EXPERIMENTAL INVESTIGATION AND DESIGN OF AXIALLY LOADED CONCRETE FILLED ELLIPTICAL STEEL TUBULAR STUB COLUMNS WITH SPHERICAL GAPS
-
摘要: 为研究球冠形脱空对椭圆钢管混凝土短柱轴压性能的影响,该文通过带球冠形脱空椭圆钢管混凝土试件的破坏形态、轴压承载力、初始刚度和延性等性能在球冠形脱空影响下的变化规律,揭示了带球冠形脱空缺陷椭圆钢管混凝土轴压短柱的截面应变分布和核心混凝土强度特征,最终基于脱空特征对椭圆核心混凝土约束状态的影响机理,提出截面约束分区模型,推导并验证了考虑球冠形脱空影响的椭圆钢管混凝土短柱的轴压承载力计算公式。研究发现:核心混凝土破碎和斜向剪切、钢管局部鼓曲与凹陷以及试件的整体弯曲破坏是带球冠形脱空椭圆钢管混凝土轴压短柱的主要破坏形态;脱空缺陷的存在将削弱椭圆钢管与核心混凝土的相互作用,进而降低其轴压承载力、初始刚度和延性。Abstract: In order to figure out the effect of spherical-cap gaps on the performance of the axially loaded elliptical concrete-filled steel tube (ECFST), this paper conducts an experimental study on the axially loaded ECFST columns with spherical-cap gaps (ECFST-SG). The development rules of the failure mode, axial compressive resistance, initial stiffness and ductility of ECFST-SG column under the influence of spherical-cap gap ratio are analyzed. The strain distribution at mid-height cross-section and strength feature of the core concrete are revealed respectively. According to the mechanism of gap imperfection on the confining stress of core concrete, the confining division theory of the core concrete section is proposed, and the calculation formulae for predicting the axial compressive resistance of ECFST-SG columns is deduced and validated. The results indicate that the failure modes of the axially loaded ECFST-SG columns mainly include crushing and shear failure of the core concrete, outward and inward buckling of the steel tube, and excessive lateral deflection of the overall specimen. The spherical-cap gap may weaken the interaction between the elliptical steel tube and the core concrete distinctly, hence the axial resistance, initial stiffness and ductility of ECFST stub column will be reduced.
-
表 1 试件几何信息表
Table 1. The geometric information of test specimens
试件编号 2a×2b×t×L/mm dsg/
mmχ sg/
(%)AS1-H 280×140×6×500 − − AS2-H 280×140×6×500 − − AS1-SG0 280×140×6×500 0 0.0 AS1-SG10 280×140×6×500 10 3.6 AS1-SG20 280×140×6×500 20 7.2 AS1-SG30 280×140×6×500 30 10.8 AS2-SG0 280×140×6×500 0 0.0 AS2-SG5 280×140×6×500 5 1.8 AS2-SG10 280×140×6×500 10 3.6 AS2-SG20 280×140×6×500 20 7.2 AS2-SG30 280×140×6×500 30 10.8 注:表中试件“AS1-SG10”中,“A”为轴压,“S1”为平均屈服强度为271 MPa的椭圆钢管,“SG10”为间隙为10 mm的球冠形脱空;试件AS1-H和试件AS2-H为屈服强度为271.2 MPa和488.5 MPa椭圆空钢管短柱;χsg为脱空率,χsg=dsg/(2a);dsg为脱空区弧形顶点至脱空界面的矢高。 表 2 钢管材性试验结果
Table 2. The results of steel coupon test
编号ID 屈服强度fy/MPa 极限强度fu/MPa 弹性模量Es/MPa 断后伸长率δ/(%) S1-1 271.2 370.2 203.2 14.0 S1-2 277.3 359.9 199.9 14.0 S1-3 263.8 379.5 197.2 17.0 均值 270.8 369.9 200.1 15.0 编号ID 屈服强度fy/MPa 极限强度fu/MPa 弹性模量Es/MPa 断后伸长率δ/(%) S2-1 480.9 550.2 206.1 16.0 S2-2 502.1 547.1 205.8 16.0 S2-3 482.5 530.8 204.8 17.0 均值 488.5 542.7 205.6 16.3 表 3 混凝土材性测试结果
Table 3. The test results of concrete material property
强度等级 试块编号 fcu,k/MPa Ec/MPa C60 C1 59.3 32130.0 C2 58.6 32012.8 C3 58.8 32038.4 均值 − 58.9 32060.4 表 4 试验结果
Table 4. The test results
编号 屈服位移
Δy/mm峰值位移
Δu/mm破坏位移
Δ0.85/mm延性系数
DI刚度Ki/
(kN·mm−1)承载力
Nut/kNAS1-H 0.65 0.97 1.39 2.14 1505.8 985 AS1-SG0 0.84 2.26 3.63 4.32 3233.0 2723 AS1-SG10 0.83 1.89 2.98 3.59 3080.3 2551 AS1-SG20 0.80 1.81 2.43 3.03 2973.3 2390 AS1-SG30 0.77 1.72 2.28 2.96 2822.0 2181 AS2-H 1.09 1.56 3.57 3.28 1730.2 1881 AS2-SG0 1.03 2.41 5.42 5.26 3405.0 3501 AS2-SG5 1.05 2.31 5.08 4.84 3323.0 3493 AS2-SG10 1.14 1.95 4.26 3.74 2923.0 3323 AS2-SG20 1.09 1.91 4.02 3.69 2896.0 3156 AS2-SG30 1.11 1.77 3.67 3.31 2771.0 3063 表 5 试验结果与计算结果对比
Table 5. Comparison between the test and predicted results
来源 编号 Nut/kN Nc/kN Nc/Nut 文献[4] cs4-1 2060 1960 0.95 cs4-2 2010 1960 0.97 cs8-1 1833 1944 1.06 cs8-2 1878 1944 1.04 cs12-1 1780 1929 1.08 cs12-2 1830 1929 1.05 本文 AS1-H 985 1043 0.94 AS1-SG0 2723 2410 0.92 AS1-SG10 2551 2325 0.91 AS1-SG20 2390 2263 0.95 AS1-SG30 2181 2199 1.01 AS2-H 1881 1878 1.00 AS2-SG0 3501 3489 1.00 AS2-SG5 3493 3399 0.97 AS2-SG10 3323 3352 1.01 AS2-SG20 3156 3269 1.04 AS2-SG30 3063 3188 1.04 平均值 − − 1.00 方差 − − 0.003 -
[1] 韩林海. 钢管混凝土结构-理论与实践[M]. 第3版. 北京: 科学出版社, 2016.HAN Linhai. Concrete filled steel tubular structures-theory and practice [M]. 3rd ed. Beijing: Science Press, 2016. (in Chinese) [2] 王文达, 陈润亭. 方钢管混凝土柱-外环板式组合梁节点在地震损伤后的耐火性能分析[J]. 工程力学, 2021, 38(3): 73 − 85. doi: 10.6052/j.issn.1000-4750.2020.04.0259WANG Wenda, CHEN Runting. Analysis on the resistance of square concrete-filled steel tubular column to composite beam with outer ring plate connections after earthquake damage [J]. Engineering Mechanics, 2021, 38(3): 73 − 85. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0259 [3] 康昌敏, 王蕊, 朱翔. 轴压比对钢管混凝土柱侧向冲击性能影响研究[J]. 工程力学, 2020, 37(增刊 1): 254 − 260. doi: 10.6052/j.issn.1000-4750.2019.04.S047KANG Changmin, WANG Rui, ZHU Xiang. The influence of axial compression ratio on the lateral impact performance of concrete filled steel tube columns [J]. Engineering Mechanics, 2020, 37(Suppl 1): 254 − 260. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S047 [4] 廖飞宇, 王静峰. 钢管混凝土缺陷机理与诊断-试验、理论和应用[M]. 北京: 中国建筑工业出版社, 2020.LIAO Feiyu, WANG Jingfeng. Mechanism and diagnosis of CFST members with concrete imperfection-experiments, theory and application [M]. Beijing: China Architecture& Building Press, 2020. (in Chinese) [5] 张伟杰, 廖飞宇, 李威. 带圆弓形脱空缺陷的钢管混凝土构件在压弯扭复合受力作用下的滞回性能试验研究[J]. 工程力学, 2019, 36(12): 121 − 133. doi: 10.6052/j.issn.1000-4750.2018.12.0713ZHANG Weijie, LIAO Feiyu, LI Wei. Experimental study on the cyclic behavior of concrete-filled steel tubular (CFST) member with circular-segment gaps under combined compression-bending-torsion loading [J]. Engineering Mechanics, 2019, 36(12): 121 − 133. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.12.0713 [6] 叶跃忠, 文志红, 潘绍伟. 钢管混凝土脱粘及灌浆补救效果试验研究[J]. 西南交通大学学报, 2004, 39(3): 381 − 384, 393. doi: 10.3969/j.issn.0258-2724.2004.03.026YE Yuezhong, WEN Zhihong, PAN Shaowei. Experimental research on separation of concrete-filled steel tube and effect of pouring pulp [J]. Journal of Southwest Jiaotong University, 2004, 39(3): 381 − 384, 393. (in Chinese) doi: 10.3969/j.issn.0258-2724.2004.03.026 [7] 李永进, 王志滨, 李东升. 长期荷载作用下带脱空缺陷钢管混凝土柱的受力性能研究[J]. 建筑结构学报, 2020, 41(10): 112 − 120. doi: 10.14006/j.jzjgxb.2018.0589LI Yongjin, WANG Zhibin, LI Dongsheng. Mechanical behavior of concrete-filled steel tubular columns with initial concrete imperfection under long-term sustained load [J]. Journal of Building Structures, 2020, 41(10): 112 − 120. (in Chinese) doi: 10.14006/j.jzjgxb.2018.0589 [8] 叶勇, 韩林海, 陶忠. 脱空对圆钢管混凝土受剪性能的影响分析[J]. 工程力学, 2016, 33(增刊 1): 62 − 66, 71. doi: 10.6052/j.issn.1000-4750.2015.05.S010YE Yong, HAN Linhai, TAO Zhong. Effects of gaps on behaviour of circular CFST members under shear [J]. Engineering Mechanics, 2016, 33(Suppl 1): 62 − 66, 71. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.05.S010 [9] HAN L H, YE Y, LIAO F Y. Effect of core concrete initial imperfection on performance of eccentrically loaded CFST columns [J]. Journal of Structural Engineering:ASCE, 2016, 142(12): 04016132. doi: 10.1061/(ASCE)ST.1943-541X.0001604 [10] 云迪, 郑皓文, 周贺. 脱空对钢管混凝土单圆管拱肋面内承载力的影响[J]. 建筑结构学报, 2015, 36(增刊 1): 120 − 125. doi: 10.14006/j.jzjgxb.2015.S1.019YUN Di, ZHENG Haowen, ZHOU He. Influence of filling-incompletion on in-plane bearing capacity of single concrete filled steel tubular arch ribs [J]. Journal of Building Structures, 2015, 36(Suppl 1): 120 − 125. (in Chinese) doi: 10.14006/j.jzjgxb.2015.S1.019 [11] 宋天诣, 刘夏璐, 项凯. 火灾后椭圆钢管混凝土界面黏结性能研究[J]. 土木工程学报, 2021, 54(6): 41 − 52.SONG Tianyi, LIU Xialu, XIANG Kai. Post-fire bond behaviour of steel tube - core concrete interface in elliptical concrete-filled steel tubes [J]. China Civil Engineering Journal, 2021, 54(6): 41 − 52. (in Chinese) [12] YANG H, LAM D, GARDNER L. Testing and analysis of concrete-filled elliptical hollow sections [J]. Engineering Structures, 2008, 30(12): 3771 − 3781. doi: 10.1016/j.engstruct.2008.07.004 [13] 许友武, 姚谏, 李忠学. 椭圆钢管混凝土短柱循环轴压试验[J]. 哈尔滨工程大学学报, 2020, 41(5): 635 − 642.XU Youwu, YAO Jian, LI Zhongxue. Cyclic axial compression tests on concrete-filled elliptical steel tubular stub columns [J]. Journal of Harbin Engineering University, 2020, 41(5): 635 − 642. (in Chinese) [14] 王伟, 淮运梅, 陈德明. 填充轻骨料混凝土的冷成型椭圆形截面钢管短柱轴压性能研究[J]. 建筑结构学报, 2015, 36(增刊 1): 207 − 214. doi: 10.14006/j.jzjgxb.2015.S1.032WANG Wei, HUAI Yunmei, CHEN Tak-Ming. Research on axial compressive behavior of lightweight concrete-filled cold-formed elliptical hollow section steel stub columns [J]. Journal of Building Structures, 2015, 36(Suppl 1): 207 − 214. (in Chinese) doi: 10.14006/j.jzjgxb.2015.S1.032 [15] SHEN Q H, WANG J F. Mechanical analysis and design recommendation for thin-walled OSCFST stub columns under axial local compression [J]. Thin-Walled Structures, 2019, 144: 106313. doi: 10.1016/j.tws.2019.106313 [16] XING W B, SHEN Q H, WANG J F, et al. Performance and design of oval-ended elliptical CFT columns under combined axial compression-torsion [J]. Journal of Constructional Steel Research, 2020, 172: 106148. doi: 10.1016/j.jcsr.2020.106148 [17] LIAO J J, LI Y L, YI O Y, et al. Axial compression tests on elliptical high strength steel tubes filled with self-compacting concrete of different mix proportions [J]. Journal of Building Engineering, 2021, 40: 102678. doi: 10.1016/j.jobe.2021.102678 [18] ZHANG T, GONG Y Z, DING F X, et al. Experimental and numerical investigation on the flexural behavior of concrete-filled elliptical steel tube (CFET) [J]. Journal of Building Engineering, 2021, 41: 102412. doi: 10.1016/j.jobe.2021.102412 [19] 王静峰, 华正茂, 沈奇罕, 等. 椭圆钢管混凝土柱抗震性能试验与分析[J/OL]. 土木工程学报. DOI: 10.15951/j.tmgcxb.21121269.WANG Jingfeng, HUA Zhengmao, SHEN Qihan, et al. Experimental and numerical study on seismic performance of elliptical concrete-filled steel tubular columns [J/OL]. China Civil Engineering Journal. DOI: 10.15951/j.tmgcxb.21121269. (in Chinese) [20] 王静峰, 陶书庆, 沈奇罕, 等. 椭圆钢管混凝土压弯扭复合受力性能及承载力计算方法研究[J]. 建筑钢结构进展, 2022, 24(9): 45 − 55. doi: 10.13969/j.cnki.cn31-1893.2022.09.005WANG Jingfeng, TAO Shuqing, SHEN Qihan, et al. Mechanical performance and bearing capacity calculation of elliptical CFST members subjected to compression, bending and torsion [J]. Progress in Steel Building Structures, 2022, 24(9): 45 − 55. (in Chinese) doi: 10.13969/j.cnki.cn31-1893.2022.09.005 [21] 王静峰, 赵吉航, 沈奇罕, 等. 脱空缺陷对圆端形椭圆钢管混凝土T形相贯节点轴压性能影响研究[J/OL]. 建筑结构学报. DOI: 10.14006/j.jzjgxb.2021.0411.WANG Jingfeng, ZHAO Jihang, SHEN Qihan, et al. The effect of concrete gap imperfection on the axial compression behavior of RECFST tubular T-joints [J/OL]. Journal of Building Structures. DOI: 10.14006/j.jzjgxb.2021.0411. (in Chinese) [22] 王静峰, 程安乐, 沈奇罕, 等. 带球冠形脱空缺陷椭圆钢管混凝土短柱轴压性能与受力机理分析[J/OL]. 建筑钢结构进展. https://kns.cnki.net/kcms/detail/31.1893.tu. 20220629.1833.002.html.WANG Jingfeng, CHENG Anle, SHEN Qihan, et al. Performance and mechanical analysis of ECFST short column with spherical-cap gap under axial compression [J/OL]. Progress in Steel Building Structures. https://kns.cnki.net/kcms/detail/31.1893.tu.20220629.1833.002.html. (in Chinese) [23] 王静峰, 刘伟, 沈奇罕, 等. 考虑环向脱空影响的椭圆钢管混凝土短柱轴压性能试验与分析[J/OL]. 建筑结构学报. DOI: 10.14006/j.jzjgxb.2021.0670.WANG Jingfeng, LIU Wei, SHEN Qihan, et al. Test and analysis of axially-loaded concrete-filled elliptical steel tubular short columns considering the effect of circumferential gap [J/OL]. Journal of Building Structures. DOI: 10.14006/j.jzjgxb.2021.0670. (in Chinese) [24] GB/T 2975−2018, 钢及钢产品力学性能试验取样位置及试样制备[S]. 北京: 国家市场监督管理总局, 2018.GB/T 2975−2018, Steel and steel products-Location and preparation of samples and test pieces for mechanical testing [S]. Beijing: General Administration for National Market Supervision, 2018. (in Chinese) [25] GB/T 50081−2019, 混凝土物理力学性能试验方法标准[S]. 北京: 中华人民共和国住房和城乡建设部, 2019.GB/T 50081−2019, Standard for test methods of concrete physical and mechanical properties [S]. Beijing: Ministry of Housing and Urban-Rural Construction of the People's Republic of China, 2019. (in Chinese) [26] 沈奇罕, 高奔浩, 王静峰, 等. 椭圆截面钢管钢渣混凝土短柱轴压性能试验研究[J]. 建筑结构学报, 2021, 42(增刊 2): 197 − 203. doi: 10.14006/j.jzjgxb.2021.S2.0023SHEN Qihan, GAO Benhao, WANG Jingfeng, et al. Experimental study on performance of steel slag concrete filled elliptical steel tubular stub columns under axial load [J]. Journal of Building Structures, 2021, 42(Suppl 2): 197 − 203. (in Chinese) doi: 10.14006/j.jzjgxb.2021.S2.0023 [27] 王静峰, 陶书庆, 沈奇罕, 等. 圆端形椭圆钢管T形相贯节点轴压性能试验研究与承载力计算方法[J]. 建筑结构学报, 2022, 43(10): 274 − 284. doi: 10.14006/j.jzjgxb.2021.0155WANG Jingfeng, TAO Shuqing, SHEN Qihan, et al. Experimental investigation and design of round-ended elliptical steel tubular T-joints under axial compression [J]. Journal of Building Structures, 2022, 43(10): 274 − 284. (in Chinese) doi: 10.14006/j.jzjgxb.2021.0155 [28] 骆勇鹏, 谢隆博, 廖飞宇, 等. 基于时序分析理论的钢管混凝土脱空缺陷检测方法研究[J]. 工业建筑, 2019, 49(10): 48 − 53.LUO Yongpeng, XIE Longbo, LIAO Feiyu, et al. Research on detection of gap defect of concrete filled steel tubular based on time analysis theory [J]. Industrial Construction, 2019, 49(10): 48 − 53. (in Chinese) [29] GÜNEYISI E M, NOUR A I. Axial compression capacity of circular CFST columns transversely strengthened by FRP [J]. Engineering Structures, 2019, 191: 417 − 431. doi: 10.1016/j.engstruct.2019.04.056 -