留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FRP布加固混凝土框架子结构抗连续倒塌的精细有限元分析

张雨笛 程小卫 李易 孙海林

张雨笛, 程小卫, 李易, 孙海林. FRP布加固混凝土框架子结构抗连续倒塌的精细有限元分析[J]. 工程力学, 2022, 39(12): 151-164. doi: 10.6052/j.issn.1000-4750.2021.07.0549
引用本文: 张雨笛, 程小卫, 李易, 孙海林. FRP布加固混凝土框架子结构抗连续倒塌的精细有限元分析[J]. 工程力学, 2022, 39(12): 151-164. doi: 10.6052/j.issn.1000-4750.2021.07.0549
ZHANG Yu-di, CHENG Xiao-wei, LI Yi, SUN Hai-lin. A DETAILED NUMERICAL ANALYSIS FOR THE PROGRESSIVE COLLAPSE OF CONCRETE FRAME SUBSTRUCTURES STRENGTHENED WITH FRP STRIPS[J]. Engineering Mechanics, 2022, 39(12): 151-164. doi: 10.6052/j.issn.1000-4750.2021.07.0549
Citation: ZHANG Yu-di, CHENG Xiao-wei, LI Yi, SUN Hai-lin. A DETAILED NUMERICAL ANALYSIS FOR THE PROGRESSIVE COLLAPSE OF CONCRETE FRAME SUBSTRUCTURES STRENGTHENED WITH FRP STRIPS[J]. Engineering Mechanics, 2022, 39(12): 151-164. doi: 10.6052/j.issn.1000-4750.2021.07.0549

FRP布加固混凝土框架子结构抗连续倒塌的精细有限元分析

doi: 10.6052/j.issn.1000-4750.2021.07.0549
基金项目: 国家重点研发计划项目(2019YFC1511000);国家自然科学基金项目(52178094);高等学校学科创新引智计划项目(D21001)
详细信息
    作者简介:

    张雨笛(1997−),女,湖北荆门人,硕士生,主要从事混凝土结构倒塌模拟研究 (E-mail: 18821799447@163.com)

    程小卫(1991−),男,甘肃天水人,助理研究员,博士,主要从事混凝土结构抗震性能研究 (E-mail: chengxw@bjut.edu.cn)

    孙海林(1978−),男,山东诸城人,教授级高工,博士,副总工,主要从事复杂结构设计及非线性分析 (E-mail:sunhailin@cadg.cn)

    通讯作者:

    李 易(1981−),男,湖北襄阳人,教授,博士,主要从事工程结构防灾减灾研究 (E-mail: yili@bjut.edu.cn)

  • 中图分类号: TU375.4

A DETAILED NUMERICAL ANALYSIS FOR THE PROGRESSIVE COLLAPSE OF CONCRETE FRAME SUBSTRUCTURES STRENGTHENED WITH FRP STRIPS

  • 摘要: 外贴FRP布加固是一种有效提高既有建筑抗连续倒塌性能的手段,但现有FRP布加固方式存在降低结构抗震性能、加固施工不便等缺点。该文采用数值模拟方法分析了FRP布加固方式对现浇和装配式混凝土框架子结构抗连续倒塌与抗震性能的影响,并开展了优化方案研究。基于通用有限元软件LS-DYNA建立了FRP布加固混凝土框架子结构的连续倒塌精细数值模型,其中混凝土、钢筋与FRP布分别采用实体、梁与壳单元进行模拟,考虑了FRP布和钢筋的滑移、新旧混凝土界面的粘结失效和机械套筒处的钢筋截面损失。试验验证表明该方法可准确模拟试验试件的破坏模式和承载力发展。分析试验试件的不同粘贴方案结果发现:对现浇混凝土子结构,梁底与梁侧中性轴粘贴纵向FRP布并在梁端塑性铰区粘贴U形横向FRP布后,小变形下的结构倒塌抗力提升有限(最大仅2.6%)、基本不影响结构抗震性能,而对大变形下的结构倒塌抗力提升幅度可达49.5%;对于装配式混凝土子结构,在梁底、梁顶与梁侧底部外贴纵向布并在梁端塑性铰区粘贴U形横向FRP布可将小变形和大变形下的结构抗力最大提升24.2%和48.1%,使得装配式子结构在小变形下受力等同现浇结构,提升了原装配式子结构的抗震性能。对上述最优方案进一步的分析表明:保持FRP布用量不变而将塑性铰区内U形横向FRP布的分布范围和条数增加可提高大变形下的结构倒塌抗力,而不影响小变形下的加固效果。
  • 图  4  装配式混凝土试件

    Figure  4.  PC substructure

    图  1  FRP加固试件有限元模型 /mm

    Figure  1.  FE model of FRP strengthened substructure

    图  2  FRP加固试件破坏模式

    Figure  2.  Failure mode of FRP strengthened substructure

    图  3  力-位移曲线 (RC1和FRP)

    Figure  3.  Load-displacement curves (RC1 and FRP)

    图  5  装配式试件破坏模式

    Figure  5.  Failure mode of PC substructure

    图  6  力-位移曲线 (RC2和PCWC)

    Figure  6.  Load-displacement curves (RC2 and PCWC)

    图  7  加固方式示意图 (现浇子结构) /mm

    Figure  7.  Diagrams of strengthening methods (RC substructures)

    图  8  加固试件力-位移曲线 (现浇子结构)

    Figure  8.  Load-displacement curves of strengthened substructures (RC substructures)

    图  9  FRP布应变 (现浇子结构)

    Figure  9.  Strains of FRP strips (RC substructures)

    图  10  钢筋应变 (现浇子结构)

    Figure  10.  Strains of reinforcements (RC substructures)

    图  11  PCWC-DI2加固方式示意图 /mm

    Figure  11.  Diagrams of strengthening method for PCWC-DI2

    图  12  加固试件力-位移曲线 (装配式子结构)

    Figure  12.  Load-displacement curves of strengthened substructures (PC substructure)

    图  13  钢筋应变 (装配式子结构)

    Figure  13.  Strains of reinforcements (PC substructure)

    图  14  FRP布应变 (装配式子结构)

    Figure  14.  Strains of FRP strips (PC substructure)

    图  15  横向FRP加固方式

    Figure  15.  Transverse FRP strengthening schemes

    图  16  力-位移曲线 (参数优化)

    Figure  16.  Load-displacement curves (parameter optimization)

    图  17  FRP布应变 (参数优化)

    Figure  17.  Strains of FRP strips (parameter optimization)

    表  1  试件材料信息 (RC1和FRP)

    Table  1.   Material details of substructures (RC1 and FRP)

    混凝土等级 加密区 非加密区
    上侧纵筋 下侧纵筋 箍筋 上侧纵筋 下侧纵筋 箍筋
    C30 3 8 2 8 6@50 2 8 2 8 6@120
    下载: 导出CSV

    表  2  试件材料信息 (RC2和PCWC)

    Table  2.   Material details of substructures (RC2 and PCWC)

    加密区 非加密区
    上侧/下侧纵筋 箍筋 上侧/下侧纵筋 箍筋
    3 14/3 14 6@50 2 14/3 14 6@100
    下载: 导出CSV

    表  3  FRP加固方式(现浇子结构)

    Table  3.   FRP strengthening methods (RC substructures)

    加固方式 纵向FRP布 横向FRP布
    方式1 (SI1) 梁底+梁侧中性轴 间隔100 mm,环形封闭
    方式2 (SI2) 梁端塑性铰区,环形封闭
    方式3 (SI3) 间隔100 mm,U形不封闭
    方式4 (SI4) 梁端塑性铰区,U形不封闭
    下载: 导出CSV

    表  4  承载力对比 (现浇子结构)

    Table  4.   Comparison of structural strengths (RC substructures)

    试件 小变形 大变形
    峰值/kN 提升率/(%) 峰值/kN 提升率/(%) 极限变形/mm
    FRP 37.8 20.7 38.3 5.2 379.6
    RC1-SI1 34.5 10.2 61.3 68.3 534.3
    RC1-SI2 31.7 1.3 54.7 50.3 513.1
    RC1-SI3 33.4 6.7 55.6 52.7 525.7
    RC1-SI4 31.6 0.9 54.4 49.5 500.0
    RC2-SI1 60.4 10.8 104.0 23.8 814.0
    RC2-SI2 56.6 3.8 99.0 17.9 792.2
    RC2-SI3 56.3 3.3 97.2 15.7 738.0
    RC2-SI4 55.9 2.6 94.6 12.6 728.1
    下载: 导出CSV

    表  5  FRP承载力贡献 (现浇子结构)

    Table  5.   Contribution of FRP to structural strengths (RC substructures) /kN

    试件 小变形峰值 大变形峰值
    梁侧 梁底 总计 梁侧 梁底 总计
    RC1-SI1 1.1 1.3 2.4 9.1 6.7 15.8
    RC1-SI2 0.5 0.6 1.1 6.5 8.1 14.6
    RC1-SI3 0.5 0.7 1.2 6.8 7.5 14.3
    RC1-SI4 0.4 0.5 0.9 5.9 7.8 13.7
    RC2-SI1 0.9 4.5 5.4 9.9 9.5 19.4
    RC2-SI2 1.0 2.6 3.6 8.0 5.2 13.2
    RC2-SI3 0.3 2.9 3.2 8.3 4.6 12.9
    RC2-SI4 0.5 0.7 1.2 5.4 6.0 11.4
    下载: 导出CSV

    表  6  FRP加固方式 (装配式子结构)

    Table  6.   FRP strengthening methods (PC substructure)

    加固方式 梁侧纵向FRP布 横向FRP布
    方式1 (DI1) 距离梁底100 mm~200 mm 梁端塑性铰区
    U形不封闭
    方式2 (DI2) 距离梁底0 mm~100 mm
    方式3 (DI3) 距离梁底0 mm~200 mm
    下载: 导出CSV

    表  7  承载力对比 (装配式子结构)

    Table  7.   Comparisons of structural strengths (PC substructure)

    试件 小变形 大变形
    峰值/kN 提升率/(%) 峰值/kN 提升率
    PCWC 45.9 58.0
    RC2 54.6 84.0
    PCWC-DI1 49.7 8.3 66.6 5.7
    PCWC-DI2 53.8 17.2 83.0 43.1
    PCWC-DI3 57.0 24.2 85.9 48.1
    下载: 导出CSV

    表  8  FRP承载力贡献 (装配式子结构)

    Table  8.   Contribution of FRP to structural strengths (PC substructure) /kN

    试件 小变形峰值 大变形峰值
    梁侧 梁顶底 总计 梁侧 梁顶底 总计
    PCWC-DI1 0.6 1.5 2.1 0.8 10.1 10.9
    PCWC-DI2 4.8 1.1 5.9 8.4 20.1 28.5
    PCWC-DI3 9.0 1.5 10.5 8.9 19.8 28.7
    下载: 导出CSV

    表  9  横向U形FRP布参数

    Table  9.   Parameters of U-shaped transverse FRP strips

    名称 约束范围 条数(宽度) 梁侧长度
    H 1(H/4)
    取值 5H/4 H−L/30
    2H 2(H/8)
    注:HL分别代表梁高与梁跨度。
    下载: 导出CSV

    表  10  承载力对比 (参数优化)

    Table  10.   Comparison of structural strengths (parameter optimization)

    加固方式 RC1 RC2 PCWC
    峰值/kN 提升率/(%) 峰值/kN 提升率/(%) 峰值/kN 提升率/(%)
    1 (2H2) 54.7 50.3 104.3 24.3 86.6 49.3
    2 (2H1) 53.7 47.6 103.7 23.6 85.0 46.6
    3 (5/4H2) 50.3 38.2 96.0 14.4 81.7 40.9
    4 (5/4H1) 46.8 28.6 94.6 12.8 81.2 40.0
    5 (1H2) 49.3 35.4 96.3 14.8 79.6 37.2
    6 (1H1) 46.3 27.2 89.0 6.1 79.7 37.4
    注:方式简称的第1、2个数字分别代表分布范围与梁高之比、FRP条数。如,2H2代表梁端2倍梁高范围内粘贴2条横向FRP。
    下载: 导出CSV

    表  11  FRP峰值贡献 (参数优化)

    Table  11.   Contribution of FRP to peak loads (parameter optimization) /kN

    加固方式 RC1 RC2 PCWC
    梁侧/底 总计 梁侧/底 总计 梁侧/顶底 总计
    2H2 7.3/6.8 14.1 11.1/7.4 18.5 4.9/25.0 29.9
    2H1 7.1/5.2 13.3 9.3/7.7 18.0 6.3/22.8 29.1
    5/4H2 5.2/4.8 10.0 8.8/7.9 16.7 5.9/22.3 28.2
    5/4H1 5.1/3.9 9.0 7.1/3.9 11.0 6.7/20.7 27.4
    1H2 5.7/4.0 9.7 7.5/5.0 12.5 4.2/18.6 22.8
    1H1 4.6/2.9 7.5 5.3/2.2 7.5 4.7/19.2 23.9
    下载: 导出CSV
  • [1] ASCE/SEI 7-10, Minimum design loads for buildings and other structures [S]. Reston, Virginia: American Society of Civil Engineers, 2010.
    [2] DENG X F, LIANG S L, FU F, et al. Effects of high-strength concrete on progressive collapse resistance of reinforced concrete frame [J]. Journal of Structural Engineering, 2020, 146(6): 04020078. doi: 10.1061/(ASCE)ST.1943-541X.0002628
    [3] YOUSEF A M, EL-MANDOUH M A. Dynamic analysis of high-strength concrete frame buildings for progressive collapse [J]. Case Studies in Construction Materials, 2020, 13: e00407. doi: 10.1016/j.cscm.2020.e00407
    [4] YU J, TAN K H. Special detailing techniques to improve structural resistance against progressive collapse [J]. Journal of Structural Engineering, 2014, 140(3): 04013077. doi: 10.1061/(ASCE)ST.1943-541X.0000886
    [5] LIN K Q, LU X Z, LI Y, et al. Analytical model for multi-hazard resilient prefabricated concrete frame considering earthquake and column removal scenarios [J]. Frontiers in Built Environment, 2018, 4: 73. doi: 10.3389/fbuil.2018.00073
    [6] 余洋, 李治, 肖龙山, 等. 边柱失效后预应力拼接连接装配式结构抗连续倒塌机理研究[J]. 工程力学, 2021, 38(4): 159 − 168. doi: 10.6052/j.issn.1000-4750.2020.06.0366

    YU Yang, LI Zhi, XIAO Longshan, et al. Load resisting mechanism of precast structure underexterior column failure [J]. Engineering Mechanics, 2021, 38(4): 159 − 168. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0366
    [7] QIAN K, HU H N, WENG Y H, et al. Numerical investigation on load transfer mechanism of bonded post-tensioned concrete beam-column substructures against progressive collapse [J]. Advances in Structural Engineering, 2021, 24(8): 1569 − 1582. doi: 10.1177/1369433220981655
    [8] LI Z X, LIU H K, SHI Y C, et al. Experimental investigation on progressive collapse performance of prestressed precast concrete frames with dry joints [J]. Engineering Structures, 2021, 246: 113071. doi: 10.1016/j.engstruct.2021.113071
    [9] FENG D C, SHI H R, PARISI F, et al. Efficient numerical model for progressive collapse analysis of prestressed concrete frame structures [J]. Engineering Failure Analysis, 2021, 129: 105683. doi: 10.1016/j.engfailanal.2021.105683
    [10] QIANG H L, YANG J X, FENG P, et al. Kinked rebar configurations for improving the progressive collapse behaviours of RC frames under middle column removal scenarios [J]. Engineering Structures, 2020, 211: 110425. doi: 10.1016/j.engstruct.2020.110425
    [11] LIU T, XIAO Y, YANG J, et al. CFRP strip cable retrofit of RC frame for collapse resistance [J]. Journal of Composites for Construction, 2017, 21(1): 04016067. doi: 10.1061/(ASCE)CC.1943-5614.0000722
    [12] PAN J W, WANG X, WU F, et al. Strengthening of precast RC frame to mitigate progressive collapse by externally bonded CFRP sheets anchored with HFRP anchors [J]. Advances in Civil Engineering, 2018, 2018: 8098242.
    [13] ORTON S, JIRSA J O, BAYRAK O. Carbon fiber-reinforced polymer for continuity in existing reinforced concrete buildings vulnerable to collapse [J]. ACI Structrual Journal, 2009, 106(5): 608 − 616.
    [14] FENG P, QIANG H L, OU X, et al. Progressive collapse resistance of GFRP-strengthened RC beam–slab subassemblages in a corner column–removal scenario [J]. Journal of Composites for Construction, 2019, 23(1): 04018076. doi: 10.1061/(ASCE)CC.1943-5614.0000917
    [15] QIAN K, LI B. Strengthening and retrofitting precast concrete buildings to mitigate progressive collapse using externally bonded GFRP strips [J]. Journal of Composites for Construction, 2019, 23(3): 04019018. doi: 10.1061/(ASCE)CC.1943-5614.0000943
    [16] QIAN K, LI B. Strengthening and retrofitting of RC flat slabs to mitigate progressive collapse by externally bonded CFRP laminates [J]. Journal of Composites for Construction, 2013, 17(4): 554 − 565. doi: 10.1061/(ASCE)CC.1943-5614.0000352
    [17] DoD2016, Design of structures to resist progressive collapse [S]. Washington D. C.: Department of Defense, 2016.
    [18] GSA2016, Alternate path analysis & design guidelines for progressive collapse resistance [S]. Washington D. C.: General Services Administration, 2016.
    [19] 钱爽, 范存新. 基于GFRP加固的RC梁柱结构抗连续倒塌性能研究[J]. 苏州科技大学学报 (工程技术版), 2019, 32(3): 43 − 50.

    QIAN Shuang, FAN Cunxin. Study on progressive collapse behavior of GFRP strengthened RC beam-column structures [J]. Journal of Suzhou University of Science and Technology (Engineering and Technology), 2019, 32(3): 43 − 50. (in Chinese)
    [20] ELSANADEDY H M, AL-SALLOUM Y A, ALRUBAIDI M A, et al. Upgrading of precast RC beam-column joints using innovative FRP/steel hybrid technique for progressive collapse prevention [J]. Construction and Building Materials, 2021, 268: 121130. doi: 10.1016/j.conbuildmat.2020.121130
    [21] LIN K Q, LI Y, LU X Z, et al. Effects of seismic and progressive collapse designs on the vulnerability of RC frame structures [J]. Journal of Performance of Constructed Facilities, 2017, 31(1): 04016079. doi: 10.1061/(ASCE)CF.1943-5509.0000942
    [22] YU J, LUO L Z, LI Y. Numerical study of progressive collapse resistance of RC beam-slab substructures under perimeter column removal scenarios [J]. Engineering Structures, 2018, 159: 14 − 27. doi: 10.1016/j.engstruct.2017.12.038
    [23] 钱凯, 李治, 翁运昊, 等. 钢筋混凝土梁-板子结构抗连续性倒塌性能研究[J]. 工程力学, 2019, 36(6): 239 − 247. doi: 10.6052/j.issn.1000-4750.2018.05.0297

    QIAN Kai, LI Zhi, WENG Yunhao, et al. Behavior of RC beam-slab substructures to resist progressive collapse [J]. Engineering Mechanics, 2019, 36(6): 239 − 247. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.05.0297
    [24] WENG Y H, QIAN K, FU F, et al. Numerical investigation on load redistribution capacity of flat slab substructures to resist progressive collapse [J]. Journal of Building Engineering, 2020, 29: 101109. doi: 10.1016/j.jobe.2019.101109
    [25] MURRAY Y D, ABU-ODEH A, BLIGH R. Evaluation of LS-DYNA concrete material model 159 [R]. Cambridge, MA: Federal Highway Administration, 2007.
    [26] ELSANADEDY H M, AL-SALLOUM Y A, ALMUSALLAM T H, et al. Experimental and numerical study on FRP-upgraded RC beams with large rectangular web openings in shear zones [J]. Construction and Building Materials, 2019, 194: 322 − 343. doi: 10.1016/j.conbuildmat.2018.10.238
    [27] 万军. 碳纤维布加固砌体填充墙抗近距离小当量炸药爆炸数值模拟研究[J]. 工程力学, 2020, 37(增刊 1): 82 − 90. doi: 10.6052/j.issn.1000-4750.2019.04.S012

    WAN Jun. Numerical simulation of CFRP reinforced concrete masonry wall against small stand-off distance explosive charge [J]. Engineering Mechanics, 2020, 37(Suppl 1): 82 − 90. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S012
    [28] CHANG F K, CHANG K Y. A progressive damage model for laminated composites containing stress concentrations [J]. Journal of Composite Materials, 1987, 21(9): 834 − 855. doi: 10.1177/002199838702100904
    [29] 陆新征, 冯鹏, 叶列平. FRP布约束混凝土方柱轴心受压性能的有限元分析[J]. 土木工程学报, 2003, 36(2): 46 − 51. doi: 10.3321/j.issn:1000-131X.2003.02.009

    LU Xinzheng, FENG Peng, YE Lieping. Behavior of FRP-confined concrete square columns under uniaxial loading [J]. Civil Engineering Journal, 2003, 36(2): 46 − 51. (in Chinese) doi: 10.3321/j.issn:1000-131X.2003.02.009
    [30] PHAM A T, TAN K H, YU J. Numerical investigations on static and dynamic responses of reinforced concrete sub-assemblages under progressive collapse [J]. Engineering Structures, 2017, 149: 2 − 20. doi: 10.1016/j.engstruct.2016.07.042
    [31] PHAM A T, LIM A S, TAN K H. Investigations of tensile membrane action in beam-slab systems under progressive collapse subject to different loading configurations and boundary conditions [J]. Engineering Structures, 2017, 150: 520 − 536. doi: 10.1016/j.engstruct.2017.07.060
    [32] fib, Fib model code for concrete structures [S]. Lausanne, Switzerland: International Federation for Structural Concrete, 2013.
    [33] LU X Z, TENG J G, YE L P, et al. Bond-slip models for FRP sheets/plates bonded to concrete [J]. Engineering Structures, 2005, 27(6): 920 − 937. doi: 10.1016/j.engstruct.2005.01.014
    [34] 陆新征, 叶列平, 滕锦光, 等. FRP片材与混凝土粘结性能的精细有限元分析[J]. 工程力学, 2006, 23(5): 74 − 82. doi: 10.3969/j.issn.1000-4750.2006.05.014

    LU Xinzheng, YE Lieping, TENG Jinguang, et al. Meso-scale finite element analysis of FRP-to-concrete bond behavior [J]. Engineering Mechanics, 2006, 23(5): 74 − 82. (in Chinese) doi: 10.3969/j.issn.1000-4750.2006.05.014
    [35] LSTC. LS-DYNA keyword user’s manual volume II material models [R]. Livermore, CA: United States Livemore, 2017.
    [36] 钱凯, 李治, 翁运昊, 等. 后浇整体式预制混凝土梁-板子结构抗连续倒塌机理研究[J]. 建筑结构学报, 2021, 42(7): 183 − 193.

    QIAN Kai, LI Zhi, WENG Yunhao, et al. Load resisting mechanism of precast concrete beam-slab substructures with monolithic joints to mitigate progressive collapse [J]. Journal of Building Structures, 2021, 42(7): 183 − 193. (in Chinese)
    [37] JGJ 107−2010, 钢筋机械连接技术规程 [S]. 北京: 中国建筑工业出版社, 2010.

    JGJ 107−2010, Technical specification for mechanical splicing of steel reinforcing bars [S]. Beijing: China Architecture and Building Press, 2010. (in Chinese)
    [38] JGJ 256−2011, 钢筋锚固板应用技术规程[S]. 北京: 中国建筑工业出版社, 2011.

    JGJ 256−2011, Technical specification for application of headed bars [S]. Beijing: China Architecture and Building Press, 2011. (in Chinese)
    [39] 秦卫红, 冯鹏, 施凯捷, 等. 玻璃纤维加固梁柱结构抗连续倒塌性能数值分析[J]. 同济大学学报 (自然科学版), 2014, 42(11): 1647 − 1653.

    QIN Weihong, FENG Peng, SHI Kaijie, et al. Numerical analysis of progressive collapse behavior of glass fiber reinforced polymer strengthened beam-column structures [J]. Journal of Tongji University (Natural Science), 2014, 42(11): 1647 − 1653. (in Chinese)
    [40] 袁鑫杰, 李易, 陆新征, 等. 湿式连接装配式混凝土框架抗连续倒塌静力试验研究[J]. 土木工程学报, 2019, 52(12): 46 − 56. doi: 10.15951/j.tmgcxb.2019.12.005

    YUAN Xinjie, LI Yi, LU Xinzheng, et al. Static progressive collapse test on prefabricated concrete frames with wet connections [J]. Civil Engineering Journal, 2019, 52(12): 46 − 56. (in Chinese) doi: 10.15951/j.tmgcxb.2019.12.005
    [41] JGJ 1−2014, 装配式混凝土结构技术规程[S]. 北京: 中国建筑工业出版社, 2014.

    JGJ 1−2014, Technical specifications for prefabricated concrete structures [S]. Beijing: China Architecture and Building Press, 2014. (in Chinese)
    [42] GB 50010−2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.

    GB 50010−2010, Code for design of concrete structures [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
  • 加载中
图(17) / 表(11)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  74
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-17
  • 修回日期:  2021-09-20
  • 网络出版日期:  2021-09-30
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回