BI K, HAO H, et al. Development of a novel deformation-amplified shape memory alloy-friction damper for mitigating seismic responses of RC frame buildings [J]. Engineering Structures, 2020, 216: 110751. doi: 10.1016/j.engstruct.2020.110751
    [9] 任文杰, 李宏男, 宋钢兵, 等. 新型自复位SMA阻尼器对框架结构减震控制的研究[J]. 土木工程学报, 2013, 46(6): 14 − 20.

    REN Wenjie, LI Hongnan, SONG Gangbing, et al. Study on seismic response control of frame structure using innovative re-centering SMA damper [J]. China Civil Engineering Journal, 2013, 46(6): 14 − 20. (in Chinese)
    [10] 展猛, 王社良, 赵云. SMA压电复合减震装置电力学性能及其本构模型[J]. 振动. 测试与诊断, 2019, 39(4): 845 − 851, 909.

    ZHAN Meng, WANG Sheliang, ZHAO Yun. Electrodynamic performance and its constitutive model for SMA piezoelectric composite control device [J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39(4): 845 − 851, 909. (in Chinese)
    [11] 屈俊童, 卢飞, 吴洋洋, 等. 新型筒式自复位SMA-摩擦阻尼器的减震性能分析[J]. 噪声与振动控制, 2020, 40(3): 213 − 218, 269. doi: 10.3969/j.issn.1006-1355.2020.03.037

    QU Juntong, LU Fei, WU Yangyang, et al. Analysis of vibration attenuation performance of a new circular tube re-centering SMA-friction damper [J]. Noise and Vibration Control, 2020, 40(3): 213 − 218, 269. (in Chinese) doi: 10.3969/j.issn.1006-1355.2020.03.037
    [12] 胡淑军, 顾琦, 姜国青, 等. 一种新型自复位SMA支撑的抗震性能试验研究[J]. 工程力学, 2021, 38(1): 109 − 118, 142. doi: 10.6052/j.issn.1000-4750.2020.02.0087

    HU Shujun, GU Qi, JIANG Guoqing, et al. Experimental study on seismic performance for an innovative self-centering SMA brace [J]. Engineering Mechanics, 2021, 38(1): 109 − 118, 142. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.0087
    [13] SHAKERI J, ABDOLLAHZADEH G. Seismic rehabilitation of tall steel moment resisting frames damaged by fire with SMA-based hybrid friction damper [J]. International Journal of Steel Structures, 2020, 20(1): 46 − 66. doi: 10.1007/s13296-019-00270-y
    [14] BERTON S, BOLANDER J E. Amplification system for supplemental damping devices in seismic applications [J]. Journal of Structural Engineering, 2005, 131(6): 979 − 983. doi: 10.1061/(ASCE)0733-9445(2005)131:6(979)
    [15] LI H N, HUANG Z, FU X, et al. A re-centering deformation‐amplified shape memory alloy damper for mitigating seismic response of building structures [J]. Structural Control and Health Monitoring, 2018, 25(9): e2233.1 − e2233.20.
    [16] 赵桂峰, 马玉宏. 阻尼器响应放大技术研究与应用进展[J]. 土木工程学报, 2020, 53(6): 64 − 78.

    ZHAO Guifeng, MA Yuhong. Research and application progress of damper response amplification technology [J]. China Civil Engineering Journal, 2020, 53(6): 64 − 78. (in Chinese)
    [17] DOLCE M, CARDONE D. Mechanical behaviour of shape memory alloys for seismic applications 2. Austenite NiTi wires subjected to tension [J]. International Journal of Mechanical Sciences, 2001, 43(11): 2657 − 2677. doi: 10.1016/S0020-7403(01)00050-9
    [18] 任文杰, 王利强, 马志成, 等. 形状记忆合金-摩擦复合阻尼器力学性能研究[J]. 建筑结构学报, 2013, 34(2): 83 − 90.

    REN Wenjie, WANG Liqiang, MA Zhicheng, et al. Investigation on mechanical behavior of innovative shape memory alloy-friction damper [J]. Journal of Building Structures, 2013, 34(2): 83 − 90. (in Chinese)
    [19] 韩建平, 章全才. 新型自复位黏弹性阻尼支撑力学性能研究[J]. 工程力学, 2021, 38(1): 195 − 204. doi: 10.6052/j.issn.1000-4750.2020.03.0168

    HAN Jianping, ZHANG Quancai. The investigation on mechanical behavior of a new-type self-centering viscoelastic damping brace [J]. Engineering Mechanics, 2021, 38(1): 195 − 204. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.03.0168
    [20] 钱辉, 李宏男, 宋钢兵, 等. 基于塑性理论的形状记忆合金本构模型、试验和数值模拟[J]. 功能材料, 2007, 38(7): 1114 − 1118. doi: 10.3321/j.issn:1001-9731.2007.07.020

    QIAN Hui, LI Hongnan, SONG Gangbing, et al. Constitutive model of shape memory alloy based on plastic theory: experiment and simulation [J]. Journal of Functional Materials, 2007, 38(7): 1114 − 1118. (in Chinese) doi: 10.3321/j.issn:1001-9731.2007.07.020
  • 加载中
图(21) / 表(9)
计量
  • 文章访问数:  178
  • HTML全文浏览量:  130
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-21
  • 录用日期:  2021-11-26
  • 修回日期:  2021-10-24
  • 网络出版日期:  2021-11-26
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回