留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

输电线路防舞阻尼器系统参数分析及设计研究

黄赐荣 楼文娟 徐海巍 张跃龙

黄赐荣, 楼文娟, 徐海巍, 张跃龙. 输电线路防舞阻尼器系统参数分析及设计研究[J]. 工程力学, 2022, 39(12): 87-97. doi: 10.6052/j.issn.1000-4750.2021.07.0522
引用本文: 黄赐荣, 楼文娟, 徐海巍, 张跃龙. 输电线路防舞阻尼器系统参数分析及设计研究[J]. 工程力学, 2022, 39(12): 87-97. doi: 10.6052/j.issn.1000-4750.2021.07.0522
HUANG Ci-rong, LOU Wen-juan, XU Hai-wei, ZHANG Yue-long. RESEARCH ON PARAMETER ANALYSIS AND DESIGN OF TRANSMISSION LINE-ANTI-GALLOPING DAMPER SYSTEM[J]. Engineering Mechanics, 2022, 39(12): 87-97. doi: 10.6052/j.issn.1000-4750.2021.07.0522
Citation: HUANG Ci-rong, LOU Wen-juan, XU Hai-wei, ZHANG Yue-long. RESEARCH ON PARAMETER ANALYSIS AND DESIGN OF TRANSMISSION LINE-ANTI-GALLOPING DAMPER SYSTEM[J]. Engineering Mechanics, 2022, 39(12): 87-97. doi: 10.6052/j.issn.1000-4750.2021.07.0522

输电线路防舞阻尼器系统参数分析及设计研究

doi: 10.6052/j.issn.1000-4750.2021.07.0522
基金项目: 国家自然科学基金项目(51838012,51978614)
详细信息
    作者简介:

    黄赐荣(1995−),男,海东市人,博士生,主要从事输电线路防舞研究(E-mail: 308912974@qq.com)

    楼文娟(1963−),女,杭州市人,教授,博士,主要从事输电线路风偏舞动研究(E-mail: Louwj@zju.edu.cn)

    张跃龙(1996−),男,长德市人,博士生,主要从事输电线路脱冰跳跃研究(E-mail: 3077646025@qq.com)

    通讯作者:

    徐海巍(1986−),男,杭州市人,副教授,博士,主要从事结构抗风设计研究(E-mail: haiweix@zju.edu.cn)

  • 中图分类号: TM751

RESEARCH ON PARAMETER ANALYSIS AND DESIGN OF TRANSMISSION LINE-ANTI-GALLOPING DAMPER SYSTEM

  • 摘要: 针对目前覆冰导线舞动频发现状,提出了一种通过在导线靠近输电塔位置处设置阻尼器来减振耗能从而实现输电线路舞动抑制的方法。基于Hamilton原理运用多阶伽辽金函数推导得到了导线-阻尼器系统的广义运动方程,并以某750 kV单档八分裂输电线路为例进行运动方程特征值分析,得到了导线-阻尼器系统的动力特性,探索了导线的垂度参数、阻尼器安装位置、阻尼系数及刚度系数等对系统等效阻尼比的影响,阻尼器安装位置越靠近跨中,系统的最大阻尼比提升效果越明显,两侧对称安装阻尼器可以有效地减小最优阻尼系数。采用数值算例和有限元数值仿真技术比较了粘滞阻尼器与负刚度阻尼器(NSD)对导线系统的减振效果,并针对NSD提出了参数的优化设计方法。研究表明:相比传统阻尼器,NSD可以在较低阻尼系数下有效地提高系统各阶的最大阻尼比,且能够明显降低导线系统的自振频率;系统所能达到的一阶最大阻尼比对NSD安装位置的变化不敏感;通过有限元仿真证实了,基于NSD的输电导线阻尼器设置方案相较于传统阻尼器方案具有更好的防舞性能。
  • 图  1  输电线路-阻尼器系统振动模型

    Figure  1.  Vibration model of the transmission line-damper system

    图  2  覆冰导线气动力受力图

    Figure  2.  Aerodynamic force of iced conductor

    图  3  不同伽辽金阶数下的系统一阶等效阻尼比

    Figure  3.  First-order equivalent damping ratio of system under different Galerkin orders

    图  4  不同垂度参数下的一阶等效阻尼比

    Figure  4.  First-order equivalent damping ratio of system under different sag parameters

    图  5  不同垂度参数下的系统高阶等效阻尼比

    Figure  5.  High-order equivalent damping ratios under different sag parameters

    图  6  不同阻尼器安装形式下的系统一阶等效阻尼比

    Figure  6.  The first-order equivalent damping ratio of the system under different installation forms of dampers

    图  7  不同阻尼器安装位置下的系统动力特性

    Figure  7.  Dynamic characteristics of the system under different damper installation positions

    图  8  不同垂度参数下的系统动力特性

    Figure  8.  Dynamic characteristics of system under different sag parameters

    图  9  不同NSD安装位置下的系统动力特性

    Figure  9.  Dynamic characteristics of system under different NSD installation positions

    图  10  覆冰子导线的三分力系数

    Figure  10.  Three-component force coefficients of iced sub-conductor

    图  11  各风攻角下的舞动临界阻尼比

    Figure  11.  Critical damping ratio of galloping under various wind attack angles

    图  12  两种阻尼器对系统阻尼比的提升情况

    Figure  12.  The improvement of damping ratio by two kinds of dampers

    图  13  77°风攻角下安装阻尼器前后防舞效果对比

    Figure  13.  Comparison of anti-galloping effects before and after installing dampers under 77° wind attack angle

    图  14  171°风攻角下安装阻尼器前后防舞效果对比

    Figure  14.  Comparison of anti-galloping effects before and after installing dampers under 171° wind attack angle

    表  1  子导线物理参数表

    Table  1.   Physical parameters of sub-conductors

    参数 数值
    裸导线直径D/m 0.03
    分裂半径R/m 0.5226
    初始阻尼比ξy, ξz, ξθ/(%) 0.22/0.22/1.42
    轴向刚度AE/kN 34 560
    裸导线线密度ρ/(kg/m) 1.68
    覆冰最大厚度hice/mm 10/15/20/25/30
    额定拉断力Tmax/kN 128.10
    转动惯量I/(kg·m2/m) 0.001 59
    y轴静距Sy/(kg·m/m) 0.00
    z轴静矩Sz/(kg·m/m) 0.0035
    注:转动惯量、y轴静距、z轴静距均为单位长度的物理量。
    下载: 导出CSV

    表  2  防舞阻尼器设计参数

    Table  2.   Design parameters of anti-galloping damper

    设计参数 粘滞阻尼器 NSD
    刚度/(N/m) 0
    7120
    −8000
    阻尼/(N·s/m) 4160
    安装位置/m xd1=xd2=L/10
    下载: 导出CSV
  • [1] 霍冰, 刘习军, 张素侠. 相邻档距作用下覆冰导线舞动的复杂运动响应[J]. 工程力学, 2016, 33(5): 249 − 256. doi: 10.6052/j.issn.1000-4750.2014.09.0819

    HUO Bing, LIU Xijun, ZHANG Suxia. Complex response of galloping for an iced transmission line considering excitation of adjacent span [J]. Engineering Mechanics, 2016, 33(5): 249 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.09.0819
    [2] ZHOU A Q, LIU X J, ZHANG S X, et al. Wind tunnel test of the influence of an interphase spacer on the galloping control of iced eight-bundled conductors [J]. Cold Regions Science and Technology, 2018, 155: 354 − 366. doi: 10.1016/j.coldregions.2018.08.026
    [3] 楼文娟, 孙珍茂, 许福友, 等. 输电导线扰流防舞器气动力特性风洞试验研究[J]. 浙江大学学报: 工学版, 2011, 45(1): 93 − 98.

    LOU Wenjuan, SUN Zhenmao, XU Fuyou, et al. Experimental study on aerodynamic characteristics of air flow spoiler [J]. Journal of Zhejiang University: Engineering Science, 2011, 45(1): 93 − 98. (in Chinese)
    [4] HAVARD D G, POHLMAN J C. Five years' field trials of detuning pendulums for galloping control [J]. IEEE Transactions on Power Apparatus and Systems, 1984, 103(2): 318 − 327.
    [5] 刘连光, 赵强, 刘自发, 等. 线夹回转式导线阻尼间隔棒防舞机理与模态分析[J]. 电力建设, 2014, 35(3): 74 − 78. doi: 10.3969/j.issn.1000-7229.2014.03.014

    LIU Lianguang, ZHAO Qiang, LIU Zifa, et al. Anti-galloping mechanism and modal analysis on rotary clamp conductor spacer-damper [J]. Electric Power Construction, 2014, 35(3): 74 − 78. (in Chinese) doi: 10.3969/j.issn.1000-7229.2014.03.014
    [6] LOU W J, HUANG C R, HUANG M F, et al. An aerodynamic anti-galloping technique of iced 8-bundled conductors in ultra-high-voltage transmission lines [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2019, 193: 103972.
    [7] 葛江锋. 分裂导线线夹回转式间隔棒防舞效果的数值仿真研究 [D]. 北京: 华北电力大学, 2015.

    GE Jiangfeng. Research on numeral simulation on anti-galloping effect of rotary clamp conductor spacer [D]. Beijing: North China Electric Power University, 2015. (in Chinese)
    [8] 霍冰, 刘习军, 张锐. 高阶扭转模态耦合下覆冰导线的稳定性和影响因素分析[J]. 工程力学, 2020, 37(2): 250 − 258. doi: 10.6052/j.issn.1000-4750.2019.01.0093

    HUO Bing, LIU Xijun, ZHANG Rui. Stability and influence factors on iced conductor with the participation of multi-ordered torsional modes [J]. Engineering Mechanics, 2020, 37(2): 250 − 258. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.01.0093
    [9] 梁洪超. 覆冰导线全攻角舞动特性及基于阻尼减振技术的防舞研究 [D]. 杭州: 浙江大学, 2019.

    LIANG Hongchao. Galloping characteristics of iced conductor in full angle of attack range and anti-galloping research based on vibration damping technology [D]. Hangzhou: Zhejiang university, 2019. (in Chinese)
    [10] ZHOU L S, YAN B, ZHANG L, et al. Study on galloping behavior of iced eight bundle conductor transmission lines [J]. Journal of Sound and Vibration, 2016, 362: 85 − 101. doi: 10.1016/j.jsv.2015.09.046
    [11] LOU W J, HUANG C R, HUANG M F, et al. Galloping suppression of iced transmission lines by viscoelastic-damping interphase spacers [J]. Journal of Engineering Mechanics, 2020, 146 (12): 04020135.
    [12] 陈立群, 刘延柱. 非线性振动 [M]. 北京: 高等教育出版社, 2001.

    CHEN Liqun, LIU Yanzhu. Nonlinear vibration [M]. Beijing: Higher Education Press, 2001. (in Chinese)
    [13] LOU W J, WU D G, XU H W, et al. Galloping stability criterion for 3-DOF coupled motion of an ice-accreted conductor [J]. Journal of Structural Engineering, 2020, 146(5): 04020071. doi: 10.1061/(ASCE)ST.1943-541X.0002601
    [14] YAN Z M, YAN Z T, LI Z L, et al. Nonlinear galloping of internally resonant iced transmission lines considering eccentricity [J]. Journal of Sound and Vibration, 2012, 331(15): 3599 − 3616. doi: 10.1016/j.jsv.2012.03.011
    [15] GB 50545−2010, 110 kV~750 kV架空输电线路设计规范 [S]. 北京: 中国计划出版社, 2010.

    GB 50545−2010, Code for design of 110 kV~750 kV overhead transmission line [S]. Beijing: China Jihua Press, 2010.
    [16] 陈水生, 孙炳楠, 胡隽. 粘弹性阻尼器对斜拉桥拉的振动控制研究[J]. 土木工程学报, 2002, 35(6): 59 − 65.

    CHEN Shuisheng, SUN Bingnan, HU Juan. Simulation of anti-galloping device's application in UHV transmission line [J]. China Civil Engineering Journal, 2002, 35(6): 59 − 65. (in Chinese)
    [17] 陈洋洋, 陈凯, 谭平, 等. 负刚度非线性能量阱减震控制性能研究[J]. 工程力学, 2019, 36(3): 159 − 168.

    CHEN Yangyang, CHEN Kai, TAN Ping, et al. A study on structural seismic control performance by nonlinear energy sinks with negative stiffness [J]. Engineering Mechanics, 2019, 36(3): 159 − 168. (in Chinese)
    [18] 纪晗, 熊世树, 袁涌, 等. 基于负刚度原理的结构减震效果理论分析[J]. 振动与冲击, 2019, 36(3): 159 − 168.

    JI Han, XIONG Shishu, YUAN Yong, et al. Influence analysis of the structural seismic reduction effect based on negative stiffness principle [J]. Journal of Vibration and Shock, 2019, 36(3): 159 − 168. (in Chinese)
    [19] 刘亚坤, 李林锐, 李世龙, 等. 架空输电线路的舞动幅值分析与试验研究[J]. 上海交通大学学报, 2016, 50(6): 825 − 830.

    LIU Yakun, LI Linrui, LI Shilong, et al. Analysis and experiment on galloping amplitude of transmission lines [J]. Journal of Shanghai Jiao Tong University, 2016, 50(6): 825 − 830. (in Chinese)
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  155
  • HTML全文浏览量:  34
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-10
  • 录用日期:  2021-11-16
  • 修回日期:  2021-11-03
  • 网络出版日期:  2021-11-16
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回