留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

箱梁表面的压力分布对颤振稳定性的影响

刘祖军 贾明晓 杨詠昕

刘祖军, 贾明晓, 杨詠昕. 箱梁表面的压力分布对颤振稳定性的影响[J]. 工程力学, 2022, 39(12): 98-107, 129. doi: 10.6052/j.issn.1000-4750.2021.07.0526
引用本文: 刘祖军, 贾明晓, 杨詠昕. 箱梁表面的压力分布对颤振稳定性的影响[J]. 工程力学, 2022, 39(12): 98-107, 129. doi: 10.6052/j.issn.1000-4750.2021.07.0526
LIU Zu-jun, JIA Ming-xiao, YANG Yong-xin. THE INFLUENCE OF BOX GIRDER SURFACE PRESSURE DISTRIBUTION ON FLUTTER STABILITY[J]. Engineering Mechanics, 2022, 39(12): 98-107, 129. doi: 10.6052/j.issn.1000-4750.2021.07.0526
Citation: LIU Zu-jun, JIA Ming-xiao, YANG Yong-xin. THE INFLUENCE OF BOX GIRDER SURFACE PRESSURE DISTRIBUTION ON FLUTTER STABILITY[J]. Engineering Mechanics, 2022, 39(12): 98-107, 129. doi: 10.6052/j.issn.1000-4750.2021.07.0526

箱梁表面的压力分布对颤振稳定性的影响

doi: 10.6052/j.issn.1000-4750.2021.07.0526
基金项目: 桥梁结构抗风技术交通行业重点 实验室开放基金项目(KLWRTBMC20-02);国家自然科学基金项目(51208197,5102114005)
详细信息
    作者简介:

    贾明晓(1981−),女,河南南阳人,副教授,博士,主要从事桥梁结构的抗风与抗震研究(E-mail: jmxwish@163.com)

    杨詠昕(1974−),男,浙江宁波人,教授,博士,主要从事桥梁抗风研究(E-mail: yang_y_x@tongji.edu.cn)

    通讯作者:

    刘祖军(1978−),男,河南信阳人,副教授,博士,主要从事桥梁结构的抗风与抗震研究(E-mail: liuzujunhs@126.com)

  • 中图分类号: O355

THE INFLUENCE OF BOX GIRDER SURFACE PRESSURE DISTRIBUTION ON FLUTTER STABILITY

  • 摘要: 该文建立了箱梁表面压力与颤振导数之间的数学关系,探讨了表面压力的分布特性对箱梁颤振导数和颤振临界风速的影响。结合流固松耦合的计算方法,利用动网格技术模拟了箱梁的风致振动。采用分块分析方法研究了箱梁表面压力的局部特性对颤振导数以及系统振动能量的影响。研究结果表明:箱梁迎风侧风嘴附近的分布压力对模型振动的稳定性产生了不利的影响,而模型尾部的压力则有助于提高系统的颤振临界风速。当迎风侧的分布压力向模型尾部移动时,对箱梁颤振稳定性影响较大的颤振导数则会发生较显著的变化,箱梁的颤振临界风速也随之增加,因此断面迎风侧风嘴附近区域的分布压力对颤振导数和系统振动的稳定性影响最大。另外,迎风侧风嘴附近的区域也是振动系统吸收气动能量的主要部位,而箱梁尾部风嘴附近的区域则消耗系统的振动能量。箱梁表面压力与模型振动最大位移之间的相位差对颤振导数有较大影响,当相位差沿断面呈反对称分布,并使气动阻尼始终为负时,则有利于箱梁颤振的稳定性。
  • 图  1  数值实现途径

    Figure  1.  The process of numerical simulation

    图  2  箱梁断面 /mm

    Figure  2.  The box girder section

    图  3  二维计算区域及边界设置示意

    Figure  3.  Two-dimensional computational domain and boundary

    图  4  模型断面近壁面网格的y+

    Figure  4.  The grid value of y+ on the model surface

    图  5  模型的振动状态

    Figure  5.  The model vibration state

    图  6  压力数值拟合的残差在模型表面的分布

    Figure  6.  The pressure numerical fitting residuals' distribution on the model surface

    图  7  模型表面压力的计算值与拟合值( $ T/2 $ )

    Figure  7.  The model surface pressure calculation result and fitting values ( $ T/2 $ )

    图  8  拟合系数c沿模型表面分布图

    Figure  8.  The distribution of fitting coefficient c along the model surface

    图  9  拟合系数a沿模型表面分布图

    Figure  9.  The distribution of fitting coefficient a along the model surface

    图  10  拟合系数b沿模型表面分布图

    Figure  10.  The distribution of fitting coefficient b along the model surface

    图  11  箱梁断面的分区示意图

    Figure  11.  The partition of H-shape section

    图  12  箱梁断面不同区域的压力差

    Figure  12.  The pressure lag of different area on the box girder surface

    图  13  模型表面各分区对颤振导数的贡献

    Figure  13.  Each partition contribution of the model to aerodynamic derivatives

    图  14  箱梁断面不同区域输送给振动系统的能量

    Figure  14.  The energy input to the system by the box girder different areas

    图  15  箱梁断面的坐标系

    Figure  15.  The coordinate system of box girder

    图  16  箱梁表面压力和相位差的分布

    Figure  16.  The distribution of surface pressure and phase lag long the box girder

    图  17  箱梁表面的压力分布特性和颤振临界风速

    Figure  17.  The pressure distribution characteristics and flutter critical wind speed of the box girder

    图  18  相位差沿箱梁表面成反对称分布

    Figure  18.  The anti-symmetrically distributed phase lag along the box girder

    图  19  颤振临界风速随箱梁表面压力分布特性的变化规律

    Figure  19.  The change of flutter critical wind speed with the distribution characteristics of the box girder surface pressures

  • [1] SCANLAN R H, JONES N P. Aeroelastic analysis of cable-stayed bridges [J]. Journal of Structural Engineering, 1990, 116(2): 279 − 297. doi: 10.1061/(ASCE)0733-9445(1990)116:2(279)
    [2] CHEN X. Improved understanding of bimodal coupled bridge flutter based on closed-form solutions [J]. Journal of Structural Engineering, 2007, 133(1): 22 − 31. doi: 10.1061/(ASCE)0733-9445(2007)133:1(22)
    [3] MATSUMOTO M. Flutter classification of bridge girders [M]// Proceeding of the 1st International Symposium on Wind and Structures for the 21st Century. Chcju, Techno-Press, 2000: 39 − 79.
    [4] MATSUMOTO M, SHIRATO H, SHIJO R, et al. Flutter stabilization of long span bridges [M]// Proceeding of the 2nd International Symposium on Advances in Wind & Structures. Busan, Teehno-Press, 2002: 257 − 264.
    [5] 杨詠昕, 葛耀君, 项海帆. 大跨度桥梁典型断面颤振机理[J]. 同济大学学报(自然科学版), 2006, 34(4): 455 − 460. doi: 10.3321/j.issn:0253-374X.2006.04.006

    YANG Yongxin, GE Yaojun, XIANG Haifan. Flutter mechanism of representative sections for long-span bridge [J]. Journal of Tongji University (Natural Science), 2006, 34(4): 455 − 460. (in Chinese) doi: 10.3321/j.issn:0253-374X.2006.04.006
    [6] 丁泉顺, 朱乐东. 桥梁主梁断面气动耦合颤振分析与颤振机理研究[J]. 土木工程学报, 2007, 40(34): 69 − 73.

    DING Quanshun, ZHU Ledong. Aerodynamically coupling flutter analysis and flutter for bridge deck sections [J]. China Civil Engineering Journal, 2007, 40(34): 69 − 73. (in Chinese)
    [7] 鲜荣, 廖海黎. 封闭式扁平钢箱梁颤振稳定性气动优化措施风洞试验研究[J]. 世界桥梁, 2008, 40(3): 44 − 47.

    XIAN Rong, LIAO Haili. Wind tunnel test study of aerodynamic optimization measures for flutter stability of closed flat steel box girder [J]. World Bridges, 2008, 40(3): 44 − 47. (in Chinese)
    [8] 金挺, 林志兴. 扁平箱形桥梁断面斯特罗哈数的雷诺数效应研究[J]. 工程力学, 2006, 23(10): 174 − 179. doi: 10.3969/j.issn.1000-4750.2006.10.033

    JIN Ting, LIN Zhixing. Reynolds number effects on strouhal number of flat-box girder bridge decks [J]. Engineering Mechanics, 2006, 23(10): 174 − 179. (in Chinese) doi: 10.3969/j.issn.1000-4750.2006.10.033
    [9] 任若松, 孙一飞, 郑云飞, 等. 准流线型桥梁表面压力分布研究[J]. 工程力学, 2021, 38(增刊): 184 − 188. doi: 10.6052/j.issn.1000-4750.2020.05.S033

    REN Ruosong, SUN Yifei, ZHENG Yunfei, et al. Surface pressure distribution of quasi-streamline bridges. [J]. Engineering Mechanics, 2021, 38(Suppl): 184 − 188. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.S033
    [10] 赵林. 风场模式数值模拟与大跨桥梁抖振概率评价[D]. 上海: 同济大学, 2003.

    ZHAO Lin. Numerical simulation of wind field and reliability assessment of buffeting for long-span bridge [D]. Shanghai: Tongji University, 2003. (in Chinese)
    [11] 孟晓亮, 郭震山, 丁泉顺, 等. 风嘴角度对封闭和半封闭箱梁涡振及颤振性能的影响[J]. 工程力学, 2011, 28(1): 184 − 188.

    MENG Xiaoliang, GUO Zhenshan, DING Quanshun, et al. Influence of wind fairing angle on vortex-induced vibration and flutter performances of closed and semi-closed box decks [J]. Engineering Mechanics, 2011, 28(1): 184 − 188. (in Chinese)
    [12] 张伟. 基于粒子图像测速技术的桥梁风致振动的细观机理研究[D]. 上海: 同济大学, 2008.

    ZHANG Wei. Mechanism research of wind induced vibrations of bridges based on particle image velocimetry [D]. Shanghai: Tongji University, 2008. (in Chinese)
    [13] ARGENTINI T, ROCCHI D, MUGGIASCA S, et al. Cross-sectional distributions versus integrated coefficients of flutter derivatives and aerodynamic admittances identified with surface pressure measurement [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2012, 104/105/106: 152 − 158. doi: 10.1016/j.jweia.2012.03.009
    [14] LI K, LI S P, GE Y J, et al. An investigation into the bimodal flutter details based on flutter derivatives' contribution along the bridge deck's surface [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 192: 1 − 16. doi: 10.1016/j.jweia.2019.06.019
    [15] 林阳, 封周权, 华旭刚, 等. 基于自由振动响应识别桥梁断面颤振导数的人工蜂群算法[J]. 工程力学, 2020, 37(2): 192 − 200. doi: 10.6052/j.issn.1000-4750.2019.03.0143

    LIN Yang, FENG Zhouquan, HUA Xugang, et al. Artificial bee colony algorithm for flutter derivatives identification of bridge decks using free vibration records. [J]. Engineering Mechanics, 2020, 37(2): 192 − 200. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.03.0143
    [16] ANDERSEN M S, OLE JOHANSSON J, BRANDT A. Flutter derivatives from free decay tests of a rectangular B/D=10 section estimated by optimized system identification methods [J]. Engineering Structure, 2018, 156: 284 − 293. doi: 10.1016/j.engstruct.2017.11.059
    [17] DING Q S, DONG S H, ZHOU Z Y. Identification of aerodynamic derivatives of bridge decks at high testing wind speed [J]. Canadian Journal of Civil Engineering, 2018, 45(11): 1004 − 1014. doi: 10.1139/cjce-2017-0010
  • 加载中
图(19)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  28
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-11
  • 修回日期:  2022-06-28
  • 网络出版日期:  2022-07-15
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回