留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地震作用下桥墩动水压力及Morison方程适用性试验研究

吴堃 李忠献

吴堃, 李忠献. 地震作用下桥墩动水压力及Morison方程适用性试验研究[J]. 工程力学, 2022, 39(12): 41-49. doi: 10.6052/j.issn.1000-4750.2021.07.0550
引用本文: 吴堃, 李忠献. 地震作用下桥墩动水压力及Morison方程适用性试验研究[J]. 工程力学, 2022, 39(12): 41-49. doi: 10.6052/j.issn.1000-4750.2021.07.0550
WU Kun, LI Zhong-xian. EXPERIMENTAL STUDY ON THE HYDRODYNAMIC PRESSURE OF BRIDGE PIERS UNDER EARTHQUAKES AND THE APPLICABILITY OF THE MORISON EQUATION[J]. Engineering Mechanics, 2022, 39(12): 41-49. doi: 10.6052/j.issn.1000-4750.2021.07.0550
Citation: WU Kun, LI Zhong-xian. EXPERIMENTAL STUDY ON THE HYDRODYNAMIC PRESSURE OF BRIDGE PIERS UNDER EARTHQUAKES AND THE APPLICABILITY OF THE MORISON EQUATION[J]. Engineering Mechanics, 2022, 39(12): 41-49. doi: 10.6052/j.issn.1000-4750.2021.07.0550

地震作用下桥墩动水压力及Morison方程适用性试验研究

doi: 10.6052/j.issn.1000-4750.2021.07.0550
基金项目: 国家自然科学基金国家重大科研仪器研制项目(51427901);天津市教委科研计划项目(2021KJ055);中央高校基本科研业务费项目(2000560616)
详细信息
    作者简介:

    吴 堃(1991−),男,安徽省人,讲师,博士,主要从事结构抗震研究(E-mail: k_wu@cauc.edu.cn)

    通讯作者:

    李忠献(1961−),男,安徽省人,教授,博士,主要从事结构工程与防灾减灾研究(E-mail: zxli@tju.edu.cn)

  • 中图分类号: U441+.2

EXPERIMENTAL STUDY ON THE HYDRODYNAMIC PRESSURE OF BRIDGE PIERS UNDER EARTHQUAKES AND THE APPLICABILITY OF THE MORISON EQUATION

  • 摘要: 深水桥梁的抗震分析需要考虑地震作用下动水压力的影响。目前,广泛采用的Morison方程由波浪力的计算公式演化而来,用于计算地震动水压力尚缺乏验证;同时,对于地震作用下桥墩动水压力的变化规律缺乏试验研究。该文设计一套水下振动台试验系统,以不同尺寸的桥墩试件为研究对象,采用正弦波为输入激励,通过不同工况的振动台试验,研究桥墩加速度和地震动水压力的分布规律及其随激励幅值、激励频率、截面直径和水深的变化规律;将动水压力的试验结果与Morison方程的计算结果进行对比,以验证地震作用下Morison方程的适用性。结果表明:地震作用下桥墩加速度和动水压力应考虑激励幅值、激励频率、截面直径和水深的影响,Morison方程不适用于计算地震作用下桥墩动水压力,应通过大量的水下振动台试验加以修正。
  • 图  1  水下振动台试验系统

    Figure  1.  Underwater shaking table test system

    图  2  不同尺寸的试件

    Figure  2.  Specimens with different dimensions

    图  3  测点布置 /mm

    Figure  3.  Layout of measuring points

    图  4  不同激励幅值下桥墩加速度变化规律

    Figure  4.  Change of acceleration of pier with different excitation amplitudes

    图  5  不同激励频率下桥墩加速度变化规律

    Figure  5.  Change of acceleration of pier with different excitation frequencies

    图  6  不同截面直径下桥墩加速度变化规律

    Figure  6.  Change of acceleration of pier with different section diameters

    图  7  不同水深下桥墩加速度变化规律

    Figure  7.  Change of acceleration of pier with different water depths

    图  8  不同激励幅值下桥墩动水压力变化规律

    Figure  8.  Change of hydrodynamic pressure of pier with different excitation amplitudes

    图  9  不同激励频率下桥墩动水压力变化规律

    Figure  9.  Change of hydrodynamic pressure of pier with different excitation frequencies

    图  10  不同截面直径下桥墩动水压力变化规律

    Figure  10.  Change of hydrodynamic pressure of pier with different section diameters

    图  11  不同水深下桥墩动水压力变化规律

    Figure  11.  Change of hydrodynamic pressure of pier with different water depths

    图  12  Morison方程计算结果与试验结果对比

    Figure  12.  Results of Morison equation compared with test results

    表  1  正弦波激励频率和幅值

    Table  1.   Amplitude and frequency of sinusoidal wave

    激励频率/Hz激励幅值/g
    10.1、0.2、0.4、0.7、1.0
    20.1、0.2、0.4、0.7、1.0
    40.1、0.2、0.4、0.7、1.0
    70.1、0.2、0.4、0.7、1.0
    100.1、0.2、0.4、0.7、1.0
    下载: 导出CSV
  • [1] MORISON J, JOHNSON J, SCHAAF S. The force exerted by surface waves on piles [J]. Journal of Petroleum Technology, 1950, 2(5): 149 − 154. doi: 10.2118/950149-G
    [2] PENZIEN J, KAUL M K. Response of offshore towers to strong motion earthquakes [J]. Earthquake Engineering & Structural Dynamics, 1972, 1(1): 55 − 68.
    [3] YANG W L, LI Q. The expanded Morison equation considering inner and outer water hydrodynamic pressure of hollow piers [J]. Ocean Engineering, 2013, 69(5): 79 − 87.
    [4] KEULEGAN G H, CARPENTER L H. Forces on cylinders and plates in an oscillatory flow [J]. Journal of Research of the National Bureau of Standards, 1958, 60(5): 423 − 440. doi: 10.6028/jres.060.043
    [5] 俞聿修. 三维随机波浪对桩柱的作用[J]. 海洋学报, 1998, 20(4): 121 − 132.

    YU Zhaoxiu. Effects of three-dimensional random waves on piles [J]. Acta Oceanologica Sinica, 1998, 20(4): 121 − 132. (in Chinese)
    [6] 张宁川, 俞聿修. 不规则波作用下的群桩效应[J]. 海洋通报, 1993, 3(12): 95 − 101.

    ZHANG Ningchuan, YU Zhaoxiu. Pile group effect under irregular wave action [J]. Acta Oceanologica Sinica, 1993, 3(12): 95 − 101. (in Chinese)
    [7] 崔俊男, 董胜. 内孤立波对Spar平台作用力的理论研究[J]. 工程力学, 2020, 37(增刊): 358 − 362, 370. doi: 10.6052/j.issn.1000-4750.2019.04.S011

    CUI Junnan, DONG Sheng. Theoretical investigation of internal solitary wave force on spar platforms [J]. Engineering Mechanics, 2020, 37(Suppl): 358 − 362, 370. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S011
    [8] LIAW C Y, CHOPRA A K. Dynamics of towers surrounded by water [J]. Earthquake Engineering & Structural Dynamics, 1974, 3(1): 33 − 49.
    [9] GOYAL A, CHOPRA A K. Earthquake response spectrum analysis of intake-outlet towers [J]. Journal of Engineering Mechanics, 1989, 115(7): 1413 − 1433. doi: 10.1061/(ASCE)0733-9399(1989)115:7(1413)
    [10] FOK K, CHOPRA A K. Earthquake analysis of arch dams including dam–water interaction, reservoir boundary absorption and foundation flexibility [J]. Earthquake Engineering & Structural Dynamics, 1986, 14(2): 155 − 184.
    [11] FENVES G, CHOPRA A K. Simplified earthquake analysis of concrete gravity dams combined hydrodynamic and foundation interaction effect [J]. Earthquake Journal of Engineering Mechanics, 1985, 111(6): 736 − 756.
    [12] 赖伟, 王君杰, 胡世德. 桩基础承台水平附加质量分析[J]. 同济大学学报(自然科学版), 2004, 32(10): 1339 − 1343. doi: 10.3321/j.issn:0253-374X.2004.10.015

    LAI Wei, WANG Junjie, HU Shide. Analysis of horizontal additional mass of pile foundation cap [J]. Journal of Tongji University (Natural Science Edition), 2004, 32(10): 1339 − 1343. (in Chinese) doi: 10.3321/j.issn:0253-374X.2004.10.015
    [13] 赖伟, 王君杰, 胡世德. 地震下桥墩动水压力分析[J]. 同济大学学报(自然科学版), 2004, 32(1): 1 − 5. doi: 10.3321/j.issn:0253-374X.2004.01.001

    LAI Wei, WANG Junjie, HU Shide. Analysis of hydrodynamic pressure of bridge pier under earthquake [J]. Journal of Tongji University (Natural Science Edition), 2004, 32(1): 1 − 5. (in Chinese) doi: 10.3321/j.issn:0253-374X.2004.01.001
    [14] 黄信, 李忠献. 考虑水底柔性反射边界的深水桥墩地震动水压力分析[J]. 工程力学, 2012, 29(7): 102 − 106. doi: 10.6052/j.issn.1000-4750.2010.07.0486

    HUANG Xin, LI Zhongxian. Earthquake induced hydrodynamic pressure of bridge pier in deep water with flexible reflecting boundary [J]. Engineering Mechanics, 2012, 29(7): 102 − 106. (in Chinese) doi: 10.6052/j.issn.1000-4750.2010.07.0486
    [15] 黄信, 李忠献. 自由表面波和水体压缩性对深水桥墩地震动水压力的影响[J]. 天津大学学报(自然科学与工程技术版), 2011, 44(4): 319 − 323.

    HUANG Xin, LI Zhongxian. Influence of free surface wave and water compressibility on earthquake induced hydrodynamic pressure of bridge pier in deep water [J]. Journal of Tianjin University (Natural Science and Engineering), 2011, 44(4): 319 − 323. (in Chinese)
    [16] WANG P G, ZHAO M, DU X L, et al. Simplified evaluation of earthquake-induced hydrodynamic pressure on circular tapered cylinders surrounded by water [J]. Ocean Engineering, 2018, 164: 105 − 113. doi: 10.1016/j.oceaneng.2018.06.048
    [17] WANG P G, ZHAO M, DU X L. Analytical solution and simplified formula for earthquake induced hydrodynamic pressure on elliptical hollow cylinders in water [J]. Ocean Engineering, 2018, 148: 149 − 160. doi: 10.1016/j.oceaneng.2017.11.019
    [18] WANG P G, ZHAO M, DU X L. Simplified formula for earthquake-induced hydrodynamic pressure on round-ended and rectangular cylinders surrounded by water [J]. Journal of Engineering Mechanics, 2019, 145(2): 04018137. doi: 10.1061/(ASCE)EM.1943-7889.0001567
    [19] 王丕光, 赵密, 杜修力. 考虑水体压缩性的椭圆柱体地震动水压力分析[J]. 工程力学, 2018, 35(7): 55 − 61. doi: 10.6052/j.issn.1000-4750.2017.03.0235

    WANG Piguang, ZHAO Mi, DU Xiuli. Earthquake induced hydrodynamic pressure on elliptical cylinder surrounded by compressible water [J]. Engineering Mechanics, 2018, 35(7): 55 − 61. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.03.0235
    [20] 郭婕, 赵密, 王丕光, 等. 动水力简化计算方法对圆形桥墩传递函数的影响[J]. 工程力学, 2020, 37(2): 50 − 61. doi: 10.6052/j.issn.1000-4750.2019.01.0003

    GUO Jie, ZHAO Mi, WANG Piguang, et al. Effects of simplified methods for hydrodynamic force on transfer function of circular pier [J]. Engineering Mechanics, 2020, 37(2): 50 − 61. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.01.0003
    [21] SHARAN S. Hydrodynamic loadings due to the motion of large offshore structures [J]. Computers & Structures, 1989, 32(6): 1211 − 1216.
    [22] WILLIAMS A N. Earthquake response of submerged circular cylinder [J]. Ocean Engineering, 1986, 13(6): 569 − 585. doi: 10.1016/0029-8018(86)90040-5
    [23] BATHE K J, ZHANG H, JI S H. Finite element analysis of fluid flows fully coupled with structural interactions [J]. Computers & Structures, 1999, 72(1): 1 − 16.
    [24] TANAKA Y, HUDSPETH R T. Restoring forces on vertical circular cylinders forced by earthquakes [J]. Earthquake Engineering and Structural Dynamics, 1988, 16(1): 99 − 119. doi: 10.1002/eqe.4290160108
    [25] 宋波, 张国明, 李悦. 桥墩与水相互作用的振动台试验[J]. 北京科技大学学报, 2010, 32(3): 403 − 408.

    SONG Bo, ZHANG Guoming, LI Yue. Shaking table test of bridge pier interaction with water [J]. Journal of University of Science and Technology Beijing, 2010, 32(3): 403 − 408. (in Chinese)
    [26] 黄信. 水—桥墩动力相互作用机理及深水桥梁非线性地震响应研究[D]. 天津: 天津大学, 2012.

    HUANG Xin. Study on dynamic interaction mechanism of water-pier and nonlinear seismic response of deep-water bridge [D]. Tianjin: Tianjin University, 2012. (in Chinese)
    [27] DING Y, MA R, SHI Y D, et al. Underwater shaking table tests on bridge pier under combined earthquake and wave-current action [J]. Marine Structures, 2018, 58: 301 − 320. doi: 10.1016/j.marstruc.2017.12.004
    [28] LI Z X, WU K, SHI Y D, et al. Experimental study on the interaction between water and cylindrical structure under earthquake action [J]. Ocean Engineering, 2019, 188: 106330. doi: 10.1016/j.oceaneng.2019.106330
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  250
  • HTML全文浏览量:  94
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 修回日期:  2021-09-18
  • 网络出版日期:  2021-09-30
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回