基坑上跨开挖诱发既有盾构隧道隆起变形研究

王理想, 梁荣柱, 李忠超, 康成, 肖铭钊, 吴文兵, 高坤, 郭杨

王理想, 梁荣柱, 李忠超, 康成, 肖铭钊, 吴文兵, 高坤, 郭杨. 基坑上跨开挖诱发既有盾构隧道隆起变形研究[J]. 工程力学, 2022, 39(12): 130-140. DOI: 10.6052/j.issn.1000-4750.2021.07.0547
引用本文: 王理想, 梁荣柱, 李忠超, 康成, 肖铭钊, 吴文兵, 高坤, 郭杨. 基坑上跨开挖诱发既有盾构隧道隆起变形研究[J]. 工程力学, 2022, 39(12): 130-140. DOI: 10.6052/j.issn.1000-4750.2021.07.0547
WANG Li-xiang, LIANG Rong-zhu, LI Zhong-chao, KANG Cheng, XIAO Ming-zhao, WU Wen-bing, GAO Kun, GUO Yang. HEAVE DEFORMATION OF EXISTING SHIELD TUNNEL INDUCED BY OVER-CROSSING EXCAVATION[J]. Engineering Mechanics, 2022, 39(12): 130-140. DOI: 10.6052/j.issn.1000-4750.2021.07.0547
Citation: WANG Li-xiang, LIANG Rong-zhu, LI Zhong-chao, KANG Cheng, XIAO Ming-zhao, WU Wen-bing, GAO Kun, GUO Yang. HEAVE DEFORMATION OF EXISTING SHIELD TUNNEL INDUCED BY OVER-CROSSING EXCAVATION[J]. Engineering Mechanics, 2022, 39(12): 130-140. DOI: 10.6052/j.issn.1000-4750.2021.07.0547

基坑上跨开挖诱发既有盾构隧道隆起变形研究

基金项目: 国家自然科学基金项目(41807262);中国博士后基金面上项目(2019M653308);安徽建工集团2021年度科研立项项目(2021-52ZC);武汉市政集团科研项目(wszky202013);安徽省住房城乡建设科技计划项目(2020-YF44)
详细信息
    作者简介:

    王理想(1998−),男,安徽宿州人,硕士生,主要从事盾构隧道施工及保护研究(E-mail: wlx_st@163.com)

    李忠超(1987−),男,湖北荆州人,高工,博士,主要从事盾构隧道工程对周围环境影响的研究(E-mail: 10912014@zju.edu.cn)

    康 成(1994−),男,河北石家庄人,博士生,主要从事盾构隧道施工及保护研究(E-mail: kangcheng@cug.edu.cn)

    肖铭钊(1970−),男,湖北武汉人,教授级高工,学士,主要从事市政与隧道工程方面的研究(E-mail: wss.jz805@163.com)

    吴文兵(1988−),男,江西上饶人,教授,博士,主要从事桩基动力学与桩基沉降计算理论的研究(E-mail: zjuwwb1126@163.com)

    高 坤(1979−),男,安徽宿州人,高工,硕士,主要从事工程检测相关研究(E-mail: 727992377@qq.com)

    郭 杨(1970−),男,安徽合肥人,教授级高工,学士,主要从事地下工程方面的研究(E-mail: ahjkdj@126.com)

    通讯作者:

    梁荣柱(1988−),男,广东阳江人,副研究员,工学博士,从事邻近施工对既有隧道影响分析方面的研究(E-mail: liangcug@163.com)

  • 中图分类号: U231+.3

HEAVE DEFORMATION OF EXISTING SHIELD TUNNEL INDUCED BY OVER-CROSSING EXCAVATION

  • 摘要: 基坑上跨开挖将会引起既有盾构隧道隆起变形,危及既有盾构隧道的服役性能。目前基坑开挖引起的盾构隧道隆起变形的解析方法,通常将盾构隧道简化为埋置于弹性地基上的连续长梁,忽略了环间接头影响。针对前人研究的不足,提出带环间接头的盾构隧道计算模型,通过非线性Pasternak地基模型来考虑地基土变形的非线性特征,通过两阶段分析法,推导得到基坑上跨开挖作用下盾构隧道隆起位移和张开量简化解答。通过MINDLIN解计算基坑开挖引起的作用于盾构隧道上的附加荷载;建立基坑卸载下盾构隧道的隆起变形微分方程。利用有限差分法求解出基坑开挖引起的邻近盾构隧道隆起变形和内力分布。收集了三个工程实测数据,并将所提方法和实测数据、既有理论方法进行对比,验证所提方法的适用性。
    Abstract: Over-crossing excavation will cause the heave deformation of existing shield tunnels and endanger the service performance of existing shield tunnels. The current analytical methods for predicting the heave deformation of a shield tunnel due to excavation always consider the shield tunnel as an elastic continuous beam resting on an elastic foundation model, which overlook the effect of the joint between adjacent rings. Thusly, a shield tunnel model with adjacent joints is proposed. The nonlinear characteristics of soil deformation are considered by nonlinear Pasternak foundation model. Through the two-stage analysis method, the simplified solutions of heave displacement and opening of shield tunnel under the action of upper span excavation of foundation pit are derived. The additional unloading pressure on shield tunnel due to excavation is calculated using MINDLIN’s elastic solution. The differential equation of heave deformation of the shield tunnel due to exerted unloading pressure is established. The heave deformation and internal force distribution of the adjacent shield tunnel caused by excavation are obtained by using the finite difference method. The measured results from three well-documented published cases are collected, and then the prediction from proposed method is compared with the measured results and the prediction from existing methods to verify the applicability of the proposed method.
  • 图  1   上跨基坑开挖对既有盾构隧道影响示意图

    Figure  1.   Impacts of over-crossing excavation on existing shield tunnel

    图  2   基坑上跨施工下基坑-盾构隧道相互作用计算模型

    Figure  2.   Excavation-shield tunnel interaction calculation model due to over-crossing excavation

    图  3   基坑与既有隧道相对位置平面示意图

    Figure  3.   Plane diagram of relative position between excavation and existing tunnel

    图  4   带环间接头盾构隧道简化示意图

    Figure  4.   Schematic diagram of calculation model of joint discontinuous shield tunnel

    图  5   盾构隧道有限差分离散示意图

    Figure  5.   Discretization of shield tunnel for finite difference

    图  6   隧道环间接头增设虚拟节点示意图

    Figure  6.   Schematic diagram of adding virtual node in tunnel ring joint

    图  7   张开量计算示意图

    Figure  7.   Schematic diagram of opening calculation

    图  8   杭州地铁一号线计算结果与实测数据对比

    Figure  8.   Comparison of calculation results and measured data of Hangzhou Metro Line 1

    图  9   杭州地铁一号线弯矩值

    Figure  9.   Bending moment value of Hangzhou Metro Line 1

    图  10   杭州地铁一号线环间接头张开量计算值

    Figure  10.   Calculation value of joint opening between rings of Hangzhou Metro Line 1

    图  11   上海地铁1号线隆起值计算结果与实测数据对比

    Figure  11.   Comparison between calculated and measured uplift values of Shanghai Metro Line 1

    图  12   上海地铁1号线弯矩值

    Figure  12.   Bending moment value of Shanghai Metro Line 1

    图  13   上海地铁1号线环间接头张开量计算值

    Figure  13.   Calculation value of joint opening between rings of Shanghai Metro Line 1

    图  14   上海地铁2号线计算结果与实测数据对比

    Figure  14.   Comparison of calculation results and measured data of Shanghai Metro Line 2

    图  15   上海地铁2号线环间接头张开量计算值

    Figure  15.   Calculation value of joint opening between rings of Shanghai Metro Line 2

  • [1]

    LIANG R Z, WU J, SUN L W, et al. Performances of a djacent metro structures due to zoned excavation of a large-scale basement in soft ground [J]. Tunnelling and Underground Space Technology, 2021, 117(11): 104123.

    [2] 张治国, 张孟喜, 王卫东. 基坑开挖对临近地铁隧道影响的两阶段分析方法[J]. 岩土力学, 2011, 30(7): 2085 − 2092. doi: 10.3969/j.issn.1000-7598.2011.07.028

    ZHANG Zhiguo, ZHANG Mengxi, WANG Weidong. Two-stage method for analyzing effects on adjacent metro tunnels due to foundation pit excavation [J]. Rock and Soil Mechanics, 2011, 30(7): 2085 − 2092. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.07.028

    [3] 黄栩, 黄宏伟, 张冬梅. 开挖卸荷引起下卧已建盾构隧道的纵向变形研究[J]. 岩土工程学报, 2012, 34(7): 1241 − 1249.

    HUANG Xu, HUANG Hongwei, ZHANG Dongmei. Longitudinal deflection of existing shield tunnels due to deep excavation [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 34(7): 1241 − 1249. (in Chinese)

    [4]

    LIANG R Z, WU W B, YU F, et al. Simplified method for evaluating shield tunnel deformation due to adjacent excavation [J]. Tunnelling and Underground Space Technology, 2018, 71(1): 94 − 105.

    [5] 梁荣柱, 林存刚, 夏唐代, 等. 考虑隧道剪切效应的基坑开挖对邻近隧道纵向变形分析[J]. 岩石力学与工程学报, 2017, 36(1): 223 − 233.

    LIANG Rongzhu, LIN Cungang, XIA Tangdai, et al. Analysis on the longitudinal deformation of tunnels due to pit excavation considering the tunnel shearing effect [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(1): 223 − 233. (in Chinese)

    [6]

    LIANG R Z, XIA T D, HUANG M S, et al. Simplified analytical method for evaluating the effects of adjacent excavation on shield tunnel considering the shearing effect [J]. Computers and Geotechnics, 2017, 81(1): 167 − 187.

    [7]

    LIU J W, SHI C H, LEI M F, et al. Improved analytical method for evaluating the responses of a shield tunnel to adjacent excavations and its application [J]. Tunnelling and Underground Space Technology, 2020, 98: 103339.1 − 103339.12.

    [8] 张景, 何川, 耿萍, 等. 盾构隧道环间接头弯曲状态非线性研究[J]. 工程力学, 2018, 35(11): 35 − 44. doi: 10.6052/j.issn.1000-4750.2017.08.0624

    ZHANG Jing, HE Chuan, GENG Ping, et al. Study on bending state nonlinearity of shield-tunnel ring joints [J]. Engineering Mechanics, 2018, 35(11): 35 − 44. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.08.0624

    [9] 刘迅, 封坤, 肖明清, 等. 盾构隧道新型分布榫式管片结构的局部原型试验研究[J]. 工程力学, 2022, 39(1): 197 − 208. doi: 10.6052/j.issn.1000-4750.2020.12.0913

    LIU Xun, FENG Kun, XIAO Mingqing, et al. Prototype test of a new type segment structure with distributed mortises and tenons for shield tunnel [J]. Engineering Mechanics, 2022, 39(1): 197 − 208. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.12.0913

    [10] 耿萍, 唐睿, 陈枰良, 等. 考虑剪切作用的盾构隧道管片接头力学模型研究[J]. 工程力学, 2020, 37(3): 157 − 166. doi: 10.6052/j.issn.1000-4750.2019.04.0213

    GENG Ping, TANG Rui, CHEN Pingliang, et al. Research of mechanical model of shield tunnel’s segment joint under the shearing effect [J]. Engineering Mechanics, 2020, 37(3): 157 − 166. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.0213

    [11] 周顺华, 何超, 肖军华. 环间错台效应下基坑开挖引起临近地铁盾构隧道变形的能量计算法[J]. 中国铁道科学, 2016, 37(3): 53 − 60. doi: 10.3969/j.issn.1001-4632.2016.03.008

    ZHOU Shunhua, HE Chao, XIAO Junhua. Energy calculation method for deformation of shield tunnels near metro due to foundation pit excavation under staggered platform effect [J]. China Railway Science, 2016, 37(3): 53 − 60. (in Chinese) doi: 10.3969/j.issn.1001-4632.2016.03.008

    [12] 魏新江, 洪文强, 魏纲, 等. 堆载引起临近地铁隧道的转动与错台变形计算[J]. 岩石力学与工程学报, 2018, 37(5): 1281 − 1289. doi: 10.13722/j.cnki.jrme.2017.1576

    WEI Xinjiang, HONG Wenqiang, WEI Gang, et al. Rotation and shearing dislocation deformation of subway tunnels due to adjacent ground stack load [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(5): 1281 − 1289. (in Chinese) doi: 10.13722/j.cnki.jrme.2017.1576

    [13] 魏纲, 洪文强, 魏新江, 等. 基坑开挖引起邻近盾构隧道转动与错台变形计算[J]. 岩土工程学报, 2019, 41(7): 1251 − 1259.

    WEI Gang, HONG Wenqiang, WEI Xinjiang, et al. Calculation of rigid body rotation and shearing dislocation deformation of adjacent shield tunnels due to excavation of foundation pits [J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1251 − 1259. (in Chinese)

    [14]

    LIANG R Z. Simplified analytical method for evaluating the effects of overcrossing tunnelling on existing shield tunnels using the nonlinear pasternak foundation model [J]. Soils and Foundations, 2019, 59(6): 1711 − 1727. doi: 10.1016/j.sandf.2019.07.009

    [15]

    MINDLIN R D. Force at a point in the interior of a semi‐infinite solid [J]. Journal of Applied Physics, 1936, 7(5): 195 − 202.

    [16]

    TADASHI H, JUNICHI N, TAKAHIRO K. Prediction of ground deformation due to shield excavation in clayey soils [J]. Soils and Foundations, 1999, 39(3): 53 − 61. doi: 10.3208/sandf.39.3_53

    [17] 徐凌. 软土盾构隧道纵向沉降研究[D]. 上海: 同济大学, 2005.

    XU Ling. Study on the longitudinal settlement of shield tunnel in soft soil [D]. Shanghai: Tongji University, 2005. (in Chinese)

    [18] 志波由纪夫, 川島一彦, 大日方尚己, 等. シールドトンネルの耐 震解析に用いる長手方向覆工剛性の評価法[C]. 东京: 土木学会, 1988: 319 − 327.

    SHIBA Y, KAWASHIMA K, OBINATA N, et al. An evaluation method of longitudinal stiffness of shield tunnel linings for application to seismic response analyses [C]. Tokyo: Japan Society of Civil Engineers, 1988: 319 − 327. (in Japanese)

    [19] 魏纲. 基坑开挖对下方既有盾构隧道影响的实测与分析[J]. 岩土力学, 2013, 34(5): 1421 − 1428. doi: 10.16285/j.rsm.2013.05.031

    WEI Gang. Measurement and analysis of impact of foundation pit excavation on below existed shield tunnels [J]. Rock and Soil Mechanics, 2013, 34(5): 1421 − 1428. (in Chinese) doi: 10.16285/j.rsm.2013.05.031

    [20] 孙廉威, 秦建设, 洪义, 等. 地面堆载下盾构隧道管片与环缝接头的性状分析[J]. 浙江大学学报(工学版), 2017, 51(8): 1509 − 1518. doi: 10.3785/j.issn.1008-973X.2017.08.005

    SUN Lianwei, QIN Jianshe, HONG Yi, et al. Shield tunnel segment and circumferential joint performance under surface surcharge [J]. Journal of Zhejiang University (Engineering Science), 2017, 51(8): 1509 − 1518. (in Chinese) doi: 10.3785/j.issn.1008-973X.2017.08.005

    [21] 沈林冲. 杭州地铁一号线穿越钱塘江工程理论与实践[M]. 北京: 人民交通出版社, 2012.

    SHEN Lingchong. Theory and practice of hangzhou metro line 1 crossing qiantang river [M]. Beijing: People's Communications Press, 2012. (in Chinese)

    [22] 孙廉威. 外界荷载作用下已建盾构隧道结构性状[D]. 杭州: 浙江大学, 2016.

    SUN Lianwei. Shield tunnel structure behavior under external load [D]. Hangzhou: Zhejiang University, 2016. (in Chinese)

    [23] 魏纲, 胡凌威, 朱佳定. 基坑开挖对下方既有盾构隧道影响的数值分析[J]. 三峡大学学报(自然科学版), 2014, 36(4): 46 − 49, 56. doi: 10.13393/j.cnki.issn.1672-948X.2014.04.011

    WEI Gang, HU Lingwei, ZHU Jiading. Numerical analysis of effect of foundation pit excavation on underneath existed shield tunnel [J]. Journal of China Three Gorges University (Natural Sciences), 2014, 36(4): 46 − 49, 56. (in Chinese) doi: 10.13393/j.cnki.issn.1672-948X.2014.04.011

    [24] 魏纲, 张鑫海. 基坑开挖引起下卧盾构隧道转动与错台变形计算[J]. 中南大学学报: 自然科学版, 2019, 50(9): 2273 − 2284.

    WEI Gang, ZHANG Xinhai. Calculation of rotation and shearing dislocation deformation of underlying shield tunnels due to foundation pit excavation [J]. Journal of Central South University:Science and Technology, 2019, 50(9): 2273 − 2284. (in Chinese)

    [25] 王卫东, 沈健, 翁其平, 等. 基坑工程对邻近地铁隧道影响的分析与对策[J]. 岩土工程学报, 2006, 28(增刊): 1340 − 1345.

    WANG Weidong, SHEN Jian, WENG Qiping, et al. Analysis and countermeasures of influence of excavation on adjacent tunnels [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(Suppl): 1340 − 1345. (in Chinese)

    [26] 陈郁. 基坑开挖引起下卧隧道隆起的研究分析[D]. 上海: 同济大学, 2005.

    CHEN Yu. Research on the heave displacement of tunnel induced by foundation pit [D]. Shanghai: Tongji University, 2005. (in Chinese)

  • 期刊类型引用(6)

    1. 张聪哲. 灰岩地层中地铁盾构区间隧道上浮整治措施研究. 现代城市轨道交通. 2024(08): 107-110 . 百度学术
    2. 王文辉. 地铁穿越五六十年代老铁路隧道方案研究. 铁道建筑技术. 2024(08): 45-49 . 百度学术
    3. 冯国辉,徐长节,郑茗旺,吴琼,黄展军,程康. 新建隧道下穿既有隧道引起的隧-土相互作用研究. 工程力学. 2023(05): 59-68 . 本站查看
    4. 梁荣柱,王理想,李忠超,康成,高坤,柯宅邦. 地表堆载对既有盾构隧道纵向变形影响. 建筑科学与工程学报. 2023(03): 130-141 . 百度学术
    5. 侯海锟,张国君,胡相磊,焦雪阳,王朝元. 天津滨海软土层盾构施工地表变形规律研究. 建筑安全. 2023(12): 55-58 . 百度学术
    6. 陈福斌,祁恒远,张称呈. 长距离共线基坑下卧隧道上浮控制措施及效果研究. 都市快轨交通. 2023(06): 69-74 . 百度学术

    其他类型引用(10)

图(15)
计量
  • 文章访问数:  469
  • HTML全文浏览量:  102
  • PDF下载量:  111
  • 被引次数: 16
出版历程
  • 收稿日期:  2021-07-16
  • 修回日期:  2021-10-19
  • 录用日期:  2021-11-01
  • 网络出版日期:  2021-11-01
  • 刊出日期:  2022-12-24

目录

    /

    返回文章
    返回