HEAVE DEFORMATION OF EXISTING SHIELD TUNNEL INDUCED BY OVER-CROSSING EXCAVATION
-
摘要: 基坑上跨开挖将会引起既有盾构隧道隆起变形,危及既有盾构隧道的服役性能。目前基坑开挖引起的盾构隧道隆起变形的解析方法,通常将盾构隧道简化为埋置于弹性地基上的连续长梁,忽略了环间接头影响。针对前人研究的不足,提出带环间接头的盾构隧道计算模型,通过非线性Pasternak地基模型来考虑地基土变形的非线性特征,通过两阶段分析法,推导得到基坑上跨开挖作用下盾构隧道隆起位移和张开量简化解答。通过MINDLIN解计算基坑开挖引起的作用于盾构隧道上的附加荷载;建立基坑卸载下盾构隧道的隆起变形微分方程。利用有限差分法求解出基坑开挖引起的邻近盾构隧道隆起变形和内力分布。收集了三个工程实测数据,并将所提方法和实测数据、既有理论方法进行对比,验证所提方法的适用性。
-
关键词:
- 盾构隧道 /
- 隆起变形 /
- 非线性地基模型 /
- 带环间接头的盾构隧道模型 /
- 基坑开挖
Abstract: Over-crossing excavation will cause the heave deformation of existing shield tunnels and endanger the service performance of existing shield tunnels. The current analytical methods for predicting the heave deformation of a shield tunnel due to excavation always consider the shield tunnel as an elastic continuous beam resting on an elastic foundation model, which overlook the effect of the joint between adjacent rings. Thusly, a shield tunnel model with adjacent joints is proposed. The nonlinear characteristics of soil deformation are considered by nonlinear Pasternak foundation model. Through the two-stage analysis method, the simplified solutions of heave displacement and opening of shield tunnel under the action of upper span excavation of foundation pit are derived. The additional unloading pressure on shield tunnel due to excavation is calculated using MINDLIN’s elastic solution. The differential equation of heave deformation of the shield tunnel due to exerted unloading pressure is established. The heave deformation and internal force distribution of the adjacent shield tunnel caused by excavation are obtained by using the finite difference method. The measured results from three well-documented published cases are collected, and then the prediction from proposed method is compared with the measured results and the prediction from existing methods to verify the applicability of the proposed method. -
-
-
[1] LIANG R Z, WU J, SUN L W, et al. Performances of a djacent metro structures due to zoned excavation of a large-scale basement in soft ground [J]. Tunnelling and Underground Space Technology, 2021, 117(11): 104123.
[2] 张治国, 张孟喜, 王卫东. 基坑开挖对临近地铁隧道影响的两阶段分析方法[J]. 岩土力学, 2011, 30(7): 2085 − 2092. doi: 10.3969/j.issn.1000-7598.2011.07.028 ZHANG Zhiguo, ZHANG Mengxi, WANG Weidong. Two-stage method for analyzing effects on adjacent metro tunnels due to foundation pit excavation [J]. Rock and Soil Mechanics, 2011, 30(7): 2085 − 2092. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.07.028
[3] 黄栩, 黄宏伟, 张冬梅. 开挖卸荷引起下卧已建盾构隧道的纵向变形研究[J]. 岩土工程学报, 2012, 34(7): 1241 − 1249. HUANG Xu, HUANG Hongwei, ZHANG Dongmei. Longitudinal deflection of existing shield tunnels due to deep excavation [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 34(7): 1241 − 1249. (in Chinese)
[4] LIANG R Z, WU W B, YU F, et al. Simplified method for evaluating shield tunnel deformation due to adjacent excavation [J]. Tunnelling and Underground Space Technology, 2018, 71(1): 94 − 105.
[5] 梁荣柱, 林存刚, 夏唐代, 等. 考虑隧道剪切效应的基坑开挖对邻近隧道纵向变形分析[J]. 岩石力学与工程学报, 2017, 36(1): 223 − 233. LIANG Rongzhu, LIN Cungang, XIA Tangdai, et al. Analysis on the longitudinal deformation of tunnels due to pit excavation considering the tunnel shearing effect [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(1): 223 − 233. (in Chinese)
[6] LIANG R Z, XIA T D, HUANG M S, et al. Simplified analytical method for evaluating the effects of adjacent excavation on shield tunnel considering the shearing effect [J]. Computers and Geotechnics, 2017, 81(1): 167 − 187.
[7] LIU J W, SHI C H, LEI M F, et al. Improved analytical method for evaluating the responses of a shield tunnel to adjacent excavations and its application [J]. Tunnelling and Underground Space Technology, 2020, 98: 103339.1 − 103339.12.
[8] 张景, 何川, 耿萍, 等. 盾构隧道环间接头弯曲状态非线性研究[J]. 工程力学, 2018, 35(11): 35 − 44. doi: 10.6052/j.issn.1000-4750.2017.08.0624 ZHANG Jing, HE Chuan, GENG Ping, et al. Study on bending state nonlinearity of shield-tunnel ring joints [J]. Engineering Mechanics, 2018, 35(11): 35 − 44. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.08.0624
[9] 刘迅, 封坤, 肖明清, 等. 盾构隧道新型分布榫式管片结构的局部原型试验研究[J]. 工程力学, 2022, 39(1): 197 − 208. doi: 10.6052/j.issn.1000-4750.2020.12.0913 LIU Xun, FENG Kun, XIAO Mingqing, et al. Prototype test of a new type segment structure with distributed mortises and tenons for shield tunnel [J]. Engineering Mechanics, 2022, 39(1): 197 − 208. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.12.0913
[10] 耿萍, 唐睿, 陈枰良, 等. 考虑剪切作用的盾构隧道管片接头力学模型研究[J]. 工程力学, 2020, 37(3): 157 − 166. doi: 10.6052/j.issn.1000-4750.2019.04.0213 GENG Ping, TANG Rui, CHEN Pingliang, et al. Research of mechanical model of shield tunnel’s segment joint under the shearing effect [J]. Engineering Mechanics, 2020, 37(3): 157 − 166. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.0213
[11] 周顺华, 何超, 肖军华. 环间错台效应下基坑开挖引起临近地铁盾构隧道变形的能量计算法[J]. 中国铁道科学, 2016, 37(3): 53 − 60. doi: 10.3969/j.issn.1001-4632.2016.03.008 ZHOU Shunhua, HE Chao, XIAO Junhua. Energy calculation method for deformation of shield tunnels near metro due to foundation pit excavation under staggered platform effect [J]. China Railway Science, 2016, 37(3): 53 − 60. (in Chinese) doi: 10.3969/j.issn.1001-4632.2016.03.008
[12] 魏新江, 洪文强, 魏纲, 等. 堆载引起临近地铁隧道的转动与错台变形计算[J]. 岩石力学与工程学报, 2018, 37(5): 1281 − 1289. doi: 10.13722/j.cnki.jrme.2017.1576 WEI Xinjiang, HONG Wenqiang, WEI Gang, et al. Rotation and shearing dislocation deformation of subway tunnels due to adjacent ground stack load [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(5): 1281 − 1289. (in Chinese) doi: 10.13722/j.cnki.jrme.2017.1576
[13] 魏纲, 洪文强, 魏新江, 等. 基坑开挖引起邻近盾构隧道转动与错台变形计算[J]. 岩土工程学报, 2019, 41(7): 1251 − 1259. WEI Gang, HONG Wenqiang, WEI Xinjiang, et al. Calculation of rigid body rotation and shearing dislocation deformation of adjacent shield tunnels due to excavation of foundation pits [J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1251 − 1259. (in Chinese)
[14] LIANG R Z. Simplified analytical method for evaluating the effects of overcrossing tunnelling on existing shield tunnels using the nonlinear pasternak foundation model [J]. Soils and Foundations, 2019, 59(6): 1711 − 1727. doi: 10.1016/j.sandf.2019.07.009
[15] MINDLIN R D. Force at a point in the interior of a semi‐infinite solid [J]. Journal of Applied Physics, 1936, 7(5): 195 − 202.
[16] TADASHI H, JUNICHI N, TAKAHIRO K. Prediction of ground deformation due to shield excavation in clayey soils [J]. Soils and Foundations, 1999, 39(3): 53 − 61. doi: 10.3208/sandf.39.3_53
[17] 徐凌. 软土盾构隧道纵向沉降研究[D]. 上海: 同济大学, 2005. XU Ling. Study on the longitudinal settlement of shield tunnel in soft soil [D]. Shanghai: Tongji University, 2005. (in Chinese)
[18] 志波由纪夫, 川島一彦, 大日方尚己, 等. シールドトンネルの耐 震解析に用いる長手方向覆工剛性の評価法[C]. 东京: 土木学会, 1988: 319 − 327. SHIBA Y, KAWASHIMA K, OBINATA N, et al. An evaluation method of longitudinal stiffness of shield tunnel linings for application to seismic response analyses [C]. Tokyo: Japan Society of Civil Engineers, 1988: 319 − 327. (in Japanese)
[19] 魏纲. 基坑开挖对下方既有盾构隧道影响的实测与分析[J]. 岩土力学, 2013, 34(5): 1421 − 1428. doi: 10.16285/j.rsm.2013.05.031 WEI Gang. Measurement and analysis of impact of foundation pit excavation on below existed shield tunnels [J]. Rock and Soil Mechanics, 2013, 34(5): 1421 − 1428. (in Chinese) doi: 10.16285/j.rsm.2013.05.031
[20] 孙廉威, 秦建设, 洪义, 等. 地面堆载下盾构隧道管片与环缝接头的性状分析[J]. 浙江大学学报(工学版), 2017, 51(8): 1509 − 1518. doi: 10.3785/j.issn.1008-973X.2017.08.005 SUN Lianwei, QIN Jianshe, HONG Yi, et al. Shield tunnel segment and circumferential joint performance under surface surcharge [J]. Journal of Zhejiang University (Engineering Science), 2017, 51(8): 1509 − 1518. (in Chinese) doi: 10.3785/j.issn.1008-973X.2017.08.005
[21] 沈林冲. 杭州地铁一号线穿越钱塘江工程理论与实践[M]. 北京: 人民交通出版社, 2012. SHEN Lingchong. Theory and practice of hangzhou metro line 1 crossing qiantang river [M]. Beijing: People's Communications Press, 2012. (in Chinese)
[22] 孙廉威. 外界荷载作用下已建盾构隧道结构性状[D]. 杭州: 浙江大学, 2016. SUN Lianwei. Shield tunnel structure behavior under external load [D]. Hangzhou: Zhejiang University, 2016. (in Chinese)
[23] 魏纲, 胡凌威, 朱佳定. 基坑开挖对下方既有盾构隧道影响的数值分析[J]. 三峡大学学报(自然科学版), 2014, 36(4): 46 − 49, 56. doi: 10.13393/j.cnki.issn.1672-948X.2014.04.011 WEI Gang, HU Lingwei, ZHU Jiading. Numerical analysis of effect of foundation pit excavation on underneath existed shield tunnel [J]. Journal of China Three Gorges University (Natural Sciences), 2014, 36(4): 46 − 49, 56. (in Chinese) doi: 10.13393/j.cnki.issn.1672-948X.2014.04.011
[24] 魏纲, 张鑫海. 基坑开挖引起下卧盾构隧道转动与错台变形计算[J]. 中南大学学报: 自然科学版, 2019, 50(9): 2273 − 2284. WEI Gang, ZHANG Xinhai. Calculation of rotation and shearing dislocation deformation of underlying shield tunnels due to foundation pit excavation [J]. Journal of Central South University:Science and Technology, 2019, 50(9): 2273 − 2284. (in Chinese)
[25] 王卫东, 沈健, 翁其平, 等. 基坑工程对邻近地铁隧道影响的分析与对策[J]. 岩土工程学报, 2006, 28(增刊): 1340 − 1345. WANG Weidong, SHEN Jian, WENG Qiping, et al. Analysis and countermeasures of influence of excavation on adjacent tunnels [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(Suppl): 1340 − 1345. (in Chinese)
[26] 陈郁. 基坑开挖引起下卧隧道隆起的研究分析[D]. 上海: 同济大学, 2005. CHEN Yu. Research on the heave displacement of tunnel induced by foundation pit [D]. Shanghai: Tongji University, 2005. (in Chinese)
-
期刊类型引用(6)
1. 张聪哲. 灰岩地层中地铁盾构区间隧道上浮整治措施研究. 现代城市轨道交通. 2024(08): 107-110 . 百度学术
2. 王文辉. 地铁穿越五六十年代老铁路隧道方案研究. 铁道建筑技术. 2024(08): 45-49 . 百度学术
3. 冯国辉,徐长节,郑茗旺,吴琼,黄展军,程康. 新建隧道下穿既有隧道引起的隧-土相互作用研究. 工程力学. 2023(05): 59-68 . 本站查看
4. 梁荣柱,王理想,李忠超,康成,高坤,柯宅邦. 地表堆载对既有盾构隧道纵向变形影响. 建筑科学与工程学报. 2023(03): 130-141 . 百度学术
5. 侯海锟,张国君,胡相磊,焦雪阳,王朝元. 天津滨海软土层盾构施工地表变形规律研究. 建筑安全. 2023(12): 55-58 . 百度学术
6. 陈福斌,祁恒远,张称呈. 长距离共线基坑下卧隧道上浮控制措施及效果研究. 都市快轨交通. 2023(06): 69-74 . 百度学术
其他类型引用(10)