留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于格林函数的多跨钻柱系统的振动特性分析

常学平 范谨铭 韩笃政 周杰

常学平, 范谨铭, 韩笃政, 周杰. 基于格林函数的多跨钻柱系统的振动特性分析[J]. 工程力学, 2023, 40(6): 213-225. doi: 10.6052/j.issn.1000-4750.2021.07.0524
引用本文: 常学平, 范谨铭, 韩笃政, 周杰. 基于格林函数的多跨钻柱系统的振动特性分析[J]. 工程力学, 2023, 40(6): 213-225. doi: 10.6052/j.issn.1000-4750.2021.07.0524
CHANG Xue-ping, FAN Jin-ming, HAN Du-zheng, ZHOU Jie. VIBRATION CHARACTERISTICS ANALYSIS OF MULTI-SPAN DRILL STRING SYSTEM BY MEANS OF GREEN'S FUNCTIONS[J]. Engineering Mechanics, 2023, 40(6): 213-225. doi: 10.6052/j.issn.1000-4750.2021.07.0524
Citation: CHANG Xue-ping, FAN Jin-ming, HAN Du-zheng, ZHOU Jie. VIBRATION CHARACTERISTICS ANALYSIS OF MULTI-SPAN DRILL STRING SYSTEM BY MEANS OF GREEN'S FUNCTIONS[J]. Engineering Mechanics, 2023, 40(6): 213-225. doi: 10.6052/j.issn.1000-4750.2021.07.0524

基于格林函数的多跨钻柱系统的振动特性分析

doi: 10.6052/j.issn.1000-4750.2021.07.0524
基金项目: 国家自然科学基金项目(51674216)
详细信息
    作者简介:

    范谨铭(1995−),男,山西人,硕士,主要从事输流管道系统动力学研究(E-mail: lx_fanjinming@sina.com)

    韩笃政(1996−),男,山西人,硕士,主要从事钻柱动力学研究(E-mail: handuzheng@qq.com)

    周 杰(1997−),男,四川人,硕士,主要从事输流管系统动力学研究(E-mail: 1536594840@qq.com)

    通讯作者:

    常学平(1978−),男,山西人,副教授,博士,主要从事海洋结构振动与控制研究(E-mail: changxp@swpu.edu.cn)

  • 中图分类号: O302;TE21

VIBRATION CHARACTERISTICS ANALYSIS OF MULTI-SPAN DRILL STRING SYSTEM BY MEANS OF GREEN'S FUNCTIONS

  • 摘要: 随着油气勘探开发向着深层、深水及非常规等复杂领域的不断扩展,钻井面临的井况与约束条件更加苛刻,钻柱的动力学特性更加复杂,失效问题频发。该文应用格林函数理论对多跨旋转钻柱双向耦合动力学特性进行了定量分析和研究。考虑多稳定器及不同约束条件,以钻柱整体为研究对象,基于Euler-Bernoulli梁模型和Hamilton原理建立了具有广义边界约束条件及多稳定器的旋转钻柱双向耦合动力学方程。采用分离变量法、Laplace变换及Laplace逆变换求解所获得的振动微分方程,得到了旋转钻柱系统横向振动的格林函数解以及以格林函数为基础的多跨旋转钻柱系统的闭合形式的模态函数及隐式的频率方程。定量地分析了稳定器位置、弹簧刚度系数与稳定器个数对钻柱系统振动特性的影响。数值结果表明:稳定器位置与固有频率的关系曲线中有相应阶次数目的峰值;随着等效弹簧的刚度系数的增大,系统的固有频率随之增大,但当刚度增加到一定值时,系统的一阶和二阶频率将趋于稳定。研究结果有助于深化对多跨旋转钻柱的动力学特性规律的认识,为提高钻速、减少钻柱失效及钻柱钻井技术的应用提供了新的研究方法和理论依据。
  • 图  1  具有稳定器和弹性边界的旋转钻柱系统的模型示意图

    Figure  1.  Schematic of the spinning drill string system with stabilizers and elastic boundary conditions

    图  2  具有固定-自由边界条件的钻柱前三阶固有频率

    Figure  2.  The first three natural frequencies of the drill string with Clamped-Free boundary conditions

    图  3  具有简支-简支边界条件的钻柱前三阶固有频率

    Figure  3.  The first three natural frequencies of the drill string with Pinned- Pinned boundary conditions

    图  4  具有简支-简支边界条件的钻柱前四阶固有频率

    Figure  4.  The first four natural frequencies of the drill string with Pinned- Pinned boundary conditions

    图  5  具有一个稳定器的钻柱系统的第一阶模态函数

    Figure  5.  The first-order mode shapes of the drill string system with a stabilizer

    图  6  具有一个稳定器的钻柱系统的第二阶模态函数

    Figure  6.  The second order mode shapes of the drill string system with a stabilizer

    图  7  具有不同弹簧刚度系数的钻柱系统的前两阶固有频率

    Figure  7.  The first two natural frequencies of the drill string system with different spring stiffness coefficients

    图  8  具有不同弹簧刚度系数的钻柱系统的一阶模态函数

    Figure  8.  The first-order mode shapes of the drill string system with different spring stiffness coefficients

    图  9  具有不同弹簧刚度系数的钻柱系统的二阶模态函数

    Figure  9.  The second-order mode shapes of the drill string system with different spring stiffness coefficients

    图  10  前两阶固有频率与两个稳定器位置$ {\xi _1} $$ {\xi _2} $的关系图

    Figure  10.  The relationships between the first two natural frequencies of the two stabilizers and the positions $ {\xi _1} $and $ {\xi _2} $

    表  1  钻柱系统的参数

    Table  1.   Parameters of the drill string system

    参数数值
    钻柱长度$ L/{\text{m}} $200
    井筒直径${D_{{\rm{ch}}} }/{\text{m} }$0.28
    钻柱外径$ D/{\text{m}} $0.1270
    钻柱内径$ d/{\text{m}} $0.1016
    内流密度${\rho _{\rm{L}}}$/(kg·m−3)24
    外流密度${\rho _{\rm{M}}}$/(kg·m−3)1200
    钻柱密度${\rho _{\rm{p}}}$/(kg·m−3)7380
    弹簧刚度$ k_n^{} $/(kN·m−1)17500
    附加质量系数$ \chi $1.5
    下载: 导出CSV
  • [1] 张鹤. 超深井钻柱振动激励机制及动力学特性分析[D]. 上海: 上海大学, 2019.

    ZHANG He. Research on the mechanism of vibration excitation and the drillstring dynamics in ultra-deep wells [D]. Shanghai: Shanghai University, 2019. (in Chinese)
    [2] 金春玉. 考虑复合磨损的弯曲井段套管抗挤强度研究[D]. 大庆: 东北石油大学, 2020.

    JIN Chunyu. Research on collapse strength of bending casing with compound wear [D]. Daqing: Northeast Petroleum University, 2020. (in Chinese)
    [3] DENG P F, ZHANG A, FU K, et al. Nonlinear vibration of a time-space coupled drill string system based on the surface morphology of rock [J]. Journal of Sound and Vibration, 2021, 506: 116153. doi: 10.1016/j.jsv.2021.116153
    [4] FU M, ZHANG P, LI J H, et al. Observer and reference governor based control strategy to suppress stick-slip vibrations in oil well drill-string [J]. Journal of Sound and Vibration, 2019, 457: 37 − 50. doi: 10.1016/j.jsv.2019.05.050
    [5] SILVA R S, RITTO T G, SAVI M A. Shape memory alloy couplers applied for torsional vibration attenuation of drill-string systems [J]. Journal of Petroleum Science and Engineering, 2021, 202: 108546. doi: 10.1016/j.petrol.2021.108546
    [6] CHEN J K, LIAO H L, ZHANG Y T, et al. A torsional-axial vibration analysis of drill string endowed with kinematic coupling and stochastic approach [J]. Journal of Petroleum Science and Engineering, 2021, 198: 108157. doi: 10.1016/j.petrol.2020.108157
    [7] LU C D, WU M, CHEN L F, et al. An event-triggered approach to torsional vibration control of drill-string system using measurement-while-drilling data [J]. Control Engineering Practice, 2021, 106: 104668. doi: 10.1016/j.conengprac.2020.104668
    [8] 任福深, 陈素丽, 姚志刚. 轴向载荷作用下细长柔性旋转梁横向振动响应分析[J]. 中国机械工程, 2013, 24(24): 3392 − 3396. doi: 10.3969/j.issn.1004-132X.2013.24.025

    REN Fushen, CHEN Suli, YAO Zhigang. Vibration response analysis of slender flexible revolving beam under axial load [J]. China Mechanical Engineering, 2013, 24(24): 3392 − 3396. (in Chinese) doi: 10.3969/j.issn.1004-132X.2013.24.025
    [9] 田家林, 吴纯明, 杨勇文, 等. 井下钻柱纵向横向耦合振动模型建立与数值分析[J]. 应用数学和力学, 2017, 38(6): 685 − 695.

    TIAN Jialin, WU Chunming, YANG Yongwen, et al. Numerical analysis of downhole drill strings with a longitudinal and lateral coupled vibration model [J]. Applied Mathematics and Mechanics, 2017, 38(6): 685 − 695. (in Chinese)
    [10] 王宝金, 任福深, 朱安贺. 钻井液作用下水平井钻柱横向振动建模与分析[J]. 机械科学与技术, 2018, 37(11): 1670 − 1677.

    WANG Baojin, REN Fushen, ZHU Anhe. Modeling and analysis of lateral vibration for horizontal drillstring under action of drilling mud [J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(11): 1670 − 1677. (in Chinese)
    [11] 温欣, 管志川, 梁德阳, 等. 大斜度井旋转钻柱横向振动规律比例实验研究[J]. 振动与冲击, 2019, 38(9): 216 − 222.

    WEN Xin, GUAN Zhichuan, LIANG Deyang, et al. Proportion tests for transverse vibration laws of rotary drill string in a highly deviated well [J]. Journal of Vibration and Shock, 2019, 38(9): 216 − 222. (in Chinese)
    [12] 董世民, 王宏博. 定向井抽油杆柱横向振动仿真模型及扶正器布点优化[J]. 石油学报, 2020, 41(12): 1686 − 1696. doi: 10.7623/syxb202012021

    DONG Shimin, WANG Hongbo. Simulation model of lateral vibration of sucker rod string in directional wells and point arrangement optimization of centralizer [J]. Acta Petrolei Sinica, 2020, 41(12): 1686 − 1696. (in Chinese) doi: 10.7623/syxb202012021
    [13] PAÏDOUSSIS M P, LUU T P, PRABHAKAR S. Dynamics of a long tubular cantilever conveying fluid downwards, which then flows upwards around the cantilever as a confined annular flow [J]. Journal of Fluids and Structures, 2007, 24(1): 111 − 128.
    [14] CHANG X P, LI X, YANG L, et al. Vibration characteristics of the stepped drill string subjected to gas-structure interaction and spinning motion [J]. Journal of Sound and Vibration, 2019, 450: 251 − 275. doi: 10.1016/j.jsv.2019.02.003
    [15] 李子丰. 油气井杆管柱力学研究进展与争论[J]. 石油学报, 2016, 37(4): 531 − 556. doi: 10.7623/syxb201604013

    LI Zifeng. Research advances and debates on tubular mechanics in oil and gas wells [J]. Acta Petrolei Sinica, 2016, 37(4): 531 − 556. (in Chinese) doi: 10.7623/syxb201604013
    [16] 高德利, 黄文君. 井下管柱力学与控制方法若干研究进展[J]. 力学进展, 2021, 51(3): 620 − 647. doi: 10.6052/1000-0992-21-028

    GAO Deli, HUANG Wenjun. Some research advances in downhole tubular mechanics and control methods [J]. Advances in Mechanics, 2021, 51(3): 620 − 647. (in Chinese) doi: 10.6052/1000-0992-21-028
    [17] BANERJEE J R, SU H, PRABHAKAR S. Development of a dynamic stiffness matrix for free vibration analysis of spinning beams [J]. Computers & Structures, 2004, 82(23/24/25/26): 2189 − 2197.
    [18] CARRERA E, FILIPPI E M, ZAPPINO E. Analysis of rotor dynamic by one-dimensional variable kinematic theories [J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(9): 092501. doi: 10.1115/1.4024381
    [19] 刘旭, 姚林泉. 热环境中旋转功能梯度纳米环板的振动分析[J]. 应用数学和力学, 2020, 41(11): 1224 − 1236.

    LIU Xu, YAO Linquan. Vibration analysis of rotating functionally Gradient Nano annular plates in thermal environment [J]. Applied Mathematics and Mechanics, 2020, 41(11): 1224 − 1236. (in Chinese)
    [20] 张玉环, 任勇生, 张金峰. 旋转悬臂Rayleigh轴的Galerkin近似解[J]. 力学与实践, 2020, 42(2): 701 − 707.

    ZHANG Yuhuan, REN Yongsheng, ZHANG Jinfeng. Galerkin approximate solutions of a rotating cantilever Rayleigh shaft [J]. Mechanics in Engineering, 2020, 42(2): 701 − 707. (in Chinese)
    [21] LIANG F, YANG X D, QIAN Y J, et al. Transverse free vibration and stability analysis of spinning pipes conveying fluid [J]. International Journal of Mechanical Sciences, 2018, 137: 195 − 204. doi: 10.1016/j.ijmecsci.2018.01.015
    [22] LIANG F, GAO A, YANG X D. Dynamical analysis of spinning functionally graded pipes conveying fluid with multiple spans [J]. Applied Mathematical Modelling, 2020, 83: 454 − 469. doi: 10.1016/j.apm.2020.03.011
    [23] LIANG F, YANG X D, ZHANG W, et al. Vibrations in 3D space of a spinning supported pipe exposed to internal and external annular flows [J]. Journal of Fluids and Structures, 2019, 87: 247 − 262. doi: 10.1016/j.jfluidstructs.2019.04.002
    [24] EBRAHIMI-MAMAGHANI A, FOROOGHI A, SARPARAST H, et al. Vibration of viscoelastic axially graded beams with simultaneous axial and spinning motions under an axial load [J]. Applied Mathematical Modelling, 2021, 90: 131 − 150. doi: 10.1016/j.apm.2020.08.041
    [25] 周凤玺, 蒲育. 热-力-粘弹耦合多孔FGVM梁的动力学特性[J]. 工程力学, 2021, 38(2): 16 − 26. doi: 10.6052/j.issn.1000-4750.2020.04.0235

    ZHOU Fengxi, PU Yu. Dynamic behaviors of porous FGVM beams subjected to thermal mechanical viscoelastic effects [J]. Engineering Mechanics, 2021, 38(2): 16 − 26. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0235
    [26] 李振眠, 余杨, 余建星, 等. 基于向量有限元的深水管道屈曲行为分析[J]. 工程力学, 2021, 38(4): 247 − 256. doi: 10.6052/j.issn.1000-4750.2020.06.0357

    LI Zhenmian, YU Yang, YU Jianxing, et al. Buckling analysis of deepwater pipelines by vector form intrinsic finite element method [J]. Engineering Mechanics, 2021, 38(4): 247 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0357
    [27] 何燕丽, 赵翔. 曲梁压电俘能器强迫振动的格林函数解[J]. 力学学报, 2019, 51(4): 1170 − 1179. doi: 10.6052/0459-1879-19-007

    HE Yanli, ZHAO Xiang. Closed-form solutions for forced vibrations of curved piezoelectric energy harvesters by means of Green's functions [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1170 − 1179. (in Chinese) doi: 10.6052/0459-1879-19-007
    [28] CHEN B, LIN B C, ZHAO X, et al. Closed-form solutions for forced vibrations of a cracked double-beam system interconnected by a viscoelastic layer resting on Winkler-Pasternak elastic foundation [J]. Thin-Walled Structures, 2021, 163: 107688. doi: 10.1016/j.tws.2021.107688
    [29] HAN H S, CAO D Q, LIU L, et al. A new approach for steady-state dynamic response of axially functionally graded and non-uniformed beams [J]. Composite Structures, 2019, 226: 111270. doi: 10.1016/j.compstruct.2019.111270
    [30] ALBASSAM B A. Vibration control of a flexible beam structure utilizing dynamic Green’s function [J]. Journal of King Saud University-Engineering Sciences, 2021, 33(3): 186 − 200. doi: 10.1016/j.jksues.2020.03.005
    [31] RONČEVIĆ G S, RONČEVIĆ B, SKOBLAR A, et al. Closed form solutions for frequency equation and mode shapes of elastically supported Euler-Bernoulli beams [J]. Journal of Sound and Vibration, 2019, 457: 118 − 138. doi: 10.1016/j.jsv.2019.04.036
    [32] ZHAO X, ZHU W D, LI Y H. Analytical solutions of nonlocal coupled thermoelastic forced vibrations of micro-/nano-beams by means of Green's functions [J]. Journal of Sound and Vibration, 2020, 481: 115407. doi: 10.1016/j.jsv.2020.115407
    [33] ABU-HILAL M. Forced vibration of Euler–Bernoulli beams by means of dynamic Green functions [J]. Journal of Sound and Vibration, 2003, 267(2): 191 − 207. doi: 10.1016/S0022-460X(03)00178-0
    [34] ZHAO Q L, SUN Z L. In-plane forced vibration of curved pipe conveying fluid by Green function method [J]. Applied Mathematics and Mechanics, 2017, 38(10): 1397 − 1414. doi: 10.1007/s10483-017-2246-6
    [35] LI M, ZHAO X, LI X, et al. Stability analysis of oil-conveying pipes on two-parameter foundations with generalized boundary condition by means of Green’s functions [J]. Engineering Structures, 2018, 173: 300 − 312. doi: 10.1016/j.engstruct.2018.07.001
    [36] 赵翔, 周扬, 邵永波, 等. 基于Green函数法的Timoshenko曲梁强迫振动分析[J]. 工程力学, 2020, 37(11): 12 − 27. doi: 10.6052/j.issn.1000-4750.2019.11.0708

    ZHAO Xiang, ZHOU Yang, SHAO Yongbo, et al. Analytical solutions for forced vibrations of Timoshenko curved beam by means of Green's functions [J]. Engineering Mechanics, 2020, 37(11): 12 − 27. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.11.0708
    [37] 邓先琪, 苏成, 马海涛. 功能梯度梁静力与动力分析的格林函数法[J]. 工程力学, 2020, 37(9): 248 − 256. doi: 10.6052/j.issn.1000-4750.2019.10.0615

    DENG Xianqi, SU Cheng, MA Haitao. Green's function method for static and dynamic analysis of functionally graded beams [J]. Engineering Mechanics, 2020, 37(9): 248 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.10.0615
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  22
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-10
  • 修回日期:  2021-12-02
  • 网络出版日期:  2023-02-04
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回