FINITE ELEMENT SIMULATION VERIFICATION AND FAILURE MECHANISM OF GROUTED SLEEVE CONNECTIONS UNDER LOADING
-
摘要: 针对套筒灌浆连接的传力机理尚未完全明确,从理论上分析了受拉时接头的荷载传递路径与方式,提出了基于拟合系数、组合系数、整体系数的套筒灌浆连接受拉承载力计算方法与失效模式识别依据。进一步通过收集国内外试验数据的拟合分析,明确了单调递增受拉、反复拉压作用下拟合系数的取值分别为0.203、0.158。结合高温后套筒灌浆连接反复拉压作用下试验数据的分析结果,建议组合系数、整体系数均取1.2(400 ℃高温作用后,后者取1.0)。最后,开展高温后套筒灌浆连接反复拉压作用有限元仿真,明确了套筒灌浆连接失效模式转变、承载力明显下降的临界温度分别为400 ℃、800 ℃。此外,还发现新建的套筒灌浆连接承载力计算方法的结果与模拟值最大偏差不超过8.2%,表明二者均能较好地反映高温后套筒灌浆连接承载力演变规律,为套筒灌浆连接设计方法的形成提供了理论依据。Abstract: The force delivering mechanism is unclear in the grouted sleeve connection, so the load transmission path and method are analyzed. Then considering three coefficients, namely, fitting coefficient, combination coefficient and integral coefficient, methods for bearing capacity calculation and failure mode identification are proposed for grouted sleeve connections under tensile force. Moreover, the fitting coefficient is determined by fitting analysis on the collected date at home and abroad, i.e., 0.203 and 0.158 for the connection under incremental tensile and cyclic loading respectively. According to the analysis result from heat-damaged connections under cyclic loadings, it is suggested that the value of combination coefficient and integral coefficient should be 1.2 but the integral coefficient should be 1.0 after the connection’s exposure to a heating more than 400 ℃. Finally, a finite element simulation is performed to analyze the heat-damaged grouted sleeve connections under cyclic loadings. It is found that the crucial temperatures of the connection are 400 ℃ for the failure mode changing and 800 ℃ for obvious decrease in bearing capacity. In addition, the maximum difference of the bearing capacity is 8.2% between calculation results and simulation results, which means that both methods show same developing trend of the connection’s bearing capacity under cyclic loading. All of these findings and propositions will benefit the forming of design method of grouted sleeve connection.
-
表 1 套筒灌浆连接承载力计算方法的应用
Table 1. Applications of the new method for bearing capacity of connections
试件 ${\mathit{F} }_{ \rm{t} }$ /kN ${\mathit{F} }_{3\rm{c} }$ /kN ${\mathit{F} }_{2\rm{c} }$ /kN $ {\mathit{k}}_{2} $ $F_{3{\rm{c} }}'$ /kN 失效模式 ${F}_\rm{2c,a}$ ${F}_\rm{2c,b}$ 实测 预测 一致 GS-A-AT-UT 202.7 169.6 306.4 306.4 1.20 200.1 Ⅰ Ⅰ Y GS-A-200-UT 197.3 169.6 281.6 297.2 1.16 200.1 Ⅰ Ⅰ Y GS-A-400-UT 199.5 169.6 257.4 256.5 1.18 200.1 Ⅰ Ⅰ Y GS-A-600-UT 188.4 159.4 190.2 164.6 ≤1.18 188.1 Ⅱ Ⅱ Y GS-A-AT-CH 197.4 169.6 306.4 306.4 1.16 200.1 Ⅰ Ⅰ Y GS-A-200-CH 193.4 169.6 281.6 297.2 1.14 200.1 Ⅰ Ⅰ Y GS-A-400-CH 195.6 169.6 257.4 256.5 1.15 200.1 Ⅱ Ⅰ N GS-A-600-CH 182.9 159.4 190.2 164.6 ≤1.15 188.1 Ⅱ Ⅱ Y GS-A-AT-CL 192.8 169.6 306.4 306.4 1.14 200.1 Ⅰ Ⅰ Y GS-A-200-CL 196.4 169.6 281.6 297.2 1.16 200.1 Ⅰ Ⅰ Y GS-A-400-CL 185.2 169.6 257.4 256.5 1.09 200.1 Ⅰ Ⅰ Y GS-A-600-CL 179.3 159.4 190.2 164.6 ≤1.12 188.1 Ⅱ Ⅱ Y GS-C-AT-UT 199.9 169.6 316.4 316.4 1.18 200.1 Ⅰ Ⅰ Y GS-C-200-UT 199.0 169.6 290.8 307.0 1.17 200.1 Ⅰ Ⅰ Y GS-C-400-UT 197.5 169.6 265.7 265.0 1.16 200.1 Ⅰ Ⅰ Y GS-C-600-UT 184.7 159.4 196.4 170.1 ≤1.16 188.1 Ⅱ Ⅱ Y GS-C-AT-CH 197.0 169.6 316.4 316.4 1.16 200.1 Ⅰ Ⅰ Y GS-C-200-CH 183.9 169.6 290.8 307.0 1.08 200.1 Ⅰ Ⅰ Y GS-C-400-CH 194.5 169.6 265.7 265.0 1.15 200.1 Ⅰ Ⅰ Y GS-C-600-CH 185.4 159.4 196.4 170.1 ≤1.16 188.1 Ⅱ Ⅱ Y GS-C-AT-CL 194.6 169.6 316.4 316.4 1.15 200.1 Ⅰ Ⅰ Y GS-C-200-CL 193.3 169.6 290.8 307.0 1.14 200.1 Ⅰ Ⅰ Y GS-C-400-CL 190.3 169.6 265.7 265.0 1.12 200.1 Ⅰ Ⅰ Y GS-C-600-CL 180.8 159.4 196.4 170.1 ≤1.13 188.1 Ⅱ Ⅱ Y 注: ${F}_{2{\rm{c}},i}$为套筒灌浆料与钢筋界面黏结承载力计算值, $ i $包括a、b两种情况,对应采用表达式(9)、马江剑[25]的方法计算高温后套筒灌浆料抗压强度;Y、N为表示预测失效模式与试验结果一致、不一致;Ft/kN为套筒灌浆连接承载力实测值; ${F}_{3{\rm{c}}} $、 $ {F}_{3{\rm{c}}}' $分别为钢筋抗拉承载力计算值、修正值;UT、CH、CL为加载方式,分别表示单向拉伸、高应力反复拉压、大变形反复拉压,下同。 表 2 高温后套筒灌浆连接承载力计算与模拟
Table 2. The bearing capacity of connections by calculations and simulations
温度作用/(℃) UT/kN CH/kN CL/kN 计算 模拟 计算 模拟 计算 模拟 500 198.3 182.0 198.3 182.7 198.3 182.5 800 173.3 156.6 173.3 158.1 173.3 158.7 1000 156.1 147.4 156.1 146.8 156.1 148.5 -
[1] 薛伟辰, 胡翔. 预制混凝土剪力墙结构体系研究进展[J]. 建筑结构学报, 2019, 40(2): 44 − 55.XUE Weichen, HU Xiang. State of the art of studies on precast concrete shear wall structures [J]. Journal of Building Structures, 2019, 40(2): 44 − 55. (in Chinese) [2] 韩超, 郑毅敏, 赵勇. 钢筋套筒灌浆连接技术研究与应用进展[J]. 施工技术, 2013, 42(21): 113 − 116. doi: 10.7672/sgjs2013210113HAN Chao, ZHENG Yimin, ZHAO Yong. Research and application development of grout sleeve splicing for reinforcement [J]. Construction Technology, 2013, 42(21): 113 − 116. (in Chinese) doi: 10.7672/sgjs2013210113 [3] ZHENG Y F, GUO Z X, LIU J B, et al. Performance and confining mechanism of grouted deformed pipe splice under tensile load [J]. Advances in Structural Engineering, 2016, 19(1): 86 − 103. doi: 10.1177/1369433215618296 [4] LIN F, WU X B. Mechanical performance and stress–strain relationships for grouted splices under tensile and cyclic loadings [J]. International Journal of Concrete Structures and Materials, 2016, 10(4): 435 − 450. doi: 10.1007/s40069-016-0156-5 [5] EINEA A, YAMANE T, TADROS M K. Grout-filled pipe splices for precast concrete construction [J]. PCI Journal, 1995, 40(1): 82 − 93. doi: 10.15554/pcij.01011995.82.93 [6] ZHANG W X, DENG X, ZHANG J Y, et al. Tensile behavior of half grouted sleeve connection at elevated temperatures [J]. Construction and Building Materials, 2018, 176: 259 − 270. doi: 10.1016/j.conbuildmat.2018.05.027 [7] LING J H, RAHMAN A B A, IBRAHIM I S, et al. Tensile capacity of grouted splice sleeves [J]. Engineering Structures, 2016, 111: 285 − 296. doi: 10.1016/j.engstruct.2015.12.023 [8] HUANG Y, ZHU Z G, NAITO C J, et al. Tensile behavior of half grouted sleeve connections: Experimental study and analytical modeling [J]. Construction and Building Materials, 2017, 152: 96 − 104. doi: 10.1016/j.conbuildmat.2017.06.154 [9] LU Z W, HUANG J, LI Y B, et al. Mechanical behaviour of grouted sleeve splice under uniaxial tensile loading [J]. Engineering Structures, 2019, 186: 421 − 435. doi: 10.1016/j.engstruct.2019.02.033 [10] ZHANG W X, LV W L, ZHANG J Y, et al. Post-fire tensile properties of half-grouted sleeve connection under different cooling paths [J]. Fire Safety Journal, 2019, 109: 102848. doi: 10.1016/j.firesaf.2019.102848 [11] ZHANG W X, HE C, ZHANG J Y, et al. Mechanical behavior of post-fire half-grouted sleeve connection covered by concrete [J]. Construction and Building Materials, 2019, 201: 218 − 231. doi: 10.1016/j.conbuildmat.2018.12.184 [12] ZHANG W X, WANG J, ZHANG J Y, et al. Experimental study on post-fire performance of half grouted sleeve connection with construction defect [J]. Construction and Building Materials, 2020, 244: 118165. doi: 10.1016/j.conbuildmat.2020.118165 [13] LING J H, RAHMAN A B A, MIRASA A K, et al. Performance of cs-sleeve under direct tensile load: Part Ⅰ: failure modes [J]. Malaysian Journal of Civil Engineering, 2008, 20(1): 89 − 106. [14] 胡婉颖, 余玉洁, 田沛丰, 等. 高温后高强Q690钢材循环加载试验及本构模型研究[J]. 工程力学, 2022, 39(3): 84 − 95, 157. doi: 10.6052/j.issn.1000-4750.2021.01.0024Hu Wanying, Yu Yujie, Tian Peifeng, et al. Cyclic loading test and consitutive model of postfire high strength Q690 steel [J]. Engineering Mechanics, 2022, 39(3): 84 − 95, 157. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.01.0024 [15] 纪孙航, 王文达, 鲜威. CFRP 加固火灾作用后圆钢管混凝土构件的侧向撞击性能研究[J]. 工程力学, 2021, 38(8): 178 − 191. doi: 10.6052/j.issn.1000-4750.2020.08.0586JI Sunhang, WANG Wenda, XIAN Wei. Lateral impact behavior of cfrp-reinforced circular concrete-filled steel tubular members after exposure to fire [J]. Engineering Mechanics, 2021, 38(8): 178 − 191. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0586 [16] 金浏, 郝慧敏, 张仁波, 等. 高温下混凝土动态压缩行为细观数值研究[J]. 工程力学, 2019, 36(6): 70 − 78, 118. doi: 10.6052/j.issn.1000-4750.2018.01.0041JIN Liu, HAO Huimin, ZHANG Renbo, et al. Meso-scale simulations of dynamic compressive behavior of concrete at elevated temperature [J]. Engineering Mechanics, 2019, 36(6): 70 − 78, 118. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.01.0041 [17] JGJ 355−2015, 钢筋套筒灌浆连接应用技术规程 [S]. 北京: 中国建筑工业出版社, 2015: 4 − 9.JGJ 355−2015. Technical specification for grout sleeve splicing of rebars [S]. Beijing: China Architecture and Building Press, 2015: 4 − 9. (in Chinese) [18] LING J H, RAHMAN A B A, IBRAHIM I S. Feasibility study of grouted splice connector under tensile load [J]. Construction and Building Materials, 2014, 50: 530 − 539. doi: 10.1016/j.conbuildmat.2013.10.010 [19] KOUSHFAR K, RAHMAN A B A, AHMAD Y, et al. Bond behavior of the reinforcement bar in glass fiber-reinforced polymer connector [J]. Gradevinar, 2014, 66(4): 301 − 310. [20] SAYADI A A, RAHMAN A B A, SAYADI A, et al. Effective of elastic and inelastic zone on behavior of glass fiber reinforced polymer splice sleeve [J]. Construction and Building Materials, 2015, 80: 38 − 47. doi: 10.1016/j.conbuildmat.2015.01.064 [21] ZHAO C F, ZHANG Z D, WANG J F, et al. Numerical and theoretical analysis on the mechanical properties of improved CP-GFRP splice sleeve [J]. Thin-walled Structures, 2019, 137: 487 − 501. doi: 10.1016/j.tws.2019.01.018 [22] 肖建庄, 刘良林, 李建新, 等. 套筒灌浆连接受拉性能回顾与分析[J]. 结构工程师, 2020, 36(1): 1 − 9. doi: 10.3969/j.issn.1005-0159.2020.01.001XIAO Jianzhuang, LIU Lianglin, LI Jianxin, et al. Reviewing and analyzing of performance of grouted sleeve splice under direct tensile load [J]. Structural Engineers, 2020, 36(1): 1 − 9. (in Chinese) doi: 10.3969/j.issn.1005-0159.2020.01.001 [23] 刘良林, 肖建庄, 丁陶, 等. 套筒灌浆料与高强钢筋黏结性能试验与仿真分析[J]. 同济大学学报(自然科学版), 2021, 49(9): 1275 − 1283. doi: 10.11908/j.issn.0253-374x.20333LIU Lianglin, XIAO Jianzhuang, DING Tao, et al. Test and simulation on bond behavior between sleeve grout and high strength steel rebar [J]. Journal of Tongji University (Natural Science), 2021, 49(9): 1275 − 1283. (in Chinese) doi: 10.11908/j.issn.0253-374x.20333 [24] AMELI M J, BROWN D N, PARKS J E, et al. Seismic column-to-footing connections using grouted splice sleeves [J]. ACI Structural Journal, 2016, 113(5): 1021 − 1031. [25] 马江剑. 高温后半灌浆套筒连接试验研究[D]. 西安: 西安建筑科技大学, 2017: 31 − 38.MA Jiangjian. The experimental research of semi-grouting sleeves splicing for rebars after exposed to high temperature [D]. Xi’an: Xi’an University of Architecture and Technology, 2017: 31 − 38. (in Chinese) [26] 余志武, 王中强, 史召锋. 高温后新Ⅲ级钢筋力学性能的试验研究[J]. 建筑结构学报, 2005, 26(2): 112 − 116. doi: 10.3321/j.issn:1000-6869.2005.02.017YU Zhiwu, WANG Zhongqiang, SHI Zhaofeng. Experimental research on material properties of new Ⅲ grade steel bars after fires [J]. Journal of Building Structures, 2005, 26(2): 112 − 116. (in Chinese) doi: 10.3321/j.issn:1000-6869.2005.02.017 [27] 肖建庄, 刘良林, 丁陶, 等. 高温后套筒灌浆连接受力性能试验研究[J]. 建筑结构学报, 2020, 41(11): 99 − 107.XIAO Jianzhuang, LIU Lianglin, DING Tao, et al. Experimental study on mechanical behaviors of grouted sleeve splices after high temperature [J]. Journal of Building Structures, 2020, 41(11): 99 − 107. (in Chinese) [28] XIAO J Z, LIU L L, DING T, et al. Experimental study on mechanical behavior of thermally damaged grouted sleeve splice under cyclic loading [J]. Structural Concrete, 2020, 21(6): 2494 − 2514. doi: 10.1002/suco.202000092 [29] LIU L L, XIAO J Z, DING T, et al. Mechanical behaviours of heat-damaged grouted sleeve connections [J]. Fire Safety Journal, 2021, 122: 103345. doi: 10.1016/j.firesaf.2021.103345 [30] LING J H, RAHMAN A B A, IBRAHIM I S, et al. Behaviour of grouted pipe splice under incremental tensile load [J]. Construction and Building Materials, 2012, 33: 90 − 98. doi: 10.1016/j.conbuildmat.2012.02.001 [31] HENIN E, MORCOUS G. Non-proprietary bar splice sleeve for precast concrete construction [J]. Engineering Structures, 2015, 83: 154 − 162. doi: 10.1016/j.engstruct.2014.10.045 [32] KIM H K. Structural performance of steel pipe splice for SD500 high-strength reinforcing bar under cyclic loading [J]. Architectural Research, 2008, 10(1): 13 − 23. [33] ZHENG G Y, KUANG Z P, XIAO J Z, et al. Mechanical performance for defective and repaired grouted sleeve connections under uniaxial and cyclic loadings [J]. Construction and Building Materials, 2020, 233: 117233. doi: 10.1016/j.conbuildmat.2019.117233 [34] 朱佳宁, 郭栋栋, 马金凤, 等. 高温后半灌浆套筒抗拉性能试验研究[J]. 工程力学, 2020, 37(5): 104 − 111. doi: 10.6052/j.issn.1000-4750.2019.06.0322ZHU Jianing, GUO Dongdong, MA Jinfeng, et al. Experimental study on tensile properties of semi-grouting sleeve after high temperature [J]. Engineering Mechanics, 2020, 37(5): 104 − 111. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.06.0322 [35] ACI 318−14, Building code requirements for structural concrete and commentary [S]. MI: American Concrete Institute, 2014: 328 − 432. [36] JGJ 107−2016, 钢筋机械连接技术规程[S]. 北京: 中国建筑工业出版社, 2016: 38 − 41.JGJ 107−2016, Technical specification for mechanical splicing of steel reinforcing bars [S]. Beijing: China Architecture and Building Press, 2016: 38 − 41. (in Chinese) [37] 刘良林, 肖建庄, 李建新, 等. 高温后灌浆料静动态单轴受压力学性能[J]. 工程科学与技术, 2022, 54(4): 112 − 120. doi: 10.15961/j.jsuese.202100143Liu Lianglin, Xiao Jianzhuang, Li Jianxin, et al. Static and dynamic mechanical behaviors of heat-damaged cementitious grout under uniaxial compression loadings [J]. Advanced Engineering Sciences, 2022, 54(4): 112 − 120. (in Chinese) doi: 10.15961/j.jsuese.202100143 [38] TENG J G, FERNANDO D, YU T. Finite element modelling of debonding failures in steel beams flexurally strengthened with CFRP laminates [J]. Engineering Structures, 2015, 86: 213 − 224. doi: 10.1016/j.engstruct.2015.01.003 [39] XIAO J Z, LIU H R, DING T. Finite element analysis on the anisotropic behavior of 3D printed concrete under compression and flexure [J]. Additive Manufacturing, 2021, 39: 101712. doi: 10.1016/j.addma.2020.101712 [40] 刘良林, 欧阳鹭霞, 李建海. 高温下高性能混凝土损伤评价方法[J]. 消防科学与技术, 2017, 36(1): 113 − 115. doi: 10.3969/j.issn.1009-0029.2017.01.035LIU Lianglin, OUYANG Luxia, LI Jianhai. Damage evaluation for high performance concrete under high temperature [J]. Fire Science and Technology, 2017, 36(1): 113 − 115. (in Chinese) doi: 10.3969/j.issn.1009-0029.2017.01.035 [41] XIAO J Z, KONIG G. Study on concrete at high temperature in China—an overview [J]. Fire Safety Journal, 2004, 39: 89 − 103. doi: 10.1016/S0379-7112(03)00093-6 [42] XIAO J Z, XIE Q H, XIE W G. Study on high-performance concrete at high temperatures in China (2004–2016) - An updated overview [J]. Fire Safety Journal, 2018, 95: 11 − 24. doi: 10.1016/j.firesaf.2017.10.007 -