留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ECC单轴受拉损伤本构模型研究

李可 赵大鹏 刘伟康 范家俊

李可, 赵大鹏, 刘伟康, 范家俊. ECC单轴受拉损伤本构模型研究[J]. 工程力学, 2022, 39(12): 120-129. doi: 10.6052/j.issn.1000-4750.2021.07.0542
引用本文: 李可, 赵大鹏, 刘伟康, 范家俊. ECC单轴受拉损伤本构模型研究[J]. 工程力学, 2022, 39(12): 120-129. doi: 10.6052/j.issn.1000-4750.2021.07.0542
LI Ke, ZHAO Da-peng, LIU Wei-kang, FAN Jia-jun. RESEARCH ON DAMAGE CONSTITUTIVE MODEL OF ENGINEERED CEMENTITIOUS COMPOSITES UNDER UNIAXIAL TENSION[J]. Engineering Mechanics, 2022, 39(12): 120-129. doi: 10.6052/j.issn.1000-4750.2021.07.0542
Citation: LI Ke, ZHAO Da-peng, LIU Wei-kang, FAN Jia-jun. RESEARCH ON DAMAGE CONSTITUTIVE MODEL OF ENGINEERED CEMENTITIOUS COMPOSITES UNDER UNIAXIAL TENSION[J]. Engineering Mechanics, 2022, 39(12): 120-129. doi: 10.6052/j.issn.1000-4750.2021.07.0542

ECC单轴受拉损伤本构模型研究

doi: 10.6052/j.issn.1000-4750.2021.07.0542
基金项目: 国家自然科学基金青年项目(51708511,51608489);国家自然科学基金面上项目(51879243);国家自然科学基金委河南联合基金项目(U1804137);中国博士后科学基金项目(2021TQ0302)
详细信息
    作者简介:

    李 可(1985−),女,河南商丘人,副教授,博士,主要从事结构工程研究(E-mail: irwinlike@163.com)

    赵大鹏(1995−),男,河南驻马店人,博士生,主要从事结构工程研究(E-mail: 1410562524@qq.com)

    刘伟康(1992−),男,黑龙江大庆人,博士生,主要从事结构工程研究(E-mail: hitlek@163.com)

    通讯作者:

    范家俊(1990−),男,河南开封人,讲师,博士,主要从事结构工程研究(E-mail: jiajun.fan@zzu.edu.cn)

  • 中图分类号: TU528.58

RESEARCH ON DAMAGE CONSTITUTIVE MODEL OF ENGINEERED CEMENTITIOUS COMPOSITES UNDER UNIAXIAL TENSION

  • 摘要: 通过单轴拉伸试验,讨论了PVA纤维体积掺入量和水胶比对工程用水泥基复合材料(ECC)受拉力学性能参数(开裂应变、开裂应力、峰值应变、峰值应力、极限应变以及应力-应变关系曲线)的影响规律。基于此,从损伤力学的角度讨论了ECC在单轴受拉过程的开裂前阶段、应变硬化阶段以及应变软化阶段的损伤演化机制。进而,基于ECC受拉损伤演化机制提出ECC受拉损伤本构模型,并给出模型相关参数的计算方法,分析表明:该文提出损伤模型得到的ECC受拉损伤演化曲线能更为合理的描述ECC的损伤演化全过程。最后,该文损伤模型计算的ECC受拉应力-应变关系曲线和试验曲线对比结果表明,所提出的模型能够合理的描述ECC受拉非线性应力-应变关系特征,且具有良好的精度。
  • 图  1  加载装置与试件尺寸 /mm

    Figure  1.  Test setup and specimen size

    图  2  典型拉伸应力-应变曲线

    Figure  2.  Typical tensile stress-strain curve

    图  3  应力-应变曲线特征与损伤演化机制

    Figure  3.  Stress-strain characteristics and damage evolution mechanism

    图  4  本文损伤因子与损伤演化曲线的定义

    Figure  4.  Definition of damage variable and damage evolution curve in this paper

    图  5  损伤模型系数bA与PVA纤维体积掺入量v和水胶比r的关系

    Figure  5.  The relationship between damage parameters (b and A) and PVA fiber volume v and water-binder ratior

    图  6  ECC受拉损伤演化曲线的验证

    Figure  6.  Verification of ECC tensile damage evolution curve

    图  7  ECC受拉应力-应变关系验证

    Figure  7.  Verification of ECC tensile stress-strain curve

    表  1  ECC配合比

    Table  1.   ECC mix proportion /kg

    组号 水泥 粉煤灰 微硅粉 PVA纤维 减水剂
    A 1.000 0.500 2.000 0.073 0.860 0.029 0.041
    B 1.000 0.500 2.000 0.073 0.860 0.044 0.041
    C 1.000 0.500 2.000 0.073 0.738 0.057 0.041
    D 1.000 0.500 2.000 0.073 0.768 0.057 0.041
    E 1.000 0.500 2.000 0.073 0.860 0.057 0.041
    注:PVA纤维密度为1300 kg/m3;ECC密度取2000 kg/m3
    下载: 导出CSV

    表  2  试验结果

    Table  2.   Test results

    组号 PVA纤维体
    积掺量v
    水胶
    r
    开裂应
    εk/(%)
    开裂应力
    σk/MPa
    峰值应
    εp/(%)
    峰值应力
    σp/MPa
    极限应
    εu/(%)
    A 0.01 0.28 0.04 1.89 0.55 2.48 1.98
    B 0.015 0.28 0.05 1.93 0.69 2.96 2.51
    C 0.02 0.24 0.04 3.44 0.50 4.57 2.23
    D 0.02 0.25 0.07 2.90 0.82 3.95 2.79
    E 0.02 0.28 0.09 2.01 2.20 2.97 3.95
    下载: 导出CSV

    表  3  损伤模型系数

    Table  3.   damage model coefficients

    组号 b A k B C
    A 0.941 0.199 0.195 0.123 −0.024
    B 0.879 0.113 0.195 0.115 −0.002
    C 0.915 0.197 0.127 0.005 0.010
    D 0.863 0.107 0.150 0.063 −0.007
    E 0.775 0.066 0.218 −0.709 0.982
    下载: 导出CSV

    表  4  验证组试验结果与损伤模型系数

    Table  4.   Test results and damage model coefficients of the verification groups

    组号 PVA纤维
    体积掺量v
    水胶
    r
    开裂应
    εk/(%)
    开裂应力
    σk/MPa
    峰值应
    εp/(%)
    峰值应力
    σp/MPa
    极限应
    εu/(%)
    VA 0.01 0.28 0.02 2.17 0.47 2.76 1.89
    VB 0.015 0.28 0.03 2.48 0.86 3.06 2.53
    VD 0.02 0.25 0.05 2.52 1.37 3.71 3.15
    VE 0.02 0.28 0.07 2.54 2.01 3.35 4.02
    下载: 导出CSV

    表  5  验证组损伤模型系数bA与计算值

    Table  5.   Comparison of b and A of the verification group with the calculated values

    组号 损伤模型
    系数b0
    测值
    损伤模型
    系数b
    算值
    b0/b 损伤模型
    系数A0
    测值
    损伤模型
    系数A
    算值
    A0/A
    VA 0.993 0.949 1.046 0.216 0.194 1.113
    VB 0.915 0.864 1.059 0.141 0.123 1.148
    VD 0.880 0.872 1.009 0.122 0.115 1.057
    VE 0.816 0.779 1.047 0.046 0.052 0.876
    平均值 1.04 1.05
    变异系数 0.02 0.12
    下载: 导出CSV
  • [1] LI V C, WU C, WANG S X, et al. Interface tailoring for strain-hardening polyvinyl alcohol-engineered cementitious composite (PVA-ECC) [J]. ACI Materials Journal, 2002, 99(5): 463 − 472.
    [2] LI L, CAI Z, YU K, et al. Performance-based design of all-grade strain hardening cementitious composites with compressive strengths from 40 MPa to 120 MPa [J]. Cement and Concrete Composites, 2019, 97: 202 − 217. doi: 10.1016/j.cemconcomp.2019.01.001
    [3] YU K Q, DING Y, LIU J P, et al. Energy dissipation characteristics of all-grade polyethylene fiber-reinforced engineered cementitious composites (PE-ECC) [J]. Cement and Concrete Composites, 2020, 106: 1 − 11. doi: 10.1016/j.cemconcomp.2019.103459
    [4] 李庆华, 徐世烺. 超高韧性水泥基复合材料基本性能和结构应用研究进展[J]. 工程力学, 2009, 26(增刊 2): 23 − 67.

    LI Qinghua, XU Shilang. Performance and application of ultra high toughness cementitious composite: a review [J]. Engineering Mechanics, 2009, 26(Suppl 2): 23 − 67. (in Chinese)
    [5] MAALEJ M, QUEK S T, AHMED S, et al. Review of potential structural applications of hybrid fiber Engineered Cementitious Composites [J]. Construction and Building Materials, 2012, 36: 216 − 227. doi: 10.1016/j.conbuildmat.2012.04.010
    [6] 张远淼, 余江滔, 陆洲导, 等. ECC修复震损剪力墙抗震性能试验研究[J]. 工程力学, 2015, 32(1): 72 − 80. doi: 10.6052/j.issn.1000-4750.2013.07.0642

    ZHANG Yuanmiao, YU Jiangtao, LU Zhoudao, et al. Experimental test on aseismic behavior of damaged reinforced concrete shear wall repaired with ECC [J]. Engineering Mechanics, 2015, 32(1): 72 − 80. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.07.0642
    [7] 邓明科, 樊鑫淼, 高晓军, 等. ECC面层加固受损砖砌体墙抗震性能试验研究[J]. 工程力学, 2015, 32(4): 120 − 129. doi: 10.6052/j.issn.1000-4750.2013.10.0938

    DENG Mingke, FAN Xingmiao, GAO Xiaojun, et al. Experimental investigation on seismic behavior of damaged brick masonry wall strengthened with ECC splint. [J]. Engineering Mechanics, 2015, 32(4): 120 − 129. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.10.0938
    [8] 邓明科, 宋诗飞, 张敏, 等. 高延性混凝土加固钢筋混凝土梁受剪性能试验研究及承载力计算[J]. 工程力学, 2021, 38(9): 36 − 44, 63. doi: 10.6052/j.issn.1000-4750.2020.06.0381

    DENG Mingke, SONG Shifei, ZHANG Min, et al. Experimental study on shear behavior and capacity prediction of RC beams strengthened with high ductile concrete [J]. Engineering Mechanics, 2021, 38(9): 36 − 44, 63. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0381
    [9] 袁方, 赵修远. FRP筋-钢筋增强ECC-混凝土组合柱抗震性能研究[J]. 工程力学, 2021, 38(8): 55 − 65, 144. doi: 10.6052/j.issn.1000-4750.2020.08.0532

    YUAN Fang, ZHAO Xiuyuan. Seismic behaviors of hybrid FRP-Steel reinforced ECC-Concrete composite columns [J]. Engineering Mechanics, 2021, 38(8): 55 − 65, 144. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0532
    [10] LI V C. Performance driven design of fiber reinforced cementitious composites [C]. Swamy R N. Proceedings of 4th RILEM International Symposium on Fiber, Chapman, and Hall, 1992: 12 − 30.
    [11] KANDA T, LIN Z, LI V C. Tensile Stress-Strain Modeling of Pseudo strain Hardening Cementitious Composites [J]. Journal of Materials in Civil Engineering, 2000, 12(2): 147 − 156. doi: 10.1061/(ASCE)0899-1561(2000)12:2(147)
    [12] DENG M, YANG S. Experimental and numerical evaluation of confined masonry walls retrofitted with engineered cementitious composites [J]. Engineering Structures, 2020, 207: 1 − 23. doi: 10.1016/j.engstruct.2020.110249
    [13] KABIR M I, LEE C K, RANA M M, et al. Flexural and bond-slip behaviors of engineered cementitious composites (ECC) encased steel composite beam [J]. Journal of Constructional Steel Research, 2019, 157(6): 229 − 244.
    [14] DAN M, HUANG T, ZHANG Y X, et al. Mechanical behavior of a polyvinyl alcohol fiber reinforced engineered cementitious composite (PVA-ECC) using local ingredients [J]. Construction and Building Materials, 2017, 141(15): 259 − 270. doi: 10.1016/j.conbuildmat.2017.02.158
    [15] 池寅, 黄乐, 余敏. 基于ABAQUS的钢-聚丙烯混杂纤维混凝土损伤塑性本构模型取值方法研究[J]. 工程力学, 2017, 34(12): 131 − 142. doi: 10.6052/j.issn.1000-4750.2016.08.0630

    CHI Yin, HUANG Le, YU Min. Calibration method of damage plasticity model for steel-polypropylene hybrid fiber reinforced concrete based on ABAQUS [J]. Engineering Mechanics, 2017, 34(12): 131 − 142. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.08.0630
    [16] RAZA A, KHAN Q, AHMAD A. Numerical Investigation of Load-Carrying Capacity of GFRP-Reinforced Rectangular Concrete Members Using CDP Model in ABAQUS [J]. Advances in Civil Engineering, 2019: 1 − 21. doi: 10.1155/2019/1745341
    [17] ZHUANG H, WANG R, SHI P, et al. Seismic response and damage analysis of underground structures considering the effect of concrete diaphragm wall [J]. Soil Dynamics and Earthquake Engineering, 2019, 116(1): 278 − 288.
    [18] KRAHL P A, CARRAZEDO R, DEBS M E. Mechanical damage evolution in UHPFRC: Experimental and numerical investigation [J]. Engineering Structures, 2018, 170(1): 63 − 77.
    [19] HE R, CHEN S F, CONG P L, et al. Damage evolution model of strain hardening cementitious composites under the uniaxial stress state [J]. International Journal of Minerals Metallurgy and Materials, 2013, 20(2): 196 − 204. doi: 10.1007/s12613-013-0713-8
    [20] CAI J, PAN J, TAN J, et al. Nonlinear finite-element analysis for hysteretic behavior of ECC-encased CFST columns [J]. Structures, 2020, 25: 670 − 682. doi: 10.1016/j.istruc.2020.03.036
    [21] CHEN X M, DUAN J, QI H, et al. Controls on Material and Mesh for Structural Nonlinear Time-History Analysis [J]. Applied Mechanics and Materials, 2014, 580/581/582/583: 1564 − 1569. doi: 10.4028/www.scientific.net/AMM.580-583.1564
    [22] HU Y C, TAN Y H, XI F. Failure assessment and virtual scenario reproduction of the progressive collapse of the FIU bridge [J]. Engineering Structures, 2021, 227: 1 − 13. doi: 10.1016/j.engstruct.2020.111423
    [23] CHENG H, PAZ C M, PINHEIRO B C, et al. Experimentally based parameters applied to concrete damage plasticity model for strain hardening cementitious composite in sandwich pipes [J]. Materials and Structures, 2020, 53(4): 1 − 17.
    [24] HAN T S, FEENSTRA P H, BILLINGTON S L. Simulation of highly ductile fiber-reinforced cement based composite components under cyclic loading [J]. ACI Structural Journal, 2003, 100(6): 749 − 757.
    [25] 江世永, 龚宏伟, 姚未来, 等. ECC材料力学性能与本构关系研究进展[J]. 材料导报, 2018, 32(23): 4192 − 4204. doi: 10.11896/j.issn.1005-023X.2018.23.021

    JIANG Shiyong, GONG Hongwei, YAO weilai, et al. A survey on mechanical behavior and constitutive model of engineered cementitious composite [J]. Materials Reports, 2018, 32(23): 4192 − 4204. (in Chinese) doi: 10.11896/j.issn.1005-023X.2018.23.021
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  187
  • HTML全文浏览量:  86
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-15
  • 录用日期:  2021-12-31
  • 修回日期:  2021-11-04
  • 网络出版日期:  2021-12-31
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回