留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

裂纹面动摩擦作用对脆性材料动力破坏的影响

夏晨 戚承志 利学 周卓群

夏晨, 戚承志, 利学, 周卓群. 裂纹面动摩擦作用对脆性材料动力破坏的影响[J]. 工程力学, 2022, 39(12): 50-59. doi: 10.6052/j.issn.1000-4750.2021.07.0552
引用本文: 夏晨, 戚承志, 利学, 周卓群. 裂纹面动摩擦作用对脆性材料动力破坏的影响[J]. 工程力学, 2022, 39(12): 50-59. doi: 10.6052/j.issn.1000-4750.2021.07.0552
XIA Chen, QI Cheng-zhi, LI Xue, ZHOU Zhuo-qun. EFFECT OF DYNAMIC FRICTION ON CRACK SURFACE ON DYNAMIC FAILURE OF BRITTLE MATERIALS[J]. Engineering Mechanics, 2022, 39(12): 50-59. doi: 10.6052/j.issn.1000-4750.2021.07.0552
Citation: XIA Chen, QI Cheng-zhi, LI Xue, ZHOU Zhuo-qun. EFFECT OF DYNAMIC FRICTION ON CRACK SURFACE ON DYNAMIC FAILURE OF BRITTLE MATERIALS[J]. Engineering Mechanics, 2022, 39(12): 50-59. doi: 10.6052/j.issn.1000-4750.2021.07.0552

裂纹面动摩擦作用对脆性材料动力破坏的影响

doi: 10.6052/j.issn.1000-4750.2021.07.0552
基金项目: 国家自然科学基金项目(51708018,51774018);北京市教委科研项目-科技计划一般项目(KM202010016016);北京建筑大学“建大英才计划”项目(JDYC20200308)
详细信息
    作者简介:

    夏 晨(1989−),男,湖北人,副教授,博士,主要从事震源物理以及地下结构抗震研究(E-mail: xiachen@bucea.edu.cn)

    利 学(1999−),男(蒙古族),内蒙人,硕士生,主要从事震源物理研究(E-mail: 2108590020132@stu.bucea.edu.cn)

    周卓群(1998−),男,山东人,硕士生,主要从事地下结构抗震研究(E-mail: 2108590020119@stu.bucea.edu.cn)

    通讯作者:

    戚承志(1965−),男,山东人,教授,博士,主要从事断裂力学和岩石力学相关研究(E-mail: qichengzhi@bucea.edu.cn)

  • 中图分类号: TU452

EFFECT OF DYNAMIC FRICTION ON CRACK SURFACE ON DYNAMIC FAILURE OF BRITTLE MATERIALS

  • 摘要: 基于岩石类材料的I型裂纹模型,提出了一种考虑裂纹密度、裂纹相互作用以及裂纹面动摩擦作用的脆性材料动力模型。以正方形阵列分布的裂纹为例,定量分析了不同裂纹密度及不同摩擦行为对试件的裂纹扩展过程、试件受力和破坏的影响。数值计算结果表明:随着裂纹密度增大,裂纹间的相互作用增强,试件破坏时的加载应力降低,惯性效应引起试件轴向附加应力增大。裂纹面的滑动会降低裂纹面的动摩擦系数,促进裂纹发展,并降低试件的强度。相对于常数摩擦系数,考虑速度及状态依赖型摩擦模型对裂纹面的滑动过程更为合理。动强度因子对比结果显示出试件明显的应变率效应和尺寸效应。
  • 图  1  圆柱体试件坐标示意图

    Figure  1.  Diagram of coordinate axes for cylindrical sample.

    图  2  I型裂纹受力状态及单个I型裂纹示意图[27]

    Figure  2.  Stress condition for mode I crack and diagram of one isolated crack[27]

    图  3  不同岩石材料摩擦系数与滑移速度相关性[32-33]

    Figure  3.  Dependence of friction coefficient on slip velocity[32-33]

    图  4  I型裂纹初始裂纹面滑移时的受力状态[35]

    Figure  4.  Slip over pre-existing crack as a driving mechanism for wing crack growth[35]

    图  5  I型裂纹张开时的相互作用效应[35]

    Figure  5.  Effect of crack interaction on wing crack opening[35]

    图  6  轴向应变随时间的变化

    Figure  6.  Axial strain vs time

    图  7  轴向应变率随着时间的变化

    Figure  7.  Axial strain rate of the specimen vs time

    图  8  轴向应变加速度随时间的变化

    Figure  8.  Variation of axial strain acceleration of the specimen with time

    图  9  正方形分布裂纹阵列示意图[31]

    Figure  9.  Periodic square configuration cracks[31]

    图  10  裂纹密度参数为0.9时的裂纹面滑移速度

    Figure  10.  Slip velocity vs time for 'S-0.9' cracks

    图  11  不同裂纹密度条件下轴向应力随加载时间变化

    Figure  11.  Axial stress vs time for different crack concentration

    图  12  不同裂纹密度条件下惯性引起附加轴向应力随加载时间变化

    Figure  12.  Inertia induced additional axial stress vs time for different crack density

    图  13  不同尺寸试样的动强度因子对比

    Figure  13.  DIFs of concrete-like materials obtained from this study and SHPB specimens with different diameters

    图  14  不同摩擦系数条件下轴向应力随加载时间变化

    Figure  14.  Axial stress vs time for different constant friction coefficients for the model of wing crack interaction

    表  1  数值计算采用的参数

    Table  1.   List of the parameters for the numerical calculations

    参数数值
    试件原始半径/mm37
    试件原始高度/mm42
    裂纹初始长度/mm3
    弹性模量E/GPa17.2
    单轴抗压强度/MPa45
    泊松比0.19
    密度/(kg/m)2179
    KI0/(MPa·m1/2)0.56
    ${c_{\text{R}}}$/(m/s)1656
    ${c_{\rm{P}}}$/(m/s)2944
    ${v_{\text{m}}}$/(m/s)800
    下载: 导出CSV

    表  2  不同裂纹密度条件下启裂和破坏时刻以及相应的加载应力

    Table  2.   The moments of crack growth initiation, sample failure and corresponding loading stresses for different crack density

    裂纹
    密度
    裂纹相互
    作用系数
    启裂时刻/
    (×10−6 s)
    启裂时加载
    应力/MPa
    破坏时刻/
    (×10−6 s)
    破坏时加载
    应力/MPa
    0.15 1.0008 64 3.46 124 199.18
    0.30 1.0049 63 3.19 113 122.46
    0.50 1.0254 62 3.19 99 50.62
    0.70 1.0896 62 3.19 92 30.22
    0.80 1.1595 61 2.93 88 22.21
    0.90 1.2929 60 2.49 91 28.01
    0.95 1.4218 59 2.29 88 22.21
    下载: 导出CSV
  • [1] BRACE W F, BOMBOLAKIS E G. A note on brittle crack growth in compression [J]. Journal of Geophysical Research, 1963, 68(12): 3709 − 3713. doi: 10.1029/JZ068i012p03709
    [2] FAIRHURST C, COOK N G W. The phenomenon of rock splitting parallel to the direction of maximum compression in the neighborhood of a surface [C]. Lisbon, Portugal: Proceedings of the 1st Congress on the International Society of Rock Mechanics, 1966: 687 − 692.
    [3] ASHBY M F, HALLAM N C. The failure of brittle solids containing small cracks under compressive stress states [J]. Acta Metallurgica, 1986, 34(3): 497 − 510. doi: 10.1016/0001-6160(86)90086-6
    [4] ASHBY M F, SAMMIS C G. The damage mechanics of brittle solids in compression [J]. Pure and Applied Geophysics, 1990, 133(3): 489 − 521. doi: 10.1007/BF00878002
    [5] HORII H, NEMAT-NASSER S. Compression-induced microcrack growth in brittle solids: axial splitting and shear failure [J]. Journal of Geophysical Research:Solid Earth, 1985, 90(4): 3105 − 3125. doi: 10.1029/JB090iB04p03105
    [6] HORII H, NEMAT-NASSER S. Brittle failure in compression: splitting, faulting and brittle-ductile transition [J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1986, 1549(319): 337 − 374.
    [7] RENSHAW C E, SCHULSON E M. Universal behaviour in compressive failure of brittle materials [J]. Nature, 2001, 412(6850): 897 − 900. doi: 10.1038/35091045
    [8] 姚池, 何忱, 蒋水华, 等. 脆性各向异性岩石破坏过程数值模拟[J]. 工程力学, 2019, 36(2): 96 − 103. doi: 10.6052/j.issn.1000-4750.2017.12.0915

    YAO Chi, HE Chen, JIANG Shuihua, et al. Numerical simulation of damage and failure process in anisotropic brittle rocks [J]. Engineering Mechanics, 2019, 36(2): 96 − 103. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.12.0915
    [9] HUANG C, SUBHASH G. Influence of lateral confinement on dynamic damage evolution during uniaxial compressive response of brittle solids [J]. Journal of the Mechanics and Physics of Solids, 2003, 51(6): 1089 − 1105. doi: 10.1016/S0022-5096(03)00002-4
    [10] BHAT H S, ROSAKIS A J, SAMMIS C G. A micromechanics based constitutive model for brittle failure at high strain rates [J]. Journal of Applied Mechanics, 2012, 79(3): 310161 − 3101612.
    [11] DESHPANDE V S, EVANS A G. Inelastic deformation and energy dissipation in ceramics: A mechanism-based constitutive model [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(10): 3077 − 3100. doi: 10.1016/j.jmps.2008.05.002
    [12] KACHANOV M. A simple technique of stress analysis in elastic solids with many cracks [J]. International Journal of Fracture, 1985, 28(1): 11 − 19. doi: 10.1007/BF00033702
    [13] KACHANOV M. Elastic solids with many cracks: A simple method of analysis [J]. International Journal of Solids and Structures, 1987, 23(1): 23 − 43. doi: 10.1016/0020-7683(87)90030-8
    [14] KACHANOV M, LAURES J P. 3-Dimensional problems of strongly interacting arbitrarily located penny- shaped cracks [J]. International Journal of Fracture Mechanics, 1989, 41(4): 289 − 313. doi: 10.1007/BF00018861
    [15] FABRIKANT V I. Close interaction of coplanar circular cracks under shear loading [J]. Computational Mechanics, 1989, 4(3): 181 − 197. doi: 10.1007/BF00296666
    [16] FABRIKANT V I. Close interaction of coplanar circular cracks in an elastic medium [J]. Acta Mechanica, 1987, 67(1/2/3/4): 39 − 59. doi: 10.1007/BF01182121
    [17] ZHENG D, LI Q B, WANG L B. A microscopic approach to rate effect on compressive strength of concrete [J]. Engineering Fracture Mechanics, 2005, 72(15): 2316 − 2327. doi: 10.1016/j.engfracmech.2005.01.012
    [18] 李鹏飞, 朱其志, 顾水涛, 等. 岩石类材料裂隙形成和扩展的相场方法模拟[J]. 工程力学, 2018, 35(3): 41 − 48. doi: 10.6052/j.issn.1000-4750.2016.11.0899

    LI Pengfei, ZHU Qizhi, GU Shuitao, et al. A phase field method to simulate crack nucleation and crack propagation in rock-like materials [J]. Engineering Mechanics, 2018, 35(3): 41 − 48. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.11.0899
    [19] 韩智铭, 刘庆宽, 王雪, 等. 岩体多裂纹扩展演化过程数值流形方法研究[J]. 工程力学, 2021, 38(增刊): 7 − 13. doi: 10.6052/j.issn.1000-4750.2020.05.S003

    HAN Zhiming, LIU Qingkuan, WANG Xue, et al. Study on numerical manifold method for evolution process of multi-crack propagation in rock mass [J]. Engineering Mechanics, 2021, 38(Suppl): 7 − 13. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.S003
    [20] QI C Z, XIA C, LI X Z, et al. Effect of inertia and crack propagation on dynamic strength of geologic-type materials [J]. International Journal of Impact Engineering, 2019, 133(11): 1 − 9.
    [21] 李永东, 张男, 唐立强, 等. 裂纹面摩擦接触引起的断裂韧性增长的研究[J]. 力学学报, 2005, 37(3): 280 − 286. doi: 10.3321/j.issn:0459-1879.2005.03.004

    LI Yongdong, ZHANG Nan, TANG Liqiang, et al. Researches on the enhancement of fracture toughness induced by friction between crack faces [J]. Acta Mechanica Sinica, 2005, 37(3): 280 − 286. (in Chinese) doi: 10.3321/j.issn:0459-1879.2005.03.004
    [22] DOROGOY A, BANKS-SILLS L. Effect of crack face contact and friction on Brazilian disk specimens: A finite difference solution [J]. Engineering Fracture Mechanics, 2005, 72(18): 2758 − 2772. doi: 10.1016/j.engfracmech.2005.05.005
    [23] 盖秉政, 王立清. 考虑裂纹面接触及摩擦的应力强度因子研究[J]. 黑龙江大学自然科学学报, 2008, 25(6): 731 − 749. doi: 10.3969/j.issn.1001-7011.2008.06.005

    GAI Bingzheng, WANG Liqing. The investigations of stress intensity factor taking crack surfaces with contact and friction into account [J]. Journal of Natural Science of Heilongjiang University, 2008, 25(6): 731 − 749. (in Chinese) doi: 10.3969/j.issn.1001-7011.2008.06.005
    [24] 王立清, 盖秉政. 裂纹面接触摩擦对双-边裂纹板动态应力强度因子的影响[J]. 工程力学, 2009, 26(7): 7 − 11.

    WANG Liqing, GAI Bingzheng. Effect of crack face contact and friction on dynamic stress intensity factors for a double-edge cracked plate [J]. Engineering Mechanics, 2009, 26(7): 7 − 11. (in Chinese)
    [25] FORRESTAL M J, WRIGHT T W, CHEN W. The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test [J]. International Journal of Impact Engineering, 2007, 34(3): 405 − 411. doi: 10.1016/j.ijimpeng.2005.12.001
    [26] FREUND L B. Crack propagation in an elastic solid subjected general loading-III Stress wave loading [J]. Journal of the Mechanics and Physics of Solids, 1973, 21(2): 47 − 61. doi: 10.1016/0022-5096(73)90029-X
    [27] WANG H Y, DYSKIN A, PASTERNAK E, et al. Effect of the intermediate principal stress on 3-D crack growth [J]. Engineering Fracture Mechanics, 2018, 204: 404 − 420. doi: 10.1016/j.engfracmech.2018.10.024
    [28] LEKESIZ H, KATSUBE N, ROKHLIN S I, et al. The stress intensity factors for a periodic array of interacting coplanar penny-shaped cracks [J]. International Journal of Solids and Structures, 2013, 50(1): 186 − 200. doi: 10.1016/j.ijsolstr.2012.09.018
    [29] JAVED F, HAINZL S, AOUDIA A, et al. Modeling of kashmir aftershock decay based on static coulomb stress changes and laboratory-derived rate-and-state dependent friction law [J]. Pure & Applied Geophysics, 2016, 173(5): 1559 − 1574.
    [30] SINHA N, SINGH A K, SINGH T N. Dynamic stability of the rate, state, temperature, and pore pressure friction model at a rock interface [J]. Pure and Applied Geophysics, 2018, 176(11): 4969 − 4982.
    [31] HEIMISSON E R. Constitutive law for earthquake production based on rate-and-state friction: Theory and application of interacting sources [J]. Journal of Geophysical Research Solid Earth, 2019, 124(2): 1802 − 1821. doi: 10.1029/2018JB016823
    [32] DI TORO, HAN G R, HIROSE T, et al. Fault lubrication during earthquakes [J]. Nature, 2011, 471(7339): 494 − 498. doi: 10.1038/nature09838
    [33] GOLDSBY D L, TULLIS T E. Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates [J]. Science, 2011, 334(6053): 216 − 218. doi: 10.1126/science.1207902
    [34] SPAGNUOLO E, NIELSEN S, VIOLAY M, et al. An empirically based steady state friction law and implications for fault stability [J]. Geophysical Research Letter, 2016, 43(7): 3263 − 3271. doi: 10.1002/2016GL067881
    [35] KOLARI K. A complete three-dimensional continuum model of wing-crack growth in granular brittle solids [J]. International Journal of Solids and structures, 2017, 115(6): 27 − 42.
    [36] ZHANG M, WU H J, Li Q M, et al. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests part I: Experiments [J]. International Journal of Impact Engineering, 2009, 36(12): 1327 − 1334. doi: 10.1016/j.ijimpeng.2009.04.009
    [37] GROTE D L, PARK S W, ZHOU M. Dynamic behavior of concrete at high strain rate and pressure: I. experimental characterization [J]. International Journal of Impact Engineering, 2001, 25(9): 869 − 886. doi: 10.1016/S0734-743X(01)00020-3
    [38] ROSS A, TEDESCO J W, KUENNEN S T. Effects of strain rate on concrete strength [J]. ACI Materials Journal, 1995, 92(1): 37 − 47.
    [39] QI C Z, WANG M Y, BAI J P, et al. Mechanism underlying dynamic size effect on rock mass strength [J]. International Journal of Impact Engineering, 2014, 68(6): 1 − 7.
    [40] KANAMORI H, ANDERSON D L, HEATON T H. Frictional melting during the rupture of the 1994 bolivian earthquake [J]. Science, 1998, 279(5253): 839 − 842.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  46
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 录用日期:  2021-11-16
  • 修回日期:  2021-10-28
  • 网络出版日期:  2021-11-16
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回