留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩石-混凝土界面拉伸断裂性能的率相关性研究

姚洁香 董伟 钟红

姚洁香, 董伟, 钟红. 岩石-混凝土界面拉伸断裂性能的率相关性研究[J]. 工程力学, 2022, 39(12): 108-119. doi: 10.6052/j.issn.1000-4750.2021.07.0532
引用本文: 姚洁香, 董伟, 钟红. 岩石-混凝土界面拉伸断裂性能的率相关性研究[J]. 工程力学, 2022, 39(12): 108-119. doi: 10.6052/j.issn.1000-4750.2021.07.0532
YAO Jie-xiang, DONG Wei, ZHONG Hong. RATE-DEPENDENCY OF TENSILE FRACTURE PROPERTIES OF ROCK-CONCRETE INTERFACE[J]. Engineering Mechanics, 2022, 39(12): 108-119. doi: 10.6052/j.issn.1000-4750.2021.07.0532
Citation: YAO Jie-xiang, DONG Wei, ZHONG Hong. RATE-DEPENDENCY OF TENSILE FRACTURE PROPERTIES OF ROCK-CONCRETE INTERFACE[J]. Engineering Mechanics, 2022, 39(12): 108-119. doi: 10.6052/j.issn.1000-4750.2021.07.0532

岩石-混凝土界面拉伸断裂性能的率相关性研究

doi: 10.6052/j.issn.1000-4750.2021.07.0532
基金项目: 国家自然科学基金项目(52179123,51979292)
详细信息
    作者简介:

    姚洁香(1996−),女,宁夏固原人,硕士生,主要从事混凝土断裂力学研究(E-mail: yaojiexiang@mail.dlut.edu.cn)

    钟 红(1981−),女,湖南湘潭人,高工,博士,主要从事混凝土结构静动力响应分析研究(E-mail: zhonghong@iwhr.com)

    通讯作者:

    董 伟(1978−),男,辽宁盘锦人,教授,博士,博导,主要从事混凝土断裂力学研究(E-mail: dongwei@dlut.edu.cn)

  • 中图分类号: TU528;TU45

RATE-DEPENDENCY OF TENSILE FRACTURE PROPERTIES OF ROCK-CONCRETE INTERFACE

  • 摘要: 该文弯曲断裂试验获得了不同应变率下界面的抗拉强度、荷载-加载点位移曲线、荷载-裂缝口张开位移曲线、起裂荷载和峰值荷载,通过夹式引伸计法和DIC法获得了临界裂缝扩展长度。并计算了界面断裂能及双K断裂参数,分析了不同应变率下界面断裂过程区演化规律及特征长度的变化。结果表明:随应变率的增大,断裂能和起裂韧度增大,临界裂缝长度和失稳韧度先增加后减小,断裂过程区长度及特征长度随应变率的提高而减小。该文从裂缝发展路径、自由水粘性、惯性效应三方面探讨了岩石-混凝土界面断裂参数的率效应。
  • 图  1  岩石表面处理方式

    Figure  1.  Surface roughness characterization and pre-notch preparation

    图  2  三点弯曲断裂试验

    Figure  2.  Three-point bending test setup

    图  3  确定起裂荷载与裂缝扩展长度的方法

    Figure  3.  Determination of crack initiation load and crack propagation length

    图  4  DIC试验

    Figure  4.  DIC test

    图  5  复合试件断面图

    Figure  5.  Section view of composite specimen

    图  6  界面抗拉强度与应变率的关系

    Figure  6.  Relationship between interfacial tensile strength and strain rate

    图  7  不同应变率下的P-δ曲线

    Figure  7.  P-δ curves under different strain rates

    图  8  不同应变率下的断裂能

    Figure  8.  Fracture energy under different strain rates

    图  9  DIC法确定裂缝扩展长度

    Figure  9.  DIC method is used to determine the crack propagation length

    图  10  临界裂缝扩展长度与应变率的关系

    Figure  10.  Relationship between critical crack propagation length and strain rate

    图  11  双K断裂韧度与应变率的关系

    Figure  11.  Relationship between double K fracture toughness and strain rate

    图  12  不同应变率下的粘聚韧度

    Figure  12.  Cohesive toughness at different strain rates

    图  13  不同应变率下的断裂过程区长度

    Figure  13.  Length of fracture process zone at different strain rates

    图  14  不同应变率下的特征长度

    Figure  14.  Characteristic lengths at different strain rates

    图  15  水的“双重作用”

    Figure  15.  'two different effects' of water

    表  1  岩石与混凝土的材料参数

    Table  1.   The material properties of concrete and rock

    材料 密度/
    (kg/m3)
    弹性模量/
    GPa
    泊松比 抗压强度/
    MPa
    抗拉强度/
    MPa
    混凝土(28 d) 2400 26.00 0.238 38.73 3.42
    混凝土(90 d) 2400 37.81 0.238 46.66 4.23
    岩石 2668 43.00 0.170 142.72 8.21
    下载: 导出CSV

    表  2  试验方案

    Table  2.   Test plan

    试件形式 长×宽×高/
    (mm×mm×mm)
    应变率/
    s−1
    加载速率/
    (mm/s)
    试件数量/
    轴拉试件 200×100×100 10−5 2×10−3 3
    10−4 2×10−2 3
    10−3 2×10−1 3
    10−2 2 3
    三点弯曲断裂试件 500×100×100 10−5 10−3 3
    10−4 10−2 3
    10−3 10−1 3
    10−2 1 3
    下载: 导出CSV

    表  3  轴拉试验结果

    Table  3.   The result of axial tensile test

    应变率/s−1 界面抗拉强度ft/MPa
    试件1 试件2 试件3 平均值
    10−5 0.963 1.228 0.755 0.982
    10−4 1.310 1.666 1.488
    10−3 1.615 1.312 2.134 1.687
    10−2 1.955 2.355 3.049 2.453
    下载: 导出CSV

    表  4  复合试件三点弯曲断裂试验结果

    Table  4.   Three-point bending test result of composite spesimens

    试件编号 起裂荷载/
    kN
    峰值荷载/
    kN
    起裂韧度
    $K_{\rm{IC}}^{\rm{ini}} $/(MPa·m1/2)
    临界裂缝扩展长度/
    mm
    失稳韧度
    $K_{\rm{IC}}^{\rm{un}} $/(MPa·m1/2)
    起裂荷载/
    峰值荷载
    粘聚韧度
    $K_{\rm{IC}}^{\rm{c}} $/(MPa·m1/2)
    断裂能/
    (N/m)
    TPB-5-1 1.492 1.516 0.295 41.330 0.404 0.984 0.109 12.320
    TPB-5-2 1.569 2.032 0.309 45.833 0.611 0.772 0.302 35.302
    TPB-DIC-5-3 1.034 1.149 0.207 48.670 0.383 0.900 0.176 26.301
    均值 1.365 1.566 0.270 45.000 0.466 0.885 0.196 24.641
    TPB-4-1 1.399 1.766 0.277 52.540 0.656 0.792 0.379 19.873
    TPB-4-2 1.515 1.851 0.299 47.346 0.584 0.818 0.285 30.518
    TPB-DIC-4-3 1.846 1.963 0.362 49.050 0.651 0.940 0.289 31.174
    均值 1.587 1.860 0.313 49.645 0.630 0.850 0.317 27.188
    TPB-3-1 2.034 2.064 0.398 40.282 0.529 0.985 0.131 27.973
    TPB-3-2 1.507 2.012 0.298 45.160 0.593 0.749 0.295 28.273
    TPB-DIC-3-3 2.301 2.334 0.449 42.576 0.636 0.986 0.187 39.498
    均值 1.947 2.137 0.382 42.673 0.586 0.907 0.204 31.915
    TPB-2-1 1.951 2.218 0.382 39.256 0.552 0.880 0.170 32.268
    TPB-2-2 1.774 2.185 0.349 39.580 0.549 0.812 0.200 33.049
    TPB-DIC-2-3 2.340 2.423 0.456 37.438 0.573 0.966 0.117 49.108
    均值 2.022 2.275 0.396 38.758 0.558 0.886 0.162 38.141
    下载: 导出CSV
  • [1] 荣华, 王玉珏, 赵馨怡, 等. 不同粗糙度岩石-混凝土界面断裂特性研究[J]. 工程力学, 2019, 10(36): 96 − 103. doi: 10.6052/j.issn.1000-4750.2018.09.0485

    RONG Hua, WANG Yujue, ZHAO Xinyi, et al. Study on fracture characteristics of rock-concrete interface with different roughness [J]. Engineering Mechanics, 2019, 10(36): 96 − 103. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.09.0485
    [2] DONG W, SONG S, ZHANG B, et al. SIF-based fracture criterion of rock-concrete interface and its application to the prediction of cracking paths in gravity dam [J]. Engineering Fracture Mechanics, 2019, 221: 106686. doi: 10.1016/j.engfracmech.2019.106686
    [3] 徐世烺, 赵艳华. 混凝土裂缝扩展的断裂过程准则与解析[J]. 工程力学, 2008, 25(增刊 2): 20 − 33.

    XU Shilang, ZHAO Yanhua. Fracture process criterion and analysis of concrete crack propagation [J]. Engineering Mechanics, 2008, 25(Suppl 2): 20 − 33. (in Chinese)
    [4] 杨冬. 岩石—混凝土界面Ⅰ-Ⅱ复合型断裂试验与数值研究[D]. 大连: 大连理工大学, 2017.

    YANG Dong. Experimental and numerical study of I -II composite fracture on rock-concrete interface [D]. Dalian: Dalian University of Technology, 2017. (in Chinese)
    [5] 马泽锴, 甘磊, 吴健. 高混凝土重力坝坝踵裂缝水力劈裂特性分析[J]. 水利水电科技进展, 2020, 40(6): 27 − 31.

    MA Zekai, GAN Lei, WU Jian. Hydraulic fracture characteristics analysis of high concrete gravity dam heel crack [J]. China Rural Water and Hydropower, 2020, 40(6): 27 − 31. (in Chinese)
    [6] 钟红, 林皋, 李红军. 坝基界面在非线性水压力驱动下的非线性断裂过程模拟[J]. 工程力学, 2017, 34(4): 42 − 48. doi: 10.6052/j.issn.1000-4750.2015.10.0817

    ZHONG Hong, LIN Gao, LI Hongjun. Nonlinear fracture process simulation of dam foundation interface driven by nonlinear water pressure [J]. Engineering Mechanics, 2017, 34(4): 42 − 48. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.10.0817
    [7] 刘钧玉, 林皋, 胡志强. 重力坝-地基-库水系统动态断裂分析[J]. 工程力学, 2009, 26(11): 114 − 120.

    LIU Junyu, LIN Gao, HU Zhiqiang. Dynamic fracture analysis of gravity dam-foundation-reservoir water system [J]. Engineering Mechanics, 2009, 26(11): 114 − 120. (in Chinese)
    [8] 张秀芳, 胡少伟, 胡晓威. 混凝土双K断裂韧度的率相关性[J]. 水利学报, 2016, 47(10): 1287 − 1297.

    ZHANG Xiufang, HU Shaowei, HU Xiaowei. Rated correlation of double K fracture toughness of concrete [J]. Journal of Hydraulic Engineering, 2016, 47(10): 1287 − 1297. (in Chinese)
    [9] LAMBERT D E, ROSS C A. Strain rate effects on dynamic fracture and strength [J]. International Journal of Impact Engineering, 2000, 24(10): 985 − 998. doi: 10.1016/S0734-743X(00)00027-0
    [10] BRARA A, KLEPACZKO J R. Fracture energy of concrete at high loading rates in tension [J]. International Journal of Impact Engineering, 2007, 34(3): 424 − 435. doi: 10.1016/j.ijimpeng.2005.10.004
    [11] CADONI E, SOLOMOS G, ALBERTINI C. Concrete behaviour in direct tension tests at high strain rates [J]. Magazine of Concrete Research, 2013, 65(11): 660 − 672. doi: 10.1680/macr.12.00175
    [12] PYO S, MO A, EL-TAWIL S. Crack propagation speed in ultra high performance concrete [J]. Construction and Building Materials, 2016, 114: 109 − 118. doi: 10.1016/j.conbuildmat.2016.03.148
    [13] QIU H, ZHU Z, WANG M, et al. Study of the failure properties and tensile strength of rock-mortar interface transition zone using bi-material Brazilian discs [J]. Construction and Building Materials, 2020, 236: 117551. doi: 10.1016/j.conbuildmat.2019.117551
    [14] QIU H, WANG F, ZHU Z M, et al. Study on Dynamic Fracture Behaviour and Fracture Toughness in Rock-mortar Interface under Impact Load [J]. Composite Structures, 2021, 271: 114174. doi: 10.1016/j.compstruct.2021.114174
    [15] QIU H, ZHU Z, WANG M, et al. Study on crack dynamic propagation behavior and fracture toughness in rock-mortar interface of concrete [J]. Engineering Fracture Mechanics, 2019, 228: 106798.
    [16] QIU H, ZHU Z, WANG F, et al. Dynamic behavior of a running crack crossing mortar-rock interface under impacting load [J]. Engineering Fracture Mechanics, 2020, 240: 107202. doi: 10.1016/j.engfracmech.2020.107202
    [17] KIM M K, LEE S H, YUN W C, et al. Seismic behaviors of earth-core and concrete-faced rock-fill dams by dynamic centrifuge tests [J]. Soil Dynamics and Earthquake Engineering, 2011, 31(11): 1579 − 1593. doi: 10.1016/j.soildyn.2011.06.010
    [18] BAYRAKTAR A, HARCER E, AKKOESE M. Influence of base-rock characteristics on the stochastic dynamic response of dam-reservoir-foundation systems [J]. Engineering Structures, 2005, 27(10): 1498 − 1508. doi: 10.1016/j.engstruct.2005.05.004
    [19] 钟红, 马振洲, 胡少伟, 等. 混凝土/花岗岩界面动态断裂性能的轴拉试验研究[J]. 振动与冲击, 2019, 38(11): 152 − 158. doi: 10.13465/j.cnki.jvs.2019.11.023

    ZHONG Hong, MA Zhenzhou, HU Shaowei, et al. Experimental study on dynamic fracture behavior of concrete/granite interface under axial tension [J]. Journal of Vibration and Shock, 2019, 38(11): 152 − 158. (in Chinese) doi: 10.13465/j.cnki.jvs.2019.11.023
    [20] BISCHOFF P H, PERRY S H. Compressive behaviour of concrete at high strain rates [J]. Materials and Structures, 1991, 24(6): 425 − 450. doi: 10.1007/BF02472016
    [21] DONG W, RONG H, WU Q, et al. Investigations on the FPZ evolution of concrete after sustained loading by means of the DIC technique [J]. Construction and Building Materials, 2018, 188(10): 49 − 57.
    [22] 徐世烺. 混凝土断裂力学[M]. 北京: 科学出版社, 2011.

    XU Shilang. Fracture mechanics of concrete [M]. Beijing: Science Press, 2011. (in Chinese)
    [23] 管俊峰, 刘泽鹏, 姚贤华, 等. 确定混凝土开裂与拉伸强度及双K断裂参数[J]. 工程力学, 2020, 37(12): 124 − 137. doi: 10.6052/j.issn.1000-4750.2020.02.0084

    GUAN Junfeng, LIU Zepeng, YAO Xianhua, et al. Determination of cracking, tensile strength and double-K fracture parameters of concrete [J]. Engineering Mechanics, 2020, 37(12): 124 − 137. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.0084
    [24] 尹阳阳, 胡少伟. 小跨高比混凝土三点弯曲梁双K断裂参数研究[J]. 工程力学, 2020, 37(12): 138 − 146. doi: 10.6052/j.issn.1000-4750.2020.01.0031

    YIN Yangyang, HU Shaowei. Double K fracture parameters of three-point bending concrete beams with small span to height ratio [J]. Engineering Mechanics, 2020, 37(12): 138 − 146. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0031
    [25] 胡少伟, 尹阳阳, 范冰, 等. 基于等效纯弯曲梁的混凝土双K断裂参数研究[J]. 工程力学, 2019, 36(12): 44 − 51. doi: 10.6052/j.issn.1000-4750.2018.12.0718

    HU Shaowei, YIN Yangyang, FAN Bing, et al. Study on double K fracture parameters of concrete based on equivalent pure bending beams [J]. Engineering Mechanics, 2019, 36(12): 44 − 51. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.12.0718
    [26] WU Z M, HUA R, ZHENG J J, et al. An experimental investigation on the FPZ properties in concrete using digital image correlation technique [J]. Engineering Fracture Mechanics, 2011, 78(17): 2978 − 2990. doi: 10.1016/j.engfracmech.2011.08.016
    [27] GARHWAL V, KISHEN J. Correlation between fracture and damage for quasi-brittle bi-material interface cracks [J]. Engineering Fracture Mechanics, 2008, 75(8): 2208 − 2224. doi: 10.1016/j.engfracmech.2007.10.001
    [28] 闫东明. 混凝土动态力学性能试验与理论研究[D]. 大连: 大连理工大学, 2006.

    YAN Dongming. Experimental and theoretical study on dynamic mechanical properties of concrete [D]. Dalian: Dalian University of Technology, 2006. (in Chinese)
    [29] HILLERBORG A. Analysis of crack formation and crack growth in concrete by means of fracture [J]. Cement and Concrete Research, 1976, 6(6): 773 − 782. doi: 10.1016/0008-8846(76)90007-7
    [30] LU D, WANG G, DU X, et al. A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete [J]. International Journal of Impact Engineering, 2017, 103: 124 − 137. doi: 10.1016/j.ijimpeng.2017.01.011
    [31] CHEN D, LIU F, YANG F, et al. Dynamic compressive and splitting tensile response of unsaturated polyester polymer concrete material at different curing ages [J]. Construction and Building Materials, 2018, 177: 477 − 498. doi: 10.1016/j.conbuildmat.2018.05.058
    [32] ZHANG J, CHEN C, LI X, et al. Dynamic Mechanical Properties of Self-Compacting Rubberized Concrete under High Strain Rates [J]. Journal of Materials in Civil Engineering, 2021, 33(2): 4020458. doi: 10.1061/(ASCE)MT.1943-5533.0003560
    [33] PEREIRA L F, WEERHEIJM J, SLUYS L J. A new effective rate dependent damage model for dynamic tensile failure of concrete [J]. Engineering Fracture Mechanics, 2017, 176: 281 − 299. doi: 10.1016/j.engfracmech.2017.03.048
    [34] 党发宁, 潘峰, 焦凯, 等. 不均匀脆性材料动强度提高机理及破坏形态研究[J]. 地震工程与工程振动, 2015, 35(3): 111 − 118.

    DANG Faning, PAN Feng, JIAO Kai, et al. Study on dynamic strength improvement mechanism and failure mode of heterogeneous brittle materials [J]. Earthquake Engineering and Engineering Vibration, 2015, 35(3): 111 − 118. (in Chinese)
    [35] 王海龙, 李庆斌. 不同加载速率下饱和混凝土的劈拉试验研究及强度变化机理[J]. 工程力学, 2007(2): 105 − 109. doi: 10.3969/j.issn.1000-4750.2007.02.018

    WANG Hailong, LI Qingbin. Experimental study on splitting and tensile properties of saturated concrete under different loading rates and its strength variation mechanism [J]. Engineering Mechanics, 2007(2): 105 − 109. (in Chinese) doi: 10.3969/j.issn.1000-4750.2007.02.018
    [36] ROSSI P. Influence of cracking in the presence of free water on the mechanical behaviour of concrete [J]. Magazine of Concrete Research, 2015, 43(154): 53 − 57.
    [37] EIBL J, CURBACH M. An attempt to explain strength increase due to high loading rates [J]. Nuclear Engineering and Design, 1989, 112: 45 − 50. doi: 10.1016/0029-5493(89)90144-1
    [38] OŽBOLT J, SHARMA A, REINHARDT H W. Dynamic fracture of concrete-compact tension specimen [J]. International Journal of Solids and Structures, 2011, 48(10): 1534 − 1543. doi: 10.1016/j.ijsolstr.2011.01.033
    [39] 王海龙, 李庆斌. 不同加载速率下干燥与饱和混凝土抗压性能试验研究分析[J]. 水力发电学报, 2007, 26(1): 84 − 89. doi: 10.3969/j.issn.1003-1243.2007.01.017

    WANG Hailong, LI Qingbin. Experimental study and analysis of compressive properties of dry and saturated concrete under different loading rates [J]. Journal of Hydropower, 2007, 26(1): 84 − 89. (in Chinese) doi: 10.3969/j.issn.1003-1243.2007.01.017
    [40] ZHOU Z, CAI X, MA D, et al. Water saturation effects on dynamic fracture behavior of sandstone [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 114: 46 − 61.
    [41] 王国盛, 路德春, 杜修力, 等. 混凝土材料真实动态强度及率效应机理研究[J]. 工程力学, 2018, 35(6): 58 − 67. doi: 10.6052/j.issn.1000-4750.2017.02.0101

    WANG Guosheng, LU Dechun, DU Xiuli, et al. Study on real dynamic strength and rate effect mechanism of concrete materials [J]. Engineering Mechanics, 2018, 35(6): 58 − 67. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.02.0101
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  44
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-12
  • 录用日期:  2021-12-31
  • 修回日期:  2021-11-22
  • 网络出版日期:  2021-12-31
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回