留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非定常气动力降阶的AGARD445.6硬机翼不同迎角颤振研究

容浩然 戴玉婷 许云涛 杨超

容浩然, 戴玉婷, 许云涛, 杨超. 基于非定常气动力降阶的AGARD445.6硬机翼不同迎角颤振研究[J]. 工程力学, 2022, 39(12): 232-247. doi: 10.6052/j.issn.1000-4750.2021.07.0559
引用本文: 容浩然, 戴玉婷, 许云涛, 杨超. 基于非定常气动力降阶的AGARD445.6硬机翼不同迎角颤振研究[J]. 工程力学, 2022, 39(12): 232-247. doi: 10.6052/j.issn.1000-4750.2021.07.0559
RONG Hao-ran, DAI Yu-ting, XU Yun-tao, YANG Chao. RESEARCH ON THE FLUTTER CHARACTERISTCIS OF AGARD445.6 SOLID WING CONSIDERING THE INITIAL ANGLE OF ATTACK BASED ON REDUCED ORDER MODEL[J]. Engineering Mechanics, 2022, 39(12): 232-247. doi: 10.6052/j.issn.1000-4750.2021.07.0559
Citation: RONG Hao-ran, DAI Yu-ting, XU Yun-tao, YANG Chao. RESEARCH ON THE FLUTTER CHARACTERISTCIS OF AGARD445.6 SOLID WING CONSIDERING THE INITIAL ANGLE OF ATTACK BASED ON REDUCED ORDER MODEL[J]. Engineering Mechanics, 2022, 39(12): 232-247. doi: 10.6052/j.issn.1000-4750.2021.07.0559

基于非定常气动力降阶的AGARD445.6硬机翼不同迎角颤振研究

doi: 10.6052/j.issn.1000-4750.2021.07.0559
基金项目: 国家自然科学基金项目(11672018)
详细信息
    作者简介:

    容浩然(1997−),男,湖北人,硕士生,主要从事气动弹性研究(E-mail: rhrsy@buaa.edu.cn )

    许云涛(1987−),男,河北人,博士生,主要从事气动弹性研究(E-mail: 18001033551@163.com)

    杨 超(1966−),男,安徽人,教授,博士,主要从事气动弹性研究(E-mail: yangchao@buaa.edu.cn)

    通讯作者:

    戴玉婷(1985−),女,湖北人,教授,博士,主要从事气动弹性研究(E-mail: yutingdai@buaa.edu.cn)

  • 中图分类号: V211.47

RESEARCH ON THE FLUTTER CHARACTERISTCIS OF AGARD445.6 SOLID WING CONSIDERING THE INITIAL ANGLE OF ATTACK BASED ON REDUCED ORDER MODEL

  • 摘要: 以AGARD445.6硬机翼为研究对象,发展了基于计算流体力学与模态叠加的并行流固耦合方法,计算该机翼在不同初始迎角、不同来流速度的气动弹性时域响应,结果表明:初始迎角小于7°时,该机翼颤振速度随着初始迎角增加而降低;初始迎角7°~10°,颤振速度随着迎角增大而增加。在10°迎角条件建立了基于径向基神经网络的非定常气动降阶模型,准确预测不同速度、减缩频率的非定常气动力,并使用时域龙格库塔法和频域VG法预测10°迎角的颤振特性;建立考虑初始迎角输入的非定常气动降阶模型,预测机翼不同初始迎角的颤振特性。基于降阶模型的初始迎角对颤振边界影响的机理分析表明:小迎角时,随着迎角的增加广义力系数幅值比增加,导致颤振速度的下降;迎角大于7°后展向涡改变了机翼表面压强分布,导致一扭广义力系数幅值比降低,从而增加该机翼颤振速度。
  • 图  1  径向基神经网络结构

    Figure  1.  Structure of RBFNN

    图  2  VFE-2计算网格

    Figure  2.  Mesh distribution of VFE-2

    图  3  不同截面压强系数分布CFD与试验对比

    Figure  3.  Pressure coefficient at various sections by CFD and experiment

    图  4  AGARD445.6计算网格

    Figure  4.  Mesh distribution of AGARD445.6 wing

    图  5  迎角10°90%展长处压强系数分布对比

    Figure  5.  The comparison result of pressure coefficient at 90% span and angle of 10°

    图  6  0°迎角不同来流条件广义位移响应

    Figure  6.  Time responses of wing tip displacement at various velocities (angle of 0°)

    图  7  计算状态点和颤振特性标准差误差棒

    Figure  7.  Calculation conditions and standard error bar of flutter boundary and frequency ratio

    图  8  10°迎角不同来流条件广义位移时域响应

    Figure  8.  Aeroelastic responses at different reduced velocities (angle of 10°)

    图  9  ROM1训练信号

    Figure  9.  Training signal of ROM1

    图  10  ROM2训练信号

    Figure  10.  Training signal of ROM2

    图  11  训练集、测试集包含的减缩频率、速度信息

    Figure  11.  Ranges of reduced frequencies and reduced velocities of training data set and test data set

    图  12  ROM1辨识结果

    Figure  12.  Identification results of ROM1

    图  13  ROM2辨识结果

    Figure  13.  Identification results of ROM2

    图  14  V*=0.428,不同减缩频率kAIC分量

    Figure  14.  AIC components at V*=0.428 and various reduced frequencies

    图  15  k=0.4,不同速度V*AIC分量

    Figure  15.  AIC components at k=0.4 and various reduced velocities

    图  16  基于ROM1,RK法的颤振预测

    Figure  16.  Flutter prediction by ROM1, RK method

    图  17  基于ROM2,RK法的颤振预测

    Figure  17.  Flutter prediction by ROM2 and RK method

    图  18  基于ROM1,VG法的颤振预测

    Figure  18.  Flutter prediction by ROM1 and VG method

    图  19  基于ROM2,VG法的颤振预测

    Figure  19.  Flutter prediction by ROM2 and VG method

    图  20  ROM3训练信号

    Figure  20.  Training signal of ROM3

    图  21  k=0.4,V*=0.443,不同迎角αAIC分量

    Figure  21.  AIC components at k=0.4, V*=0.443 and various angles of attack

    图  22  不同迎角ROM3颤振预测与流固耦合结果对比

    Figure  22.  Flutter prediction by ROM3 and CFD at various angles of attack

    图  23  k=0.4,V*=0.443,不同迎角α下的广义力系数fij与广义位移dj的幅值比和相位差

    Figure  23.  Amplitude ratio and phase between general force coefficient and general displacement at k=0.4, V*=0.443 and various angles of attack by ROM3

    图  24  机翼上表面压强云图和流线图

    Figure  24.  Pressure contour and streamline of the upper surface of the wing

    图  25  不同迎角展向90%截面的δCp弦向分布

    Figure  25.  δCp distribution at 90% span section for different angles

    图  26  90%展长截面广义力系数分布

    Figure  26.  Generalized force coefficients at 90% span section

    图  27  通过式(14)积分得到90%展长截面的广义力系数

    Figure  27.  Generalized force coefficients at 90% span section is obtained by integrating equation (14)

    表  1  迎角10°法向力系数Cn对比

    Table  1.   The comparison result of normal force coefficient Cn at angle of 10°

    网格量 最大y+ 法向力系数Cn 误差/(%)
    1.38×106 25 0.2320 0.3
    2.34×106 6 0.2313
    下载: 导出CSV

    表  2  AGARD445.6软机翼前两阶模态频率

    Table  2.   Mode frequency of AGARD445.6 weakened wing

    模态 一阶模态 二阶模态
    频率/Hz 9.60 38.17
    下载: 导出CSV

    表  3  试验与流固耦合计算结果对比

    Table  3.   Flutter results of CFD and experiment

    试验结果颤振速度/(m/s) 流固耦合颤振速度/(m/s) 误差/(%)
    172.46 171.4 0.61
    下载: 导出CSV

    表  4  AGARD445.6硬机翼前两阶模态频率

    Table  4.   Mode frequency of AGARD445.6 solid wing

    模态 一阶模态 二阶模态
    频率/Hz 14.12 50.91
    下载: 导出CSV

    表  5  ROM1和ROM2辨识误差

    Table  5.   Identification error of ROM1 and ROM2

    广义力系数 f11 f21 f12 f22
    ROM1 0.0160 0.0180 0.0352 0.0411
    ROM2 0.0332 0.0335 0.0435 0.0547
    下载: 导出CSV

    表  6  基于降阶模型的10°迎角颤振预测与流固耦合对比

    Table  6.   Flutter prediction by ROM and FSI, α = 10°

    颤振特性 颤振边界 $V_{\rm f}^*$ 频率比 $\omega {}_{\rm f}/{\omega _\alpha }$
    ROM1, RK法 0.487 0.74
    ROM1, VG法 0.489 0.72
    ROM2, RK法 0.472 0.77
    ROM2, VG法 0.477 0.74
    流固耦合 0.459-0.472 0.77~0.79
    下载: 导出CSV

    表  7  ROM3辨识误差

    Table  7.   Identification error of ROM3

    广义力系数 f11 f21 f12 f22
    ROM3A 0.0228 0.0210 0.0181 0.0095
    ROM3B 0.0283 0.0560 0.0222 0.0472
    下载: 导出CSV
  • [1] ASHLEY H. On the role of shocks in the'sub-transonic'flutter phenomenon [C]// 20th Structures, Structural Dynamics, and Materials Conference. America, 1979: 765.
    [2] EDWARDS J W, BENNETT R M, WHITLOW W, et al. Time-marching transonic flutter solutions including angle-of-attack effects [J]. Journal of Aircraft, 1983, 20(11): 899 − 906. doi: 10.2514/3.48190
    [3] DOGGETT JR R V, RICKETTS R A. Effects of angle of attack and ventical fin on transonic flutter characteristics of an arrow-wing configuration [J]. National Aeronautics and Space Administration, 1980, 26: 1 − 29.
    [4] YATES JR E C, WYNNE E C, FARMER M G. Measured and calculated effects of angle of attack on the transonic flutter of a supercritical wing [C]// Proceedings of the AIAA Structures, Structural Dynamics, and Materials Conference. New Orleans, La., AIAA Structures, 1982: 122 − 144.
    [5] YE Z Y, ZHAO L C. Nonlinear flutter analysis of wings at high angle of attack [J]. Journal of Aircraft, 1994, 31(4): 973 − 974. doi: 10.2514/3.46587
    [6] 张伟伟, 叶正寅. 大后掠翼前缘涡对其颤振特性的影响[J]. 航空学报, 2009, 30(12): 2263 − 2268. doi: 10.3321/j.issn:1000-6893.2009.12.004

    ZHANG Weiwei, YE Zhengyin. Effects of leading-edge vortex on flutter characteristics of high sweep angle wing [J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2263 − 2268. (in Chinese) doi: 10.3321/j.issn:1000-6893.2009.12.004
    [7] 全景阁, 叶正寅, 张伟伟. 削尖三角翼涡破裂前后的气动弹性特性对比研究[J]. 航空学报, 2011, 32(3): 379 − 389.

    QUAN Jingge, YE Zhengyin, ZHANG Weiwei. Comparative study on aeroelastic characteristics of a cropped delta wing before and after vortex breakdown [J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(3): 379 − 389. (in Chinese)
    [8] 全景阁. 分离流中若干气动弹性问题研究[D]. 西安: 西北工业大学, 2019.

    QUAN Jingge. Study on aeroelastic analysis in separated flows [D]. Xi’an: Northwestern Polytechnical University, 2019. (in Chinese)
    [9] 叶正寅, 谢飞. 中等及大迎角下的翼型气动弹性性质研究[J]. 风机技术, 2009(2): 9 − 13. doi: 10.3969/j.issn.1006-8155.2009.02.004

    YE Zhengyin, XIE Fei. Research on the aeroelastic characteristics of an airfoil in moderate and high incidences [J]. Chinese Journal of Turbomachinery, 2009(2): 9 − 13. (in Chinese) doi: 10.3969/j.issn.1006-8155.2009.02.004
    [10] 刘畅畅, 刘子强, 季辰. 不同迎角的翼型气弹特性风洞试验研究[J]. 空气动力学学报, 2012, 30(2): 271 − 276. doi: 10.3969/j.issn.0258-1825.2012.02.025

    LIU Changchang, LIU Ziqiang, JI Chen. Aeroelastic characteristics of airfoils at different angels of attack in wind tunnel testing [J]. Acta Aerodynamica Sinica, 2012, 30(2): 271 − 276. (in Chinese) doi: 10.3969/j.issn.0258-1825.2012.02.025
    [11] LI W, GAO X, LIU H. Efficient prediction of transonic flutter boundaries for varying Mach number and angle of attack via LSTM network [J]. Aerospace Science and Technology, 2021, 110: 106451. doi: 10.1016/j.ast.2020.106451
    [12] TALLEY C S, WRAY T J, WANG Y, et al. Flutter analysis at variable mach and angle of attack utilizing reduced-order-models-ifasd 2019-101 [C]// International Forum on Aeroelasticity and Structural Dynamics (IFASD). America, Florida, 2019.
    [13] TANG D, DOWELL E H. Experimental and theoretical study on aeroelastic response of high-aspect-ratio wings [J]. AIAA Journal, 2001, 39(8): 1430 − 1441. doi: 10.2514/2.1484
    [14] TANG D, DOWELL E H. Limit-cycle hysteresis response for a high-aspect-ratio wing model [J]. Journal of Aircraft, 2015, 39(5): 885 − 888.
    [15] 戴玉婷, 严慧, 王林鹏. 基于非线性气动力的失速颤振计算与试验研究[J]. 工程力学, 2020, 37(8): 230 − 236. doi: 10.6052/j.issn.1000-4750.2019.03.0141

    DAI Yuting, YAN Hui, WANG Linpeng. Calculation and experimental study of stall flutter based on nonlinear aerodynamics [J]. Engineering Mechanics, 2020, 37(8): 230 − 236. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.03.0141
    [16] 高超, 贾娅娅, 刘庆宽. 相对厚度对翼型气动特性的影响研究[J]. 工程力学, 2020, 37(增刊): 380 − 386. doi: 10.6052/j.issn.1000-4750.2019.04.S062

    GAO Chao, JIA Yaya, LIU Qingkuan. Effect of relative thickness on aerodynamic performance of airfoil [J]. Engineering Mechanics, 2020, 37(Suppl): 380 − 386. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S062
    [17] 张照煌, 李魏魏. 座头鲸胸鳍前缘仿生叶片空气动力学特性研究[J]. 工程力学, 2020, 37(增刊): 376 − 379, 386. doi: 10.6052/j.issn.1000-4750.2019.04.S061

    ZHANG Zhaohuang, LI Weiwei. Aerodynamic characteristics of bionic wing of leading-edge of humpback whale flipper [J]. Engineering Mechanics, 2020, 37(Suppl): 376 − 379, 386. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S061
    [18] KUBAT M. Neural networks: A comprehensive foundation by Simon Haykin, Macmillan, 1994, ISBN 0-02-352781-7 [J]. The Knowledge Engineering Review, 1999, 13(4): 409 − 412.
    [19] MARQUES F D, ANDERSON J. Identification and prediction of unsteady transonic aerodynamic loads by multi-layer func-tions [J]. Journal of Fluids and Structures, 2001, 15(1): 83 − 106. doi: 10.1006/jfls.2000.0321
    [20] QIU Z, WANG F. On aeroelastic response of an airfoil under dynamic stall using time delay neural network [J]. Aerospace Systems, 2018, 1(2): 87 − 97. doi: 10.1007/s42401-018-0010-3
    [21] WINTER M, BREITSAMTER C. Neurofuzzy-model-based unsteady aerodynamic computations across varying freestream conditions [J]. AIAA Journal, 2016, 54(9): 2705 − 2720. doi: 10.2514/1.J054892
    [22] 王博斌, 张伟伟, 叶正寅. 基于神经网络模型的动态非线性气动力辨识方法[J]. 航空学报, 2010, 31(7): 1379 − 1388.

    WANG Bobin, ZHANG Weiwei, YE Zhengyin. Unsteady nonlinear aerodynamics identification based on neural network model [J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7): 1379 − 1388. (in Chinese)
    [23] KOU J, ZHANG W. Layered reduced-order models for nonlinear aerodynamics and aeroelasticity [J]. Journal of Fluids and Structures, 2017, 68: 174 − 193. doi: 10.1016/j.jfluidstructs.2016.10.011
    [24] LI K, KOU J, ZHANG W. Deep neural network for unsteady aerodynamic and aeroelastic modeling across multiple Mach numbers [J]. Nonlinear Dynamics, 2019, 96(3): 2157 − 2177. doi: 10.1007/s11071-019-04915-9
    [25] KOU J, ZHANG W. A hybrid reduced-order framework for complex aeroelastic simulations [J]. Aerospace Science and Technology, 2019, 84: 880 − 894. doi: 10.1016/j.ast.2018.11.014
    [26] YATES JR E C. AGARD standard aeroelastic configurations for dynamic response I-Wing 445.6 [R]. France: Advisory Group for Aerospace Research and Development Neuilly-Sur-Seine, 1988.
    [27] BROOMHEAD D S, LOWE D. Multivariable Functional Interpolation and Adaptive Networks [J]. Complex Systems, 1988, 2(3): 321 − 355.
    [28] THEODORSEN T. General theory of aerodynamic instability and the mechanism of flutter [R]. Washington, D. C.: National Aeronautics and Space Administration, 1979.
    [29] CHU J, LUCKRING J M. Experimental surface pressure data obtained on 65゜delta wing across reynolds number and mach number ranges, Volume 1. Sharp leading edge: NASA-TM-4645 [R]. Washington, D. C.: NASA, 1996.
    [30] FLUENT A. ANSYS fluent theory guide [J]. ANSYS Inc., 2011, 15317: 724 − 746.
  • 加载中
图(30) / 表(7)
计量
  • 文章访问数:  405
  • HTML全文浏览量:  78
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-20
  • 修回日期:  2021-12-08
  • 录用日期:  2022-04-15
  • 网络出版日期:  2022-04-15
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回