RATE-DEPENDENCY OF TENSILE FRACTURE PROPERTIES OF ROCK-CONCRETE INTERFACE
-
摘要: 该文弯曲断裂试验获得了不同应变率下界面的抗拉强度、荷载-加载点位移曲线、荷载-裂缝口张开位移曲线、起裂荷载和峰值荷载,通过夹式引伸计法和DIC法获得了临界裂缝扩展长度。并计算了界面断裂能及双K断裂参数,分析了不同应变率下界面断裂过程区演化规律及特征长度的变化。结果表明:随应变率的增大,断裂能和起裂韧度增大,临界裂缝长度和失稳韧度先增加后减小,断裂过程区长度及特征长度随应变率的提高而减小。该文从裂缝发展路径、自由水粘性、惯性效应三方面探讨了岩石-混凝土界面断裂参数的率效应。Abstract: The effects of strain rates (10−5s−1 to 10−2s−1) on tensile strength and fracture properties of rock-concrete composite specimens were studied. The tensile strength, load versus loading point displacement curve (P-δ curve), load versus crack opening displacement curve, initial cracking load and peak load of the interface under different strain rates were obtained by axial tensile test and three-point bending test. The critical crack propagation length was obtained by clip-gauges method and DIC method. The P-δ curve was used to calculate the fracture energy and the displacement extrapolation method was used to calculate the double K fracture toughness. The length of fracture process zone under different strain rates was obtained by analyzing the data of crack opening displacement. In addition, the characteristic length was calculated by considering the fracture energy and tensile strength. The results show that the fracture energy and initial fracture toughness increase with the increase of strain rate, while the critical fracture length and unstable fracture toughness increase as the strain rate is no more than 10−4s−1, and then decrease as the strain rate is greater than 10−4s−1. The length of fracture process zone and characteristic length decrease with the increase of strain rate. The rate effects of rock-concrete interfacial fracture parameters were discussed in three aspects: crack development path, free water viscosity and inertia effect.
-
Key words:
- strain rate /
- rock-concrete interface /
- three-point bending test /
- DIC /
- double-K fracture toughness
-
表 1 岩石与混凝土的材料参数
Table 1. The material properties of concrete and rock
材料 密度/
(kg/m3)弹性模量/
GPa泊松比 抗压强度/
MPa抗拉强度/
MPa混凝土(28 d) 2400 26.00 0.238 38.73 3.42 混凝土(90 d) 2400 37.81 0.238 46.66 4.23 岩石 2668 43.00 0.170 142.72 8.21 表 2 试验方案
Table 2. Test plan
试件形式 长×宽×高/
(mm×mm×mm)应变率/
s−1加载速率/
(mm/s)试件数量/
个轴拉试件 200×100×100 10−5 2×10−3 3 10−4 2×10−2 3 10−3 2×10−1 3 10−2 2 3 三点弯曲断裂试件 500×100×100 10−5 10−3 3 10−4 10−2 3 10−3 10−1 3 10−2 1 3 表 3 轴拉试验结果
Table 3. The result of axial tensile test
应变率/s−1 界面抗拉强度ft/MPa 试件1 试件2 试件3 平均值 10−5 0.963 1.228 0.755 0.982 10−4 1.310 1.666 − 1.488 10−3 1.615 1.312 2.134 1.687 10−2 1.955 2.355 3.049 2.453 表 4 复合试件三点弯曲断裂试验结果
Table 4. Three-point bending test result of composite spesimens
试件编号 起裂荷载/
kN峰值荷载/
kN起裂韧度
$K_{\rm{IC}}^{\rm{ini}} $/(MPa·m1/2)临界裂缝扩展长度/
mm失稳韧度
$K_{\rm{IC}}^{\rm{un}} $/(MPa·m1/2)起裂荷载/
峰值荷载粘聚韧度
$K_{\rm{IC}}^{\rm{c}} $/(MPa·m1/2)断裂能/
(N/m)TPB-5-1 1.492 1.516 0.295 41.330 0.404 0.984 0.109 12.320 TPB-5-2 1.569 2.032 0.309 45.833 0.611 0.772 0.302 35.302 TPB-DIC-5-3 1.034 1.149 0.207 48.670 0.383 0.900 0.176 26.301 均值 1.365 1.566 0.270 45.000 0.466 0.885 0.196 24.641 TPB-4-1 1.399 1.766 0.277 52.540 0.656 0.792 0.379 19.873 TPB-4-2 1.515 1.851 0.299 47.346 0.584 0.818 0.285 30.518 TPB-DIC-4-3 1.846 1.963 0.362 49.050 0.651 0.940 0.289 31.174 均值 1.587 1.860 0.313 49.645 0.630 0.850 0.317 27.188 TPB-3-1 2.034 2.064 0.398 40.282 0.529 0.985 0.131 27.973 TPB-3-2 1.507 2.012 0.298 45.160 0.593 0.749 0.295 28.273 TPB-DIC-3-3 2.301 2.334 0.449 42.576 0.636 0.986 0.187 39.498 均值 1.947 2.137 0.382 42.673 0.586 0.907 0.204 31.915 TPB-2-1 1.951 2.218 0.382 39.256 0.552 0.880 0.170 32.268 TPB-2-2 1.774 2.185 0.349 39.580 0.549 0.812 0.200 33.049 TPB-DIC-2-3 2.340 2.423 0.456 37.438 0.573 0.966 0.117 49.108 均值 2.022 2.275 0.396 38.758 0.558 0.886 0.162 38.141 -
[1] 荣华, 王玉珏, 赵馨怡, 等. 不同粗糙度岩石-混凝土界面断裂特性研究[J]. 工程力学, 2019, 10(36): 96 − 103. doi: 10.6052/j.issn.1000-4750.2018.09.0485RONG Hua, WANG Yujue, ZHAO Xinyi, et al. Study on fracture characteristics of rock-concrete interface with different roughness [J]. Engineering Mechanics, 2019, 10(36): 96 − 103. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.09.0485 [2] DONG W, SONG S, ZHANG B, et al. SIF-based fracture criterion of rock-concrete interface and its application to the prediction of cracking paths in gravity dam [J]. Engineering Fracture Mechanics, 2019, 221: 106686. doi: 10.1016/j.engfracmech.2019.106686 [3] 徐世烺, 赵艳华. 混凝土裂缝扩展的断裂过程准则与解析[J]. 工程力学, 2008, 25(增刊 2): 20 − 33.XU Shilang, ZHAO Yanhua. Fracture process criterion and analysis of concrete crack propagation [J]. Engineering Mechanics, 2008, 25(Suppl 2): 20 − 33. (in Chinese) [4] 杨冬. 岩石—混凝土界面Ⅰ-Ⅱ复合型断裂试验与数值研究[D]. 大连: 大连理工大学, 2017.YANG Dong. Experimental and numerical study of I -II composite fracture on rock-concrete interface [D]. Dalian: Dalian University of Technology, 2017. (in Chinese) [5] 马泽锴, 甘磊, 吴健. 高混凝土重力坝坝踵裂缝水力劈裂特性分析[J]. 水利水电科技进展, 2020, 40(6): 27 − 31.MA Zekai, GAN Lei, WU Jian. Hydraulic fracture characteristics analysis of high concrete gravity dam heel crack [J]. China Rural Water and Hydropower, 2020, 40(6): 27 − 31. (in Chinese) [6] 钟红, 林皋, 李红军. 坝基界面在非线性水压力驱动下的非线性断裂过程模拟[J]. 工程力学, 2017, 34(4): 42 − 48. doi: 10.6052/j.issn.1000-4750.2015.10.0817ZHONG Hong, LIN Gao, LI Hongjun. Nonlinear fracture process simulation of dam foundation interface driven by nonlinear water pressure [J]. Engineering Mechanics, 2017, 34(4): 42 − 48. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.10.0817 [7] 刘钧玉, 林皋, 胡志强. 重力坝-地基-库水系统动态断裂分析[J]. 工程力学, 2009, 26(11): 114 − 120.LIU Junyu, LIN Gao, HU Zhiqiang. Dynamic fracture analysis of gravity dam-foundation-reservoir water system [J]. Engineering Mechanics, 2009, 26(11): 114 − 120. (in Chinese) [8] 张秀芳, 胡少伟, 胡晓威. 混凝土双K断裂韧度的率相关性[J]. 水利学报, 2016, 47(10): 1287 − 1297.ZHANG Xiufang, HU Shaowei, HU Xiaowei. Rated correlation of double K fracture toughness of concrete [J]. Journal of Hydraulic Engineering, 2016, 47(10): 1287 − 1297. (in Chinese) [9] LAMBERT D E, ROSS C A. Strain rate effects on dynamic fracture and strength [J]. International Journal of Impact Engineering, 2000, 24(10): 985 − 998. doi: 10.1016/S0734-743X(00)00027-0 [10] BRARA A, KLEPACZKO J R. Fracture energy of concrete at high loading rates in tension [J]. International Journal of Impact Engineering, 2007, 34(3): 424 − 435. doi: 10.1016/j.ijimpeng.2005.10.004 [11] CADONI E, SOLOMOS G, ALBERTINI C. Concrete behaviour in direct tension tests at high strain rates [J]. Magazine of Concrete Research, 2013, 65(11): 660 − 672. doi: 10.1680/macr.12.00175 [12] PYO S, MO A, EL-TAWIL S. Crack propagation speed in ultra high performance concrete [J]. Construction and Building Materials, 2016, 114: 109 − 118. doi: 10.1016/j.conbuildmat.2016.03.148 [13] QIU H, ZHU Z, WANG M, et al. Study of the failure properties and tensile strength of rock-mortar interface transition zone using bi-material Brazilian discs [J]. Construction and Building Materials, 2020, 236: 117551. doi: 10.1016/j.conbuildmat.2019.117551 [14] QIU H, WANG F, ZHU Z M, et al. Study on Dynamic Fracture Behaviour and Fracture Toughness in Rock-mortar Interface under Impact Load [J]. Composite Structures, 2021, 271: 114174. doi: 10.1016/j.compstruct.2021.114174 [15] QIU H, ZHU Z, WANG M, et al. Study on crack dynamic propagation behavior and fracture toughness in rock-mortar interface of concrete [J]. Engineering Fracture Mechanics, 2019, 228: 106798. [16] QIU H, ZHU Z, WANG F, et al. Dynamic behavior of a running crack crossing mortar-rock interface under impacting load [J]. Engineering Fracture Mechanics, 2020, 240: 107202. doi: 10.1016/j.engfracmech.2020.107202 [17] KIM M K, LEE S H, YUN W C, et al. Seismic behaviors of earth-core and concrete-faced rock-fill dams by dynamic centrifuge tests [J]. Soil Dynamics and Earthquake Engineering, 2011, 31(11): 1579 − 1593. doi: 10.1016/j.soildyn.2011.06.010 [18] BAYRAKTAR A, HARCER E, AKKOESE M. Influence of base-rock characteristics on the stochastic dynamic response of dam-reservoir-foundation systems [J]. Engineering Structures, 2005, 27(10): 1498 − 1508. doi: 10.1016/j.engstruct.2005.05.004 [19] 钟红, 马振洲, 胡少伟, 等. 混凝土/花岗岩界面动态断裂性能的轴拉试验研究[J]. 振动与冲击, 2019, 38(11): 152 − 158. doi: 10.13465/j.cnki.jvs.2019.11.023ZHONG Hong, MA Zhenzhou, HU Shaowei, et al. Experimental study on dynamic fracture behavior of concrete/granite interface under axial tension [J]. Journal of Vibration and Shock, 2019, 38(11): 152 − 158. (in Chinese) doi: 10.13465/j.cnki.jvs.2019.11.023 [20] BISCHOFF P H, PERRY S H. Compressive behaviour of concrete at high strain rates [J]. Materials and Structures, 1991, 24(6): 425 − 450. doi: 10.1007/BF02472016 [21] DONG W, RONG H, WU Q, et al. Investigations on the FPZ evolution of concrete after sustained loading by means of the DIC technique [J]. Construction and Building Materials, 2018, 188(10): 49 − 57. [22] 徐世烺. 混凝土断裂力学[M]. 北京: 科学出版社, 2011.XU Shilang. Fracture mechanics of concrete [M]. Beijing: Science Press, 2011. (in Chinese) [23] 管俊峰, 刘泽鹏, 姚贤华, 等. 确定混凝土开裂与拉伸强度及双K断裂参数[J]. 工程力学, 2020, 37(12): 124 − 137. doi: 10.6052/j.issn.1000-4750.2020.02.0084GUAN Junfeng, LIU Zepeng, YAO Xianhua, et al. Determination of cracking, tensile strength and double-K fracture parameters of concrete [J]. Engineering Mechanics, 2020, 37(12): 124 − 137. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.0084 [24] 尹阳阳, 胡少伟. 小跨高比混凝土三点弯曲梁双K断裂参数研究[J]. 工程力学, 2020, 37(12): 138 − 146. doi: 10.6052/j.issn.1000-4750.2020.01.0031YIN Yangyang, HU Shaowei. Double K fracture parameters of three-point bending concrete beams with small span to height ratio [J]. Engineering Mechanics, 2020, 37(12): 138 − 146. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0031 [25] 胡少伟, 尹阳阳, 范冰, 等. 基于等效纯弯曲梁的混凝土双K断裂参数研究[J]. 工程力学, 2019, 36(12): 44 − 51. doi: 10.6052/j.issn.1000-4750.2018.12.0718HU Shaowei, YIN Yangyang, FAN Bing, et al. Study on double K fracture parameters of concrete based on equivalent pure bending beams [J]. Engineering Mechanics, 2019, 36(12): 44 − 51. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.12.0718 [26] WU Z M, HUA R, ZHENG J J, et al. An experimental investigation on the FPZ properties in concrete using digital image correlation technique [J]. Engineering Fracture Mechanics, 2011, 78(17): 2978 − 2990. doi: 10.1016/j.engfracmech.2011.08.016 [27] GARHWAL V, KISHEN J. Correlation between fracture and damage for quasi-brittle bi-material interface cracks [J]. Engineering Fracture Mechanics, 2008, 75(8): 2208 − 2224. doi: 10.1016/j.engfracmech.2007.10.001 [28] 闫东明. 混凝土动态力学性能试验与理论研究[D]. 大连: 大连理工大学, 2006.YAN Dongming. Experimental and theoretical study on dynamic mechanical properties of concrete [D]. Dalian: Dalian University of Technology, 2006. (in Chinese) [29] HILLERBORG A. Analysis of crack formation and crack growth in concrete by means of fracture [J]. Cement and Concrete Research, 1976, 6(6): 773 − 782. doi: 10.1016/0008-8846(76)90007-7 [30] LU D, WANG G, DU X, et al. A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete [J]. International Journal of Impact Engineering, 2017, 103: 124 − 137. doi: 10.1016/j.ijimpeng.2017.01.011 [31] CHEN D, LIU F, YANG F, et al. Dynamic compressive and splitting tensile response of unsaturated polyester polymer concrete material at different curing ages [J]. Construction and Building Materials, 2018, 177: 477 − 498. doi: 10.1016/j.conbuildmat.2018.05.058 [32] ZHANG J, CHEN C, LI X, et al. Dynamic Mechanical Properties of Self-Compacting Rubberized Concrete under High Strain Rates [J]. Journal of Materials in Civil Engineering, 2021, 33(2): 4020458. doi: 10.1061/(ASCE)MT.1943-5533.0003560 [33] PEREIRA L F, WEERHEIJM J, SLUYS L J. A new effective rate dependent damage model for dynamic tensile failure of concrete [J]. Engineering Fracture Mechanics, 2017, 176: 281 − 299. doi: 10.1016/j.engfracmech.2017.03.048 [34] 党发宁, 潘峰, 焦凯, 等. 不均匀脆性材料动强度提高机理及破坏形态研究[J]. 地震工程与工程振动, 2015, 35(3): 111 − 118.DANG Faning, PAN Feng, JIAO Kai, et al. Study on dynamic strength improvement mechanism and failure mode of heterogeneous brittle materials [J]. Earthquake Engineering and Engineering Vibration, 2015, 35(3): 111 − 118. (in Chinese) [35] 王海龙, 李庆斌. 不同加载速率下饱和混凝土的劈拉试验研究及强度变化机理[J]. 工程力学, 2007(2): 105 − 109. doi: 10.3969/j.issn.1000-4750.2007.02.018WANG Hailong, LI Qingbin. Experimental study on splitting and tensile properties of saturated concrete under different loading rates and its strength variation mechanism [J]. Engineering Mechanics, 2007(2): 105 − 109. (in Chinese) doi: 10.3969/j.issn.1000-4750.2007.02.018 [36] ROSSI P. Influence of cracking in the presence of free water on the mechanical behaviour of concrete [J]. Magazine of Concrete Research, 2015, 43(154): 53 − 57. [37] EIBL J, CURBACH M. An attempt to explain strength increase due to high loading rates [J]. Nuclear Engineering and Design, 1989, 112: 45 − 50. doi: 10.1016/0029-5493(89)90144-1 [38] OŽBOLT J, SHARMA A, REINHARDT H W. Dynamic fracture of concrete-compact tension specimen [J]. International Journal of Solids and Structures, 2011, 48(10): 1534 − 1543. doi: 10.1016/j.ijsolstr.2011.01.033 [39] 王海龙, 李庆斌. 不同加载速率下干燥与饱和混凝土抗压性能试验研究分析[J]. 水力发电学报, 2007, 26(1): 84 − 89. doi: 10.3969/j.issn.1003-1243.2007.01.017WANG Hailong, LI Qingbin. Experimental study and analysis of compressive properties of dry and saturated concrete under different loading rates [J]. Journal of Hydropower, 2007, 26(1): 84 − 89. (in Chinese) doi: 10.3969/j.issn.1003-1243.2007.01.017 [40] ZHOU Z, CAI X, MA D, et al. Water saturation effects on dynamic fracture behavior of sandstone [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 114: 46 − 61. [41] 王国盛, 路德春, 杜修力, 等. 混凝土材料真实动态强度及率效应机理研究[J]. 工程力学, 2018, 35(6): 58 − 67. doi: 10.6052/j.issn.1000-4750.2017.02.0101WANG Guosheng, LU Dechun, DU Xiuli, et al. Study on real dynamic strength and rate effect mechanism of concrete materials [J]. Engineering Mechanics, 2018, 35(6): 58 − 67. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.02.0101 -