留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

以结构反应均值估计为目标的时程分析输入地震波选择研究

张锐 王东升 孙治国 李宏男 刘文锋

张锐, 王东升, 孙治国, 李宏男, 刘文锋. 以结构反应均值估计为目标的时程分析输入地震波选择研究[J]. 工程力学, 2022, 39(12): 74-86. doi: 10.6052/j.issn.1000-4750.2021.07.0521
引用本文: 张锐, 王东升, 孙治国, 李宏男, 刘文锋. 以结构反应均值估计为目标的时程分析输入地震波选择研究[J]. 工程力学, 2022, 39(12): 74-86. doi: 10.6052/j.issn.1000-4750.2021.07.0521
ZHANG Rui, WANG Dong-sheng, SUN Zhi-guo, LI Hong-nan, LIU Wen-feng. SELECTION AND SCALING OF GROUND MOTIONS IN TIME-HISTORY ANALYSIS FOR ESTIMATES OF MEAN STRUCTURAL RESPONSES[J]. Engineering Mechanics, 2022, 39(12): 74-86. doi: 10.6052/j.issn.1000-4750.2021.07.0521
Citation: ZHANG Rui, WANG Dong-sheng, SUN Zhi-guo, LI Hong-nan, LIU Wen-feng. SELECTION AND SCALING OF GROUND MOTIONS IN TIME-HISTORY ANALYSIS FOR ESTIMATES OF MEAN STRUCTURAL RESPONSES[J]. Engineering Mechanics, 2022, 39(12): 74-86. doi: 10.6052/j.issn.1000-4750.2021.07.0521

以结构反应均值估计为目标的时程分析输入地震波选择研究

doi: 10.6052/j.issn.1000-4750.2021.07.0521
基金项目: 河北省自然科学基金项目(E2020202038);中国地震局工程力学研究所基本科研业务费专项项目(2020D28);辽宁省教育厅自然科学研究项目(LJKZ0504)
详细信息
    作者简介:

    张 锐(1978−),女,辽宁铁岭人,副教授,博士,主要从事结构抗震和防灾减灾研究(E-mail: zhangrui@djtu.edu.cn)

    孙治国(1980−),男,山东德州人,副研究员,博士,主要从事结构工程抗震研究(E-mail: sunzhiguo@cidp.edu.cn)

    李宏男(1957−),男,辽宁沈阳人,教授,博士,长江学者特聘教授,主要从事结构工程抗震研究(E-mail: hnli@dlut.edu.cn)

    刘文锋(1966−),男,山东青岛人,教授,博士,主要从事结构抗震与结构安全研究(E-mail: lwf6688@sohu.com)

    通讯作者:

    王东升(1974−),男,内蒙古库伦旗人,教授,博士,博导,主要从事结构抗震和防灾减灾研究(E-mail: dswang@hebut.edu.cn)

  • 中图分类号: TU311.3;P315.9

SELECTION AND SCALING OF GROUND MOTIONS IN TIME-HISTORY ANALYSIS FOR ESTIMATES OF MEAN STRUCTURAL RESPONSES

  • 摘要: 地震动输入是导致结构时程分析结果不确定性的最重要的影响因素,如何选择地震波实现对结构反应的“准确、有效、一致”估计是时程分析中的一项重要任务。该文对以结构反应均值估计为目标的时程分析选波问题,基于目标谱法进行了系统深入的研究。针对谱匹配,引入具有明确物理含义的权重系数,对提出的可考虑多振型影响的双指标多频段工程经验选波法和理论更加完备的最小二乘加权调幅选波法,进行了详尽的算例分析。研究表明,双指标多频段经验法可满足现有规范要求。通过与国内学者、人工波方法和NGA-West2强震数据库选波模块的比较,论证了加权调幅法在估计结构反应均值方面具有可靠的准确性,并具有广泛的适用性,也包括减隔震结构。通过比较研究也进一步明确了加权调幅法的优势在于可明显降低结构反应的离散性,更适于长周期结构的弹塑性时程分析。针对目标谱选择,提出以Newmark三联谱作为目标谱的选波方法,拟解决长周期及超长周期结构的选波问题。
  • 图  1  地震波选择是联系地震动输入和结构反应的桥梁

    Figure  1.  Ground motions selection is a bridge between records input and structural responses

    图  2  25层框架-剪力墙结构标准层平面图

    Figure  2.  Standard floor plan of 25-story frame-shear wall structure

    图  3  30层框架-剪力墙结构标准层平面图

    Figure  3.  Standard floor plan of 30-story frame-shear wall structure

    图  4  所选3条波均值与IDA均值比较

    Figure  4.  Comparison of the mean values between IDA and the three records selected by the developed method

    图  5  15层框架-剪力墙结构标准层平面图

    Figure  5.  Standard floor plan of a 15-story frame-shear wall structure

    图  6  44层框架-核心筒结构标准层平面图

    Figure  6.  Standard floor plan of a 44-story frame-core tube structure

    图  7  加权与等权方法基于两种目标谱时最大层间位移角均值

    Figure  7.  The mean of peak inter-story drift ratios by the weighted and unweighted scaling methods using two target spectra

    图  8  加权与等权方法基于两种目标谱时最大层间位移角COV

    Figure  8.  The COVs of peak inter-story drift ratios by the weighted and unweighted scaling methods using two target spectra

    图  9  调幅后人工波与目标谱的匹配(TCU042-W为例)

    Figure  9.  Spectral matching between the scaled artificial wave and target spectrum

    图  10  天然波与人工波方法所得最大层间位移角均值

    Figure  10.  The mean of peak inter-story drift ratios by the methods that apply to real earthquake records and artificial waves

    图  11  天然波与人工波方法所得最大层间位移角COV

    Figure  11.  The COVs of peak inter-story drift ratios by the methods that apply to real earthquake records and artificial waves

    图  12  各数量分组所得最大层间位移角的相对误差

    Figure  12.  The relative errors of peak inter-story drift ratios of these groups including different number records

    图  13  4层隔震结构模型与支座布置

    Figure  13.  4-story isolation structure and isolation bearing

    图  14  5层隔震结构模型与支座布置

    Figure  14.  5-story isolation structure and isolation bearing

    图  15  隔震结构最大层间位移角均值

    Figure  15.  The mean of peak inter-story drift ratios

    图  16  隔震结构最大层间位移角COV

    Figure  16.  The COVs of peak inter-story drift ratios

    图  17  隔震支座最大变形

    Figure  17.  The maximum responses of isolation bearings

    图  18  Newmark三联谱确定的目标谱(阻尼比0.02)

    Figure  18.  Target Newmark spectra at the three hazard levels, $ \xi {\text{ = }}0.02 $

    图  19  两种目标谱方法所得最大层间位移角均值

    Figure  19.  The mean of peak inter-story drift ratio demands by both target spectrum methods

    图  20  两种目标谱方法所得最大层间位移角COV

    Figure  20.  The COVs of peak inter-story drift ratios by both target spectrum methods

    表  1  所选3条波与反应谱结果对比

    Table  1.   Base shear of the three records and the response spectrum

    所选地震波 基底剪力/kN 相对误差/(%)
    HCH90 14035.04 −6.09
    TCU042-N 13947.40 −6.68
    YER270 12107.28 −18.99
    平均值 13813.94 −7.57
    反应谱 14945.97
    下载: 导出CSV
  • [1] BOMMER J J, ACEVEDO A. The use of real earthquake accelerograms as input to dynamic analysis [J]. Journal of Earthquake Engineering, 2004, 8(1): 43 − 91.
    [2] PADGETT J E, DESROCHES R. Sensitivity of seismic response and fragility to parameter uncertainty [J]. Journal of Structural Engineering, 2007, 133(12): 1710 − 1718. doi: 10.1061/(ASCE)0733-9445(2007)133:12(1710)
    [3] KIM T, KWON O S, SONG J. Clustering‐based adaptive ground motion selection algorithm for efficient estimation of structural fragilities [J]. Earthquake Engineering & Structural Dynamics, 2021, 50(6): 1755 − 1776.
    [4] DU A, PADGETT J E. Multivariate return period‐based ground motion selection for improved hazard consistency over a vector of intensity measures [J]. Earthquake Engineering & Structural Dynamics, 2021, 50(2): 415 − 435.
    [5] 任叶飞, 尹建华, 温瑞智, 等. 结构抗倒塌易损性分析中地震动输入不确定性影响研究[J]. 工程力学, 2020, 37(1): 115 − 125. doi: 10.6052/j.issn.1000-4750.2019.01.0042

    REN Yefei, YIN Jianhua, WEN Ruizhi, et al. The impact of ground motion inputs on the uncertainty of structural collapse fragility [J]. Engineering Mechanics, 2020, 37(1): 115 − 125. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.01.0042
    [6] JI K, WEN R, ZONG C, et al. Genetic algorithm‐based ground motion selection method matching target distribution of generalized conditional intensity measures [J]. Earthquake Engineering & Structural Dynamics, 2020, 50(6): 1497 − 1516.
    [7] GEORGIOUDAKIS M, FRAGIADAKIS M. Selection and scaling of ground motions using multicriteria optimization [J]. Journal of Structural Engineering, 2020, 146(11): 1 − 12.
    [8] REYES J C, KALKAN E. Required number of records for ASCE/SEI 7 ground-motion scaling procedure [R]. Berkeley, CA.: Earthquake Engineering Research Institute, 2011.
    [9] 崔江余, 杜修力. 重大工程设定地震动确定[J]. 世界地震工程, 2000, 16(4): 25 − 28. doi: 10.3969/j.issn.1007-6069.2000.04.005

    CUI Jiangyu, DU Xiuli. Determination of design ground motion for critical engineering project [J]. World Information on Earthquake Engineering, 2000, 16(4): 25 − 28. (in Chinese) doi: 10.3969/j.issn.1007-6069.2000.04.005
    [10] MALHOTRA P K. Seismic response spectra for probabilistic analysis of nonlinear systems [J]. Journal of Structural Engineering, 2011, 137(11): 1272 − 1281. doi: 10.1061/(ASCE)ST.1943-541X.0000373
    [11] BAKER J W. Conditional mean spectrum: tool for ground-motion selection [J]. Journal of Structural Engineering, 2011, 137(3): 322 − 331. doi: 10.1061/(ASCE)ST.1943-541X.0000215
    [12] BAKER J W, LEE C. An improved algorithm for selecting ground motions to match a conditional spectrum [J]. Journal of Earthquake Engineering, 2018, 22(4): 708 − 723. doi: 10.1080/13632469.2016.1264334
    [13] 张锐, 李宏男, 王东升, 等. 结构时程分析中强震记录选取研究综述[J]. 工程力学, 2019, 36(2): 1 − 16. doi: 10.6052/j.issn.1000-4750.2018.01.0037

    ZHANG Rui, LI Hongnan, WANG Dongsheng, et al. Selection and scaling of real accelerograms as input to time-history analysis of structures: a state-of-the-art review [J]. Engineering Mechanics, 2019, 36(2): 1 − 16. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.01.0037
    [14] 冀昆, 温瑞智, 任叶飞. 适用于我国抗震设计规范的天然强震记录选取[J]. 建筑结构学报, 2017, 38(12): 57 − 67.

    JI Kun, WEN Ruizhi, REN Yefei. Ground motion recordings selection for seismic design code [J]. Journal of Building Structures, 2017, 38(12): 57 − 67. (in Chinese)
    [15] KWONG N S, CHOPRA A K. A generalized conditional mean spectrum and its application for intensity-based assessments of seismic demands [J]. Earthquake Spectra, 2017, 33(1): 123 − 143. doi: 10.1193/040416eqs050m
    [16] 尹建华, 冀昆, 任叶飞, 等. 条件均值谱选取记录的结构抗倒塌易损性分析[J]. 哈尔滨工业大学学报, 2018, 50(12): 119 − 124. doi: 10.11918/j.issn.0367-6234.201804077

    YIN Jianhua, JI Kun, REN Yefei, et al. Structural collapse fragility analysis based on strong ground-motion records selection using conditional mean spectrum [J]. Journal of Harbin Institute of Technology, 2018, 50(12): 119 − 124. (in Chinese) doi: 10.11918/j.issn.0367-6234.201804077
    [17] RIDDELL R, GARCIA J. Hysteretic energy spectrum and damage control [J]. Earthquake Engineering & Structural Dynamics, 2001, 30(1): 1791 − 1816.
    [18] 叶列平, 马千里, 缪志伟. 结构抗震分析用地震动强度指标的研究[J]. 地震工程与工程振动, 2009, 29(4): 9 − 22. doi: 10.13197/j.eeev.2009.04.019

    YE Lieping, MA Qianli, MIAO Zhiwei. Study on earthquake intensities for seismic analysis of structures [J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(4): 9 − 22. (in Chinese) doi: 10.13197/j.eeev.2009.04.019
    [19] 陈波. 结构非线性动力分析中地震动记录的选择和调整方法研究 [D]. 哈尔滨: 中国地震局地球物理研究所, 2015.

    CHEN Bo. Ground motion selection and modification methods for performing nonlinear dynamic analysis of buildings [D]. Harbin: Institute of Geophysics, China Earthquake Administration, 2015. (in Chinese)
    [20] PANT D R, MAHARJAN M. On selection and scaling of ground motions for analysis of seismically isolated structures [J]. Earthquake Engineering and Engineering Vibration, 2016, 15(4): 633 − 648. doi: 10.1007/s11803-016-0354-9
    [21] WANG G. A ground motion selection and modification method capturing response spectrum characteristics and variability of scenario earthquakes [J]. Soil Dynamics and Earthquake Engineering, 2011, 31(4): 611 − 625. doi: 10.1016/j.soildyn.2010.11.007
    [22] 王东升, 岳茂光, 李晓莉, 等. 高墩桥梁抗震时程分析输入地震波选择[J]. 土木工程学报, 2013, 46(增刊): 208 − 213. doi: 10.15951/j.tmgcxb.2013.s1.013

    WANG Dongsheng, YUE Maoguang, LI Xiaoli, et al. Selections of real ground motions in seismic history analysis for bridges with high columns [J]. China Civil Engineering Journal, 2013, 46(Suppl): 208 − 213. (in Chinese) doi: 10.15951/j.tmgcxb.2013.s1.013
    [23] 岳茂光. 场地—结构体系基于性能抗震设计分析方法研究 [D]. 大连: 大连理工大学, 2009.

    YUE Maoguang. Studies on analysis method of performance-based seismic design of site-structure system [D]. Dalian: Dalian University of Technology, 2009. (in Chinese)
    [24] 张锐, 成虎, 吴浩, 等. 时程分析考虑高阶振型影响的多频段地震波选择方法研究[J]. 工程力学, 2018, 35(6): 162 − 172. doi: 10.6052/j.issn.1000-4750.2017.03.0164

    ZHANG Rui, CHENG Hu, WU Hao, et al. Multi-band matching method for selection of ground motions in time-history analysis considering higher modes effects [J]. Engineering Mechanics, 2018, 35(6): 162 − 172. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.03.0164
    [25] 张锐, 王东升, 陈笑宇, 等. 考虑高阶振型影响的时程分析加权调整选波方法[J]. 土木工程学报, 2019, 52(9): 53 − 68.

    ZHANG Rui, WANG Dongsheng, CHEN Xiaoyu, et al. Weighted scaling and selecting method of ground motions in time-history analysis considering influence of higher modes [J]. China Civil Engineering Journal, 2019, 52(9): 53 − 68. (in Chinese)
    [26] ZHANG R, WANG D, CHEN X, et al. Weighted and unweighted scaling methods for ground motion selection in time-history analysis of structures [J]. Journal of Earthquake Engineering, 2020, 24(7): 1 − 36.
    [27] 杨溥, 李英民, 赖明. 结构时程分析法输入地震波的选择控制指标[J]. 土木工程学报, 2000, 33(6): 33 − 37. doi: 10.3321/j.issn:1000-131X.2000.06.005

    YANG Pu, LI Yingmin, LAI Ming. A new method for selecting inputting waves for time-history analysis [J]. China Civil Engineering Journal, 2000, 33(6): 33 − 37. (in Chinese) doi: 10.3321/j.issn:1000-131X.2000.06.005
    [28] 王亚勇. 结构时程分析输入地震动和输出结果解读[J]. 建筑结构, 2017, 47(11): 1 − 6.

    WANG Yayong. Case studies on input ground motion criteria and output results for structural time-history analysis [J]. Building Structure, 2017, 47(11): 1 − 6. (in Chinese)
    [29] ZHANG R, WANG D, CHEN X, et al. Comparison of scaling ground motions using arithmetic with logarithm values for spectral matching procedure [J]. Shock and Vibration, 2020, 2020(1): 1 − 14.
    [30] 王东升, 张锐, 陈笑宇, 等. 目标谱选波方法在算术与对数坐标下的差异分析[J]. 地震工程与工程振动, 2020, 40(2): 43 − 53. doi: 10.13197/j.eeev.2020.02.43.wangds.005

    WANG Dongsheng, ZHANG Rui, CHEN Xiaoyu, et al. Analysis of differences between spectral matching method in arithmetic and logarithmic coordinates [J]. Earthquake Engineering & Engineering Dynamics, 2020, 40(2): 43 − 53. (in Chinese) doi: 10.13197/j.eeev.2020.02.43.wangds.005
    [31] 蔡丽桢, 王东升, 张锐, 等. 钢筋混凝土高层建筑抗震时程分析选波方法比较研究[J]. 世界地震工程, 2021, 37(2): 203 − 213. doi: 10.3969/j.issn.1007-6069.2021.02.023

    CAI Lizhen, WANG Dongsheng, ZHANG Rui, et al. Comparison of strong-motion selection methods for time-history analysis of RC high-rise buildings [J]. World Earthquake Engineering, 2021, 37(2): 203 − 213. (in Chinese) doi: 10.3969/j.issn.1007-6069.2021.02.023
    [32] GB 18306−2015, 中国地震动参数区划图[S]. 北京: 中国标准出版社, 2016.

    GB 18306−2015, Seismic ground motion parameters zonation map of China [S]. Beijing: China Architecture & Building Press, 2016. (in Chinese)
    [33] 任叶飞, 张颖楚, 冀昆, 等. 全国省会城市建筑结构时程分析推荐地震动输入[J]. 建筑结构, 2018, 48(增刊 2): 284 − 290. doi: 10.19701/j.jzjg.2018.S2.058

    REN Yefei, ZHANG Yingchu, JI Kun, et al. Recommended input ground motions for the dynamic time-history analysis of building structures in the provincial capitals of China [J]. Building Structure, 2018, 48(Suppl 2): 284 − 290. (in Chinese) doi: 10.19701/j.jzjg.2018.S2.058
    [34] HANCOCK J, WATSON-LAMPREY J, ABRAHAMSON N A, et al. An improved method of matching response spectra of recorded earthquake ground motion using wavelets [J]. Journal of Earthquake Engineering, 2006, 10(1): 67 − 89. doi: 10.1080/13632460609350629
    [35] 胡进军, 梁琰, 杨永强. 隔震结构的地震动输入研究现状简析[J]. 建筑结构, 2018, 48(增刊 2): 457 − 462.

    HU Jinjun, LIANG Yan, YANG Yongqiang. A brief review on the input ground motion for isolated structures [J]. Building Structure, 2018, 48(Suppl 2): 457 − 462. (in Chinese)
    [36] 张锐. 结构抗震时程分析输入地震波选择方法研究[D]. 大连: 大连理工大学, 2020.

    ZHANG Rui. Earthquake ground motion selection and scaling methods for structural time-history analysis [D]. Dalian: Dalian University of Technology, 2020. (in Chinese)
    [37] NEWMARK N M, HALL W J. Seismic design criteria for nuclear reactor facilities [C]. Santiago, Chile: Proceedings of the Fourth World Conference on Earthquake Engineering, Volumn 4, 1969.
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  357
  • HTML全文浏览量:  159
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-10
  • 修回日期:  2021-10-12
  • 网络出版日期:  2021-10-21
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回