留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可恢复预制装配式RC梁柱节点抗震性能研究

黄炜 胡高兴

黄炜, 胡高兴. 可恢复预制装配式RC梁柱节点抗震性能研究[J]. 工程力学, 2022, 39(12): 165-176, 189. doi: 10.6052/j.issn.1000-4750.2021.07.0554
引用本文: 黄炜, 胡高兴. 可恢复预制装配式RC梁柱节点抗震性能研究[J]. 工程力学, 2022, 39(12): 165-176, 189. doi: 10.6052/j.issn.1000-4750.2021.07.0554
HUANG Wei, HU Gao-xing. SEISMIC PERFORMANCE OF EARTHQUAKE-RESILIENT PRECAST RC BEAM-COLUMN JOINTS[J]. Engineering Mechanics, 2022, 39(12): 165-176, 189. doi: 10.6052/j.issn.1000-4750.2021.07.0554
Citation: HUANG Wei, HU Gao-xing. SEISMIC PERFORMANCE OF EARTHQUAKE-RESILIENT PRECAST RC BEAM-COLUMN JOINTS[J]. Engineering Mechanics, 2022, 39(12): 165-176, 189. doi: 10.6052/j.issn.1000-4750.2021.07.0554

可恢复预制装配式RC梁柱节点抗震性能研究

doi: 10.6052/j.issn.1000-4750.2021.07.0554
基金项目: 国家自然科学基金项目(51978566);陕西省重点研发计划项目-重点产业创新链项目 (2020ZDLNY06-04)
详细信息
    作者简介:

    黄 炜 (1976−),男,陕西西安人,教授,博士,主要从事新型材料与新型结构体系研究(E-mail: qqhuangwei2005@126.com)

    通讯作者:

    胡高兴 (1990−),男,湖北随州人,博士生,主要从事装配式结构抗震与减震研究(E-mail: 864976195@qq.com)

  • 中图分类号: TU375;TU352.1

SEISMIC PERFORMANCE OF EARTHQUAKE-RESILIENT PRECAST RC BEAM-COLUMN JOINTS

  • 摘要: 针对预制装配式RC梁柱节点连接及震损后快速修复的问题,提出了一种可恢复的梁柱节点连接形式。该连接主要由多缝耗能装置、抗剪连接键和预埋装置等部件通过高强螺栓连接而成。设计了一个装配式节点足尺试件并进行拟静力加载试验,研究该节点的破坏模式、承载力、变形和耗能能力等特性,并与现浇节点试件试验结果进行对比分析。结果表明:该装配式节点的初始刚度和承载力基本接近于现浇节点,且相比于现浇节点具有更高的延性、变形和耗能能力。装配式节点的破坏主要集中在多缝耗能装置上,预制梁柱构件基本保持在弹性范围内,基本可以实现节点损伤位置可控以及便于震后快速修复的目的。同时,推导多缝耗能装置的承载力-变形关系,建立装配式梁柱节点的简化分析模型,并通过试验结果验证了其准确性,可为后续研究装配式RC框架结构的抗震性能和工程分析设计奠定基础。
  • 图  1  装配式RC梁柱可恢复连接节点构造

    Figure  1.  Construction of earthquake-resilient precast RC beam-column joint

    图  2  装配式RC梁柱边节点构造及配筋 /mm

    Figure  2.  Geometric and reinforcement arrangement of precast RC beam-column side joint

    图  3  多缝耗能装置及抗剪连接键的构造及尺寸 /mm

    Figure  3.  Geometric and size of multi-slit energy dissipation device and shear connection key

    图  4  试件加载装置

    Figure  4.  Specimen loading device

    图  5  试件裂缝分布及最终破坏结果

    Figure  5.  Crack distribution and final failure result

    图  6  试件的力-位移滞回曲线

    Figure  6.  Force-displacement hysteretic curve of specimens

    图  7  荷载-变形骨架曲线屈服点的确定

    Figure  7.  Determination of yield point of load-deformation skeleton curve

    图  8  试件等效黏滞阻尼系数

    Figure  8.  Equivalent viscous damping coefficient of specimens

    图  9  装配式节点试件钢筋应变-位移关系曲线

    Figure  9.  Strain-displacement curve of reinforcement of precast joint specimen

    图  10  多缝耗能装置上的应变分布

    Figure  10.  Strain distribution on multi-slit energy dissipation device

    图  11  Q235钢材本构关系曲线

    Figure  11.  Constitutive relation curve of Q235 steel

    图  12  钢带截面等效变换计算简图

    Figure  12.  The calculation diagram of the equivalent transformation of steel strip section

    图  13  等效后的多缝耗能装置 /mm

    Figure  13.  Equivalent multi-slit energy dissipation device

    图  14  多缝耗能装置及抗剪连接键截面受力状态

    Figure  14.  Stress state of section of the multi-slit energy dissipation device and shear connection key

    图  15  装配式节点连接部位的弯矩-转角曲线

    Figure  15.  Moment-rotation curve of connection location in the precast joint

    图  16  装配式节点的简化分析模型

    Figure  16.  Simplified analysis model of the precast joint

    图  17  非线性连接单元采用的滞回模型

    Figure  17.  Hysteresis model of nonlinear link element

    图  18  连接部位的弯矩-曲率曲线

    Figure  18.  Moment-curvature curve of connection location

    图  19  装配式节点力-位移滞回曲线的对比

    Figure  19.  Comparison of load-deformation hysteretic curves of precast joint

    图  20  不同轴压比条件下装配式节点的力-位移骨架曲线

    Figure  20.  Load-displacement skeleton curves of precast joint under different axial compression ratios

    表  1  材料力学性能

    Table  1.   Mechanical properties of materials

    钢材 直径(厚度)/
    mm
    屈服强度/
    MPa
    极限强度/
    MPa
    弹性模量/
    (×105 MPa)
    HRB400 10 411.97 651.55 2.01
    18 450.26 662.51 1.96
    20 427.60 618.58 1.95
    Q235 16 293.06 435.48 2.13
    下载: 导出CSV

    表  2  试件抗震性能指标

    Table  2.   Seismic performance index of specimens

    试件 初始刚度K/(kN/m) 屈服荷载/变形 峰值荷载/变形 极限荷载/变形 延性系数FD
    Py/kN θy/(%) Pm/kN θm/(%) Pu/kN θu/(%)
    现浇 正向 3834.09 63.87 1.00 66.33 3.50 63.56 4.50 4.50
    负向 3783.75 −62.99 −1.00 −71.91 −4.50 −61.12 −4.50 4.50
    装配 正向 3528.46 54.59 0.93 72.23 2.84 61.51 4.26 4.59
    负向 3057.85 −48.75 −0.96 −69.81 −2.96 −59.34 −4.70 4.91
    下载: 导出CSV

    表  3  连接部位的试验结果与理论计算值对比

    Table  3.   Comparison between test results and theoretical calculation values of connection location

    加载 转角/(%) 试验值/(kN∙m) 理论值/(kN∙m) 误差/(%)
    正向 0.07 23.41 19.11 18.38
    0.15 39.14 38.98 0.42
    0.18 49.14 48.16 2.00
    0.41 62.08 71.40 15.01
    0.64 70.45 79.53 12.89
    1.11 80.26 84.74 5.58
    1.53 88.37 86.74 1.84
    2.05 92.53 88.51 4.35
    2.47 95.37 89.88 5.75
    2.93 93.56 91.16 2.57
    3.35 89.94 92.24 2.56
    3.90 81.20 93.64 15.32
    负向 −0.16 −19.26 −42.10 118.57
    −0.28 −30.27 −64.16 111.97
    −0.35 −43.62 −68.19 56.34
    −0.55 −54.83 −77.22 40.82
    −0.81 −63.68 −82.21 29.10
    −1.27 −74.92 −85.63 14.30
    −1.71 −83.02 −87.41 5.28
    −2.19 −89.06 −88.96 0.11
    −2.69 −92.15 −90.52 1.77
    −3.16 −89.54 −91.76 2.48
    −3.78 −86.15 −93.35 8.36
    −3.95 −80.42 −93.76 16.59
    下载: 导出CSV

    表  4  各滞回模型的参数取值

    Table  4.   Parameter values of each hysteresis models

    连接
    位置
    滞回
    模型
    模型参数
    柱节点区 takeda 屈服强度
    My/(kN∙m)
    初始刚度
    Ky/(kN∙m2)
    刚度比α
    160.00 115.00 0.01
    系数β0 系数β1
    0.4 0.9
    梁端 trl_sym 第一刚度k0/
    (kN∙m/rad)
    第一拐点
    转角θ1
    第二刚度k1/
    (kN∙m/rad)
    1.74×104 4.10×10−3 1.01×103
    第二拐点转角θ2 第三刚度k2/(kN∙m/rad)
    2.10×10−2 17.40
    下载: 导出CSV
  • [1] ENGLEKIRK R E. Impact of Northridge earthquake on precast concrete design practice [J]. The Structural Design of Tall and Special Buildings, 2004, 13(5): 457 − 463. doi: 10.1002/tal.285
    [2] KAYA M, ARSLAN A S. Repair of post-tensioned precast beam to column connections [J]. The Structural Design of Tall & Special Buildings, 2010, 21(11): 844 − 854.
    [3] SAVOIA M, BURATTI N, VINCENZI L. Damage and collapses in industrial precast buildings after the 2012 Emilia earthquake [J]. Engineering Structures, 2017, 137: 162 − 180. doi: 10.1016/j.engstruct.2017.01.059
    [4] BRECCOLOTTI M, GENTILE S, TOMMASINI M, et al. Beam-column joints in continuous RC frames: Comparison between cast-in-situ and precast solutions [J]. Engineering Structures, 2016, 127: 129 − 144. doi: 10.1016/j.engstruct.2016.08.018
    [5] PARASTESH H, HAJIRASOULIHA I, RAMEZANI R. A new ductile moment-resisting connection for precast concrete frames in seismic regions: An experimental investigation [J]. Engineering Structures, 2014, 70(9): 144 − 157.
    [6] GUAN D, JIANG C, GUO Z, et al. Development and seismic behavior of precast concrete beam-to-column connections [J]. Journal of Earthquake Engineering, 2016, 22(1/2): 234 − 256.
    [7] XIAO J, DING T, ZHANG Q. Structural behavior of a new moment-resisting DfD concrete connection [J]. Engineering Structures, 2017, 132: 1 − 13. doi: 10.1016/j.engstruct.2016.11.019
    [8] YAN Q, CHEN T, XIE Z. Seismic experimental study on a precast concrete beam-column connection with grout sleeves [J]. Engineering Structures, 2018, 155: 330 − 344. doi: 10.1016/j.engstruct.2017.09.027
    [9] 吕西林. 可恢复功能防震结构—基本概念与设计方法[M]. 北京: 中国建筑工业出版社, 2020.

    LÜ Xilin. Earthquake resilient structure-basic concepts and design methodology [M]. Beijing: China Architecture & Building Press, 2020. (in Chinese)
    [10] MORGEN B G, KURAMA Y C. A friction damper for post-tensioned precast concrete moment frames [J]. PCI Journal, 2004, 49(4): 112 − 133. doi: 10.15554/pcij.07012004.112.133
    [11] MORGEN B G, KURAMA Y C. Seismic design of friction-damped precast concrete frame structures [J]. Journal of Structural Engineering, 2007, 133(11): 1501 − 1511. doi: 10.1061/(ASCE)0733-9445(2007)133:11(1501)
    [12] KOSHIKAWA T. Moment and energy dissipation capacities of post-tensioned precast concrete connections employing a friction device [J]. Engineering Structures, 2017, 138: 170 − 180. doi: 10.1016/j.engstruct.2017.02.012
    [13] SONG L L, GUO T, CHEN C. Experimental and numerical study of a self-centering prestressed concrete moment resisting frame connection with bolted web friction devices [J]. Earthquake Engineering & Structural Dynamics, 2014, 43(4): 529 − 545.
    [14] BELLERI A, MARINI A, RIVA P, et al. Dissipating and re-centring devices for portal-frame precast structures [J]. Engineering Structures, 2017, 150(1): 736 − 745.
    [15] XU L, ZHANG G, XIAO S, et al. Development and experimental verification of damage controllable energy dissipation beam to column connection [J]. Engineering Structures, 2019, 199(15): 109660.
    [16] 王萌, 柯小刚, 吴照章. 可更换延性耗能连接组件的钢框架节点抗震性能研究[J]. 工程力学, 2018, 35(12): 151 − 163. doi: 10.6052/j.issn.1000-4750.2017.09.0743

    WANG Meng, KE Xiaogang, WU Zhaozhang. Seismic behavior of steel frame connections with replaceable high ductility and energy dissipation components [J]. Engineering Mechanics, 2018, 35(12): 151 − 163. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.09.0743
    [17] 李祚华, 彭志涵, 齐一鹤, 等. 装配式RC梁柱塑性可控钢质节点抗震性能足尺试验研究[J]. 建筑结构学报, 2019, 40(10): 43 − 50. doi: 10.14006/j.jzjgxb.2019.0046

    LI Zuohua, PENG Zhihan, QI Yihe, et al. Full-scale experimental study on seismic behaviors of plasticity controllable steel joint of prefabricated RC beam column [J]. Journal of Building Structures, 2019, 40(10): 43 − 50. (in Chinese) doi: 10.14006/j.jzjgxb.2019.0046
    [18] 颜桂云, 余勇胜, 吴应雄, 等. 可恢复功能预制装配式损伤可控钢质节点抗震性能试验研究[J]. 土木工程学报, 2021, 54(8): 87 − 100.

    YAN Guiyun, YU Yongsheng, WU Yingxiong, et al. Experiment study on seismic performance of earthquake-resilient and damage-controllable prefabricated steel joints [J]. China Civil Engineering Journal, 2021, 54(8): 87 − 100. (in Chinese)
    [19] 叶建峰, 郑莲琼, 颜桂云, 等. 装配式可更换耗能铰滞回性能试验研究[J]. 工程力学, 2021, 38(8): 42 − 54. doi: 10.6052/j.issn.1000-4750.2020.07.0531

    YE Jianfeng, ZHENG Lianqiong, YAN Guiyun, et al. Experimental study on hysteretic performance of replaceable energy-dissipation prefabricated hinges [J]. Engineering Mechanics, 2021, 38(8): 42 − 54. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0531
    [20] GB/T 228.1−2010, 金属材料拉伸试验第1部分: 室温试验方法[S]. 北京: 中国标准出版社, 2010.

    GB/T 228.1−2010, Metallic materials-Tensile testing-Part I: Method of test at room temperature [S]. Beijing: Standards Press of China, 2010. (in Chinese)
    [21] American Concrete Institute (ACI) Innovation Task Group 1 and Collaborators and ACI Committee 374. Acceptance criteria for moment frames based on structural testing (T1.1-01) and commentary (T1.1R-01) [R]. Farmington Hills, MI: ACI, 2001.
    [22] 冯鹏, 强翰霖, 叶列平. 材料, 构件, 结构的"屈服点"定义与讨论[J]. 工程力学, 2017, 34(3): 36 − 46. doi: 10.6052/j.issn.1000-4750.2016.03.0192

    FENG Peng, QING Hanlin, YE Lieping. Discussion and definition on yield options of materials, members and structures [J]. Engineering Mechanics, 2017, 34(3): 36 − 46. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.03.0192
    [23] 向群, 傅赣清. 阶梯形变截面梁弯曲变形的一种新解法[J]. 五邑大学学报(自然科学版), 2000, 14(2): 50 − 52.

    XIANG Qun, FU Ganqing. A new method to solve the bending deflection of stepped beams [J]. Journal of wuyi university (Natural Science Edition), 2000, 14(2): 50 − 52. (in Chinese)
    [24] MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stress-strain model for confined concrete [J]. Journal of Structural Engineering, 1988, 114(8): 1804 − 1826. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)
    [25] MENEGOTTO M, PINTO P E. Method of analysis for cyclically loaded RC plane frames including changes in geometry and non-elastic behaviour of elements under combined normal force and bending [C]// Symposium on the Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads. Zurich, Switzerland, International Association for Bridge and Structural Engineering, 1973.
    [26] SPACONE E, CIAMPI V, FILIPPOU F C. Mixed formulation of nonlinear beam finite element [J]. Computers & Structures, 1996, 1(58): 71 − 83.
    [27] NEUENHOFER A, FILIPPOU F C. Evaluation of nonlinear frame finite-element models [J]. Journal of Structural Engineering, 1997, 7(123): 958 − 966.
    [28] TAKEDA T, SOZEN M A, NIELSEN N N. Reinforced concrete response to simulated earthquakes [J]. Journal of Structural Division, ASCE, 1970, 96(12): 2557 − 2573. doi: 10.1061/JSDEAG.0002765
    [29] SIVASELVAN M, REINHORN A M. Hysteretic models for deteriorating inelastic structures [J]. Journal of Engineering Mechanics, 2000, 126(6): 633 − 640. doi: 10.1061/(ASCE)0733-9399(2000)126:6(633)
  • 加载中
图(20) / 表(4)
计量
  • 文章访问数:  226
  • HTML全文浏览量:  121
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 录用日期:  2021-11-02
  • 修回日期:  2021-10-16
  • 网络出版日期:  2021-11-02
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回