EXPERIMENTAL STUDY ON THE HYDRODYNAMIC PRESSURE OF BRIDGE PIERS UNDER EARTHQUAKES AND THE APPLICABILITY OF THE MORISON EQUATION
-
摘要: 深水桥梁的抗震分析需要考虑地震作用下动水压力的影响。目前,广泛采用的Morison方程由波浪力的计算公式演化而来,用于计算地震动水压力尚缺乏验证;同时,对于地震作用下桥墩动水压力的变化规律缺乏试验研究。该文设计一套水下振动台试验系统,以不同尺寸的桥墩试件为研究对象,采用正弦波为输入激励,通过不同工况的振动台试验,研究桥墩加速度和地震动水压力的分布规律及其随激励幅值、激励频率、截面直径和水深的变化规律;将动水压力的试验结果与Morison方程的计算结果进行对比,以验证地震作用下Morison方程的适用性。结果表明:地震作用下桥墩加速度和动水压力应考虑激励幅值、激励频率、截面直径和水深的影响,Morison方程不适用于计算地震作用下桥墩动水压力,应通过大量的水下振动台试验加以修正。Abstract: The effect of hydrodynamic pressure should be considered in the seismic analysis of deep water bridges. The Morison equation is widely used to calculate the hydrodynamic pressure of bridge piers. It is evolved from the calculation formula of wave force. Its applicability to calculate the seismic hydrodynamic pressure has not been verified. There is also a lack of experimental research on the seismic hydrodynamic pressure of bridge piers. In this paper, a set of underwater shaking table test systems was designed. Shaking table tests with different cases were conducted on the bridge pier specimens of different sizes under sinusoidal excitation. The distribution law and changing law of the acceleration and hydrodynamic pressure of the piers were studied under different excitation amplitudes, excitation frequencies, section diameters and water depths. The experimental results of the hydrodynamic pressure and the calculated results by the Morison equation are compared to verify the applicability of the Morison equation under earthquake action. The results show that the influence of the excitation amplitude, excitation frequency, cross section diameter and water depth should be considered in calculating the acceleration and hydrodynamic pressure of piers under earthquakes. The Morison equation is not applicable to the calculation of hydrodynamic pressure of piers under earthquakes and should be modified based on many underwater shaking table tests.
-
表 1 正弦波激励频率和幅值
Table 1. Amplitude and frequency of sinusoidal wave
激励频率/Hz 激励幅值/g 1 0.1、0.2、0.4、0.7、1.0 2 0.1、0.2、0.4、0.7、1.0 4 0.1、0.2、0.4、0.7、1.0 7 0.1、0.2、0.4、0.7、1.0 10 0.1、0.2、0.4、0.7、1.0 -
[1] MORISON J, JOHNSON J, SCHAAF S. The force exerted by surface waves on piles [J]. Journal of Petroleum Technology, 1950, 2(5): 149 − 154. doi: 10.2118/950149-G [2] PENZIEN J, KAUL M K. Response of offshore towers to strong motion earthquakes [J]. Earthquake Engineering & Structural Dynamics, 1972, 1(1): 55 − 68. [3] YANG W L, LI Q. The expanded Morison equation considering inner and outer water hydrodynamic pressure of hollow piers [J]. Ocean Engineering, 2013, 69(5): 79 − 87. [4] KEULEGAN G H, CARPENTER L H. Forces on cylinders and plates in an oscillatory flow [J]. Journal of Research of the National Bureau of Standards, 1958, 60(5): 423 − 440. doi: 10.6028/jres.060.043 [5] 俞聿修. 三维随机波浪对桩柱的作用[J]. 海洋学报, 1998, 20(4): 121 − 132.YU Zhaoxiu. Effects of three-dimensional random waves on piles [J]. Acta Oceanologica Sinica, 1998, 20(4): 121 − 132. (in Chinese) [6] 张宁川, 俞聿修. 不规则波作用下的群桩效应[J]. 海洋通报, 1993, 3(12): 95 − 101.ZHANG Ningchuan, YU Zhaoxiu. Pile group effect under irregular wave action [J]. Acta Oceanologica Sinica, 1993, 3(12): 95 − 101. (in Chinese) [7] 崔俊男, 董胜. 内孤立波对Spar平台作用力的理论研究[J]. 工程力学, 2020, 37(增刊): 358 − 362, 370. doi: 10.6052/j.issn.1000-4750.2019.04.S011CUI Junnan, DONG Sheng. Theoretical investigation of internal solitary wave force on spar platforms [J]. Engineering Mechanics, 2020, 37(Suppl): 358 − 362, 370. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S011 [8] LIAW C Y, CHOPRA A K. Dynamics of towers surrounded by water [J]. Earthquake Engineering & Structural Dynamics, 1974, 3(1): 33 − 49. [9] GOYAL A, CHOPRA A K. Earthquake response spectrum analysis of intake-outlet towers [J]. Journal of Engineering Mechanics, 1989, 115(7): 1413 − 1433. doi: 10.1061/(ASCE)0733-9399(1989)115:7(1413) [10] FOK K, CHOPRA A K. Earthquake analysis of arch dams including dam–water interaction, reservoir boundary absorption and foundation flexibility [J]. Earthquake Engineering & Structural Dynamics, 1986, 14(2): 155 − 184. [11] FENVES G, CHOPRA A K. Simplified earthquake analysis of concrete gravity dams combined hydrodynamic and foundation interaction effect [J]. Earthquake Journal of Engineering Mechanics, 1985, 111(6): 736 − 756. [12] 赖伟, 王君杰, 胡世德. 桩基础承台水平附加质量分析[J]. 同济大学学报(自然科学版), 2004, 32(10): 1339 − 1343. doi: 10.3321/j.issn:0253-374X.2004.10.015LAI Wei, WANG Junjie, HU Shide. Analysis of horizontal additional mass of pile foundation cap [J]. Journal of Tongji University (Natural Science Edition), 2004, 32(10): 1339 − 1343. (in Chinese) doi: 10.3321/j.issn:0253-374X.2004.10.015 [13] 赖伟, 王君杰, 胡世德. 地震下桥墩动水压力分析[J]. 同济大学学报(自然科学版), 2004, 32(1): 1 − 5. doi: 10.3321/j.issn:0253-374X.2004.01.001LAI Wei, WANG Junjie, HU Shide. Analysis of hydrodynamic pressure of bridge pier under earthquake [J]. Journal of Tongji University (Natural Science Edition), 2004, 32(1): 1 − 5. (in Chinese) doi: 10.3321/j.issn:0253-374X.2004.01.001 [14] 黄信, 李忠献. 考虑水底柔性反射边界的深水桥墩地震动水压力分析[J]. 工程力学, 2012, 29(7): 102 − 106. doi: 10.6052/j.issn.1000-4750.2010.07.0486HUANG Xin, LI Zhongxian. Earthquake induced hydrodynamic pressure of bridge pier in deep water with flexible reflecting boundary [J]. Engineering Mechanics, 2012, 29(7): 102 − 106. (in Chinese) doi: 10.6052/j.issn.1000-4750.2010.07.0486 [15] 黄信, 李忠献. 自由表面波和水体压缩性对深水桥墩地震动水压力的影响[J]. 天津大学学报(自然科学与工程技术版), 2011, 44(4): 319 − 323.HUANG Xin, LI Zhongxian. Influence of free surface wave and water compressibility on earthquake induced hydrodynamic pressure of bridge pier in deep water [J]. Journal of Tianjin University (Natural Science and Engineering), 2011, 44(4): 319 − 323. (in Chinese) [16] WANG P G, ZHAO M, DU X L, et al. Simplified evaluation of earthquake-induced hydrodynamic pressure on circular tapered cylinders surrounded by water [J]. Ocean Engineering, 2018, 164: 105 − 113. doi: 10.1016/j.oceaneng.2018.06.048 [17] WANG P G, ZHAO M, DU X L. Analytical solution and simplified formula for earthquake induced hydrodynamic pressure on elliptical hollow cylinders in water [J]. Ocean Engineering, 2018, 148: 149 − 160. doi: 10.1016/j.oceaneng.2017.11.019 [18] WANG P G, ZHAO M, DU X L. Simplified formula for earthquake-induced hydrodynamic pressure on round-ended and rectangular cylinders surrounded by water [J]. Journal of Engineering Mechanics, 2019, 145(2): 04018137. doi: 10.1061/(ASCE)EM.1943-7889.0001567 [19] 王丕光, 赵密, 杜修力. 考虑水体压缩性的椭圆柱体地震动水压力分析[J]. 工程力学, 2018, 35(7): 55 − 61. doi: 10.6052/j.issn.1000-4750.2017.03.0235WANG Piguang, ZHAO Mi, DU Xiuli. Earthquake induced hydrodynamic pressure on elliptical cylinder surrounded by compressible water [J]. Engineering Mechanics, 2018, 35(7): 55 − 61. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.03.0235 [20] 郭婕, 赵密, 王丕光, 等. 动水力简化计算方法对圆形桥墩传递函数的影响[J]. 工程力学, 2020, 37(2): 50 − 61. doi: 10.6052/j.issn.1000-4750.2019.01.0003GUO Jie, ZHAO Mi, WANG Piguang, et al. Effects of simplified methods for hydrodynamic force on transfer function of circular pier [J]. Engineering Mechanics, 2020, 37(2): 50 − 61. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.01.0003 [21] SHARAN S. Hydrodynamic loadings due to the motion of large offshore structures [J]. Computers & Structures, 1989, 32(6): 1211 − 1216. [22] WILLIAMS A N. Earthquake response of submerged circular cylinder [J]. Ocean Engineering, 1986, 13(6): 569 − 585. doi: 10.1016/0029-8018(86)90040-5 [23] BATHE K J, ZHANG H, JI S H. Finite element analysis of fluid flows fully coupled with structural interactions [J]. Computers & Structures, 1999, 72(1): 1 − 16. [24] TANAKA Y, HUDSPETH R T. Restoring forces on vertical circular cylinders forced by earthquakes [J]. Earthquake Engineering and Structural Dynamics, 1988, 16(1): 99 − 119. doi: 10.1002/eqe.4290160108 [25] 宋波, 张国明, 李悦. 桥墩与水相互作用的振动台试验[J]. 北京科技大学学报, 2010, 32(3): 403 − 408.SONG Bo, ZHANG Guoming, LI Yue. Shaking table test of bridge pier interaction with water [J]. Journal of University of Science and Technology Beijing, 2010, 32(3): 403 − 408. (in Chinese) [26] 黄信. 水—桥墩动力相互作用机理及深水桥梁非线性地震响应研究[D]. 天津: 天津大学, 2012.HUANG Xin. Study on dynamic interaction mechanism of water-pier and nonlinear seismic response of deep-water bridge [D]. Tianjin: Tianjin University, 2012. (in Chinese) [27] DING Y, MA R, SHI Y D, et al. Underwater shaking table tests on bridge pier under combined earthquake and wave-current action [J]. Marine Structures, 2018, 58: 301 − 320. doi: 10.1016/j.marstruc.2017.12.004 [28] LI Z X, WU K, SHI Y D, et al. Experimental study on the interaction between water and cylindrical structure under earthquake action [J]. Ocean Engineering, 2019, 188: 106330. doi: 10.1016/j.oceaneng.2019.106330 -