SELECTION AND SCALING OF GROUND MOTIONS IN TIME-HISTORY ANALYSIS FOR ESTIMATES OF MEAN STRUCTURAL RESPONSES
-
摘要: 地震动输入是导致结构时程分析结果不确定性的最重要的影响因素,如何选择地震波实现对结构反应的“准确、有效、一致”估计是时程分析中的一项重要任务。该文对以结构反应均值估计为目标的时程分析选波问题,基于目标谱法进行了系统深入的研究。针对谱匹配,引入具有明确物理含义的权重系数,对提出的可考虑多振型影响的双指标多频段工程经验选波法和理论更加完备的最小二乘加权调幅选波法,进行了详尽的算例分析。研究表明,双指标多频段经验法可满足现有规范要求。通过与国内学者、人工波方法和NGA-West2强震数据库选波模块的比较,论证了加权调幅法在估计结构反应均值方面具有可靠的准确性,并具有广泛的适用性,也包括减隔震结构。通过比较研究也进一步明确了加权调幅法的优势在于可明显降低结构反应的离散性,更适于长周期结构的弹塑性时程分析。针对目标谱选择,提出以Newmark三联谱作为目标谱的选波方法,拟解决长周期及超长周期结构的选波问题。
-
关键词:
- 抗震时程分析 /
- 地震波选择 /
- 双指标多频段经验方法 /
- 加权调幅法 /
- Newmark三联谱
Abstract: The selection of ground motions has significant effects on structural response evaluation in time-history analysis. It is an important problem how to select ground motions to provide accurate, efficient, and consistent estimates of “true” mean structural responses. This paper focuses on the selection and scaling of ground motions in time-history analysis for estimates of mean structural responses by target spectral matching method. In the research of spectral matching, the normalized modal-mass participation factors are used as the weight factors to consider significant contributions of higher modes. Many detailed structural analysis examples are used to check the double parameters empirical multi-band matching method and the weighted scaling method based on least squares method with more complete theory. It is proved that the double parameters empirical multi-band matching method can satisfy the requirements of the code for seismic design of buildings. The weighted scaling method is compared with the methods developed by other local scholars, the artificial wave method and the method based on NGA-West2 database. The comparative study demonstrates that the weighted scaling method has reliable accuracy for estimates of mean structural responses and wider applicability including the base-isolated buildings. Through the comparative analysis, it is found that the significant advantage of the weighted scaling method is reducing the variability of structural responses and this method is more suitable for the nonlinear time-history analysis of long period structures. In the research of target response spectra selection, a Newmark spectrum is preliminarily used as a target spectrum, which may be a solution for long and overlong period structures. -
表 1 所选3条波与反应谱结果对比
Table 1. Base shear of the three records and the response spectrum
所选地震波 基底剪力/kN 相对误差/(%) HCH90 14035.04 −6.09 TCU042-N 13947.40 −6.68 YER270 12107.28 −18.99 平均值 13813.94 −7.57 反应谱 14945.97 − -
[1] BOMMER J J, ACEVEDO A. The use of real earthquake accelerograms as input to dynamic analysis [J]. Journal of Earthquake Engineering, 2004, 8(1): 43 − 91. [2] PADGETT J E, DESROCHES R. Sensitivity of seismic response and fragility to parameter uncertainty [J]. Journal of Structural Engineering, 2007, 133(12): 1710 − 1718. doi: 10.1061/(ASCE)0733-9445(2007)133:12(1710) [3] KIM T, KWON O S, SONG J. Clustering‐based adaptive ground motion selection algorithm for efficient estimation of structural fragilities [J]. Earthquake Engineering & Structural Dynamics, 2021, 50(6): 1755 − 1776. [4] DU A, PADGETT J E. Multivariate return period‐based ground motion selection for improved hazard consistency over a vector of intensity measures [J]. Earthquake Engineering & Structural Dynamics, 2021, 50(2): 415 − 435. [5] 任叶飞, 尹建华, 温瑞智, 等. 结构抗倒塌易损性分析中地震动输入不确定性影响研究[J]. 工程力学, 2020, 37(1): 115 − 125. doi: 10.6052/j.issn.1000-4750.2019.01.0042REN Yefei, YIN Jianhua, WEN Ruizhi, et al. The impact of ground motion inputs on the uncertainty of structural collapse fragility [J]. Engineering Mechanics, 2020, 37(1): 115 − 125. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.01.0042 [6] JI K, WEN R, ZONG C, et al. Genetic algorithm‐based ground motion selection method matching target distribution of generalized conditional intensity measures [J]. Earthquake Engineering & Structural Dynamics, 2020, 50(6): 1497 − 1516. [7] GEORGIOUDAKIS M, FRAGIADAKIS M. Selection and scaling of ground motions using multicriteria optimization [J]. Journal of Structural Engineering, 2020, 146(11): 1 − 12. [8] REYES J C, KALKAN E. Required number of records for ASCE/SEI 7 ground-motion scaling procedure [R]. Berkeley, CA.: Earthquake Engineering Research Institute, 2011. [9] 崔江余, 杜修力. 重大工程设定地震动确定[J]. 世界地震工程, 2000, 16(4): 25 − 28. doi: 10.3969/j.issn.1007-6069.2000.04.005CUI Jiangyu, DU Xiuli. Determination of design ground motion for critical engineering project [J]. World Information on Earthquake Engineering, 2000, 16(4): 25 − 28. (in Chinese) doi: 10.3969/j.issn.1007-6069.2000.04.005 [10] MALHOTRA P K. Seismic response spectra for probabilistic analysis of nonlinear systems [J]. Journal of Structural Engineering, 2011, 137(11): 1272 − 1281. doi: 10.1061/(ASCE)ST.1943-541X.0000373 [11] BAKER J W. Conditional mean spectrum: tool for ground-motion selection [J]. Journal of Structural Engineering, 2011, 137(3): 322 − 331. doi: 10.1061/(ASCE)ST.1943-541X.0000215 [12] BAKER J W, LEE C. An improved algorithm for selecting ground motions to match a conditional spectrum [J]. Journal of Earthquake Engineering, 2018, 22(4): 708 − 723. doi: 10.1080/13632469.2016.1264334 [13] 张锐, 李宏男, 王东升, 等. 结构时程分析中强震记录选取研究综述[J]. 工程力学, 2019, 36(2): 1 − 16. doi: 10.6052/j.issn.1000-4750.2018.01.0037ZHANG Rui, LI Hongnan, WANG Dongsheng, et al. Selection and scaling of real accelerograms as input to time-history analysis of structures: a state-of-the-art review [J]. Engineering Mechanics, 2019, 36(2): 1 − 16. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.01.0037 [14] 冀昆, 温瑞智, 任叶飞. 适用于我国抗震设计规范的天然强震记录选取[J]. 建筑结构学报, 2017, 38(12): 57 − 67.JI Kun, WEN Ruizhi, REN Yefei. Ground motion recordings selection for seismic design code [J]. Journal of Building Structures, 2017, 38(12): 57 − 67. (in Chinese) [15] KWONG N S, CHOPRA A K. A generalized conditional mean spectrum and its application for intensity-based assessments of seismic demands [J]. Earthquake Spectra, 2017, 33(1): 123 − 143. doi: 10.1193/040416eqs050m [16] 尹建华, 冀昆, 任叶飞, 等. 条件均值谱选取记录的结构抗倒塌易损性分析[J]. 哈尔滨工业大学学报, 2018, 50(12): 119 − 124. doi: 10.11918/j.issn.0367-6234.201804077YIN Jianhua, JI Kun, REN Yefei, et al. Structural collapse fragility analysis based on strong ground-motion records selection using conditional mean spectrum [J]. Journal of Harbin Institute of Technology, 2018, 50(12): 119 − 124. (in Chinese) doi: 10.11918/j.issn.0367-6234.201804077 [17] RIDDELL R, GARCIA J. Hysteretic energy spectrum and damage control [J]. Earthquake Engineering & Structural Dynamics, 2001, 30(1): 1791 − 1816. [18] 叶列平, 马千里, 缪志伟. 结构抗震分析用地震动强度指标的研究[J]. 地震工程与工程振动, 2009, 29(4): 9 − 22. doi: 10.13197/j.eeev.2009.04.019YE Lieping, MA Qianli, MIAO Zhiwei. Study on earthquake intensities for seismic analysis of structures [J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(4): 9 − 22. (in Chinese) doi: 10.13197/j.eeev.2009.04.019 [19] 陈波. 结构非线性动力分析中地震动记录的选择和调整方法研究 [D]. 哈尔滨: 中国地震局地球物理研究所, 2015.CHEN Bo. Ground motion selection and modification methods for performing nonlinear dynamic analysis of buildings [D]. Harbin: Institute of Geophysics, China Earthquake Administration, 2015. (in Chinese) [20] PANT D R, MAHARJAN M. On selection and scaling of ground motions for analysis of seismically isolated structures [J]. Earthquake Engineering and Engineering Vibration, 2016, 15(4): 633 − 648. doi: 10.1007/s11803-016-0354-9 [21] WANG G. A ground motion selection and modification method capturing response spectrum characteristics and variability of scenario earthquakes [J]. Soil Dynamics and Earthquake Engineering, 2011, 31(4): 611 − 625. doi: 10.1016/j.soildyn.2010.11.007 [22] 王东升, 岳茂光, 李晓莉, 等. 高墩桥梁抗震时程分析输入地震波选择[J]. 土木工程学报, 2013, 46(增刊): 208 − 213. doi: 10.15951/j.tmgcxb.2013.s1.013WANG Dongsheng, YUE Maoguang, LI Xiaoli, et al. Selections of real ground motions in seismic history analysis for bridges with high columns [J]. China Civil Engineering Journal, 2013, 46(Suppl): 208 − 213. (in Chinese) doi: 10.15951/j.tmgcxb.2013.s1.013 [23] 岳茂光. 场地—结构体系基于性能抗震设计分析方法研究 [D]. 大连: 大连理工大学, 2009.YUE Maoguang. Studies on analysis method of performance-based seismic design of site-structure system [D]. Dalian: Dalian University of Technology, 2009. (in Chinese) [24] 张锐, 成虎, 吴浩, 等. 时程分析考虑高阶振型影响的多频段地震波选择方法研究[J]. 工程力学, 2018, 35(6): 162 − 172. doi: 10.6052/j.issn.1000-4750.2017.03.0164ZHANG Rui, CHENG Hu, WU Hao, et al. Multi-band matching method for selection of ground motions in time-history analysis considering higher modes effects [J]. Engineering Mechanics, 2018, 35(6): 162 − 172. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.03.0164 [25] 张锐, 王东升, 陈笑宇, 等. 考虑高阶振型影响的时程分析加权调整选波方法[J]. 土木工程学报, 2019, 52(9): 53 − 68.ZHANG Rui, WANG Dongsheng, CHEN Xiaoyu, et al. Weighted scaling and selecting method of ground motions in time-history analysis considering influence of higher modes [J]. China Civil Engineering Journal, 2019, 52(9): 53 − 68. (in Chinese) [26] ZHANG R, WANG D, CHEN X, et al. Weighted and unweighted scaling methods for ground motion selection in time-history analysis of structures [J]. Journal of Earthquake Engineering, 2020, 24(7): 1 − 36. [27] 杨溥, 李英民, 赖明. 结构时程分析法输入地震波的选择控制指标[J]. 土木工程学报, 2000, 33(6): 33 − 37. doi: 10.3321/j.issn:1000-131X.2000.06.005YANG Pu, LI Yingmin, LAI Ming. A new method for selecting inputting waves for time-history analysis [J]. China Civil Engineering Journal, 2000, 33(6): 33 − 37. (in Chinese) doi: 10.3321/j.issn:1000-131X.2000.06.005 [28] 王亚勇. 结构时程分析输入地震动和输出结果解读[J]. 建筑结构, 2017, 47(11): 1 − 6.WANG Yayong. Case studies on input ground motion criteria and output results for structural time-history analysis [J]. Building Structure, 2017, 47(11): 1 − 6. (in Chinese) [29] ZHANG R, WANG D, CHEN X, et al. Comparison of scaling ground motions using arithmetic with logarithm values for spectral matching procedure [J]. Shock and Vibration, 2020, 2020(1): 1 − 14. [30] 王东升, 张锐, 陈笑宇, 等. 目标谱选波方法在算术与对数坐标下的差异分析[J]. 地震工程与工程振动, 2020, 40(2): 43 − 53. doi: 10.13197/j.eeev.2020.02.43.wangds.005WANG Dongsheng, ZHANG Rui, CHEN Xiaoyu, et al. Analysis of differences between spectral matching method in arithmetic and logarithmic coordinates [J]. Earthquake Engineering & Engineering Dynamics, 2020, 40(2): 43 − 53. (in Chinese) doi: 10.13197/j.eeev.2020.02.43.wangds.005 [31] 蔡丽桢, 王东升, 张锐, 等. 钢筋混凝土高层建筑抗震时程分析选波方法比较研究[J]. 世界地震工程, 2021, 37(2): 203 − 213. doi: 10.3969/j.issn.1007-6069.2021.02.023CAI Lizhen, WANG Dongsheng, ZHANG Rui, et al. Comparison of strong-motion selection methods for time-history analysis of RC high-rise buildings [J]. World Earthquake Engineering, 2021, 37(2): 203 − 213. (in Chinese) doi: 10.3969/j.issn.1007-6069.2021.02.023 [32] GB 18306−2015, 中国地震动参数区划图[S]. 北京: 中国标准出版社, 2016.GB 18306−2015, Seismic ground motion parameters zonation map of China [S]. Beijing: China Architecture & Building Press, 2016. (in Chinese) [33] 任叶飞, 张颖楚, 冀昆, 等. 全国省会城市建筑结构时程分析推荐地震动输入[J]. 建筑结构, 2018, 48(增刊 2): 284 − 290. doi: 10.19701/j.jzjg.2018.S2.058REN Yefei, ZHANG Yingchu, JI Kun, et al. Recommended input ground motions for the dynamic time-history analysis of building structures in the provincial capitals of China [J]. Building Structure, 2018, 48(Suppl 2): 284 − 290. (in Chinese) doi: 10.19701/j.jzjg.2018.S2.058 [34] HANCOCK J, WATSON-LAMPREY J, ABRAHAMSON N A, et al. An improved method of matching response spectra of recorded earthquake ground motion using wavelets [J]. Journal of Earthquake Engineering, 2006, 10(1): 67 − 89. doi: 10.1080/13632460609350629 [35] 胡进军, 梁琰, 杨永强. 隔震结构的地震动输入研究现状简析[J]. 建筑结构, 2018, 48(增刊 2): 457 − 462.HU Jinjun, LIANG Yan, YANG Yongqiang. A brief review on the input ground motion for isolated structures [J]. Building Structure, 2018, 48(Suppl 2): 457 − 462. (in Chinese) [36] 张锐. 结构抗震时程分析输入地震波选择方法研究[D]. 大连: 大连理工大学, 2020.ZHANG Rui. Earthquake ground motion selection and scaling methods for structural time-history analysis [D]. Dalian: Dalian University of Technology, 2020. (in Chinese) [37] NEWMARK N M, HALL W J. Seismic design criteria for nuclear reactor facilities [C]. Santiago, Chile: Proceedings of the Fourth World Conference on Earthquake Engineering, Volumn 4, 1969. -