EXPERIMENTAL STUDY ON SHEAR STRAIN ENERGY AND MAXIMUM SHEAR STRAIN CHARACTERISTICS OF RED SANDSTONE
-
摘要: 为了明确干燥和饱水红砂岩剪切强度、剪切储能与剪应变特征,在岩石剪切试验系统进行了不同法向应力作用下干燥和饱水红砂岩剪切试验,详细分析了法向应力和饱水作用对红砂岩剪切强度、剪切应变能密度和剪应变的影响规律。结果表明:剪力-剪切位移曲线,干燥状态线性段明显,饱水状态屈服段明显,法向应力在10 MPa~20 MPa,剪切强度和剪切位移增加显著,法向应力在20 MPa~40 MPa切向位移变化很小;压剪应力状态下的粘聚力和内摩擦角明显低于三轴压缩应力状态下的粘聚力和内摩擦角,饱水使三轴应力路径下的粘聚力和内摩擦角都弱化,而压剪应力路径下只对内摩擦角弱化。法向应力小于20 MPa时,剪切强度劣化率随法向应力的增加线性增大,法向应力在20 MPa~40 MPa时,剪切强度劣化率在一定值上下波动。峰值剪切应变能密度与法向应力之间存在良好线性变化规律,随法向应力增大,饱水对峰值剪切应变能密度的影响增加。干燥和饱水红砂岩峰值剪切应变能密度分别趋于定值1.4579 MJ/m3和1.0033 MJ/m3,饱水使峰值剪切应变能密度的劣化率趋于31.18%。根据峰值剪应变随法向应力的变化规律,构建了干燥和饱水红砂岩剪应变经验强度准则。所得成果对红砂岩工程设计及工程稳定性分析具有一定参考价值。Abstract: Direct shear tests of dry and saturated red sandstone samples under different normal stresses were carried out in rock shear test system to determine shear strength, shear strain energy and maximum shear strain characteristics. The influences of normal stress and saturated water on shear strength, shear strain energy density, and shear strain of red sandstone were analyzed in detail. Results show that the shear force-shear displacement curve includes evidently linear and yielding sections in dry and saturation states, respectively. The shear strength and the shear displacement increase significantly when the normal stress is 10 MPa~20 MPa. The shear displacement slightly changes when the normal stress is 20 MPa~40 MPa. Red sandstone demonstrates significantly lower cohesion and internal friction angle under compression and shear stress than under triaxial compression stress. Saturated water weakens the cohesion and internal friction angle under triaxial stress path but only weakens the internal friction angle under compression and shear stress path. When the normal stress is less than 20 MPa, shear strength degradation rate increases linearly with the increasing of normal stress. When the normal stress is 20 MPa~40 MPa, shear strength degradation rate fluctuates at certain value. A good linear relationship exists between peak shear strain energy density and normal stress, and the effect of saturated water on peak shear strain energy density increases with the increasing of normal stress. The peak shear strain energy density of dry and saturated red sandstone samples remains constant at 1.4579 and 1.0033 MJ/m3, respectively, and the degradation rate of peak shear strain energy density is 31.18%. According to the variation in the peak shear strain energy density with normal stress, empirical strength criteria of shear strain for dry and saturated red sandstone samples were established when 20 MPa normal stress was taken as turning stress. The conclusions demonstrated certain reference significance for engineering design and stability analysis of red sandstone engineering.
-
Key words:
- red sandstone /
- dry and saturated water /
- strength /
- shear strain energy /
- shear strain
-
表 1 压缩和剪切试验红砂岩的强度参数对比
Table 1. Comparison of strength parameters of red sandstone in compression and shear tests
工况 系数k 系数m/MPa 粘聚力c/MPa 内摩擦角$\varphi $/(°) 三轴压缩(干燥) 5.31 90.33 19.59 43.09 三轴压缩(饱水) 4.78 64.70 14.79 40.86 剪切试验(干燥) − − 6.20 29.15 剪切试验(饱水) − − 6.02 24.20 -
[1] TIWARI G, LATHA M G . Shear velocity-based uncertainty quantification for rock joint shear strength [J]. Bulletin of Engineering Geology and the Environment, 2019, 78: 5937 − 5949. doi: 10.1007/s10064-019-01496-0 [2] SINGH H K, BASU A. Evaluation of existing criteria in estimating shear strength of natural rock discontinuities [J]. Engineering Geology, 2018, 232: 171 − 181. doi: 10.1016/j.enggeo.2017.11.023 [3] PIRZADA M A, ROSHAN H, SUN H, et al. Effect of contact surface area on frictional behaviour of dry and saturated rock joints [J]. Journal of Structural Geology, 2020, 135: Article 104044. doi: 10.1016/j.jsg.2020.104044 [4] RENANI H R, MARTIN D, CAI M. An analytical model for strength of jointed rock masses [J]. Tunnelling and Underground Space Technology, 2019, 94: Article 103159. doi: 10.1016/j.tust.2019.103159 [5] ZHU T T, HUANG D. Experimental investigation of the shear mechanical behavior of sandstone under unloading normal stress [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 114: 186 − 194. doi: 10.1016/j.ijrmms.2019.01.003 [6] ARTKHONGHAN K, SARTKAEW S, THONGPRAPHA T, et al. Effects of stress path on shear strength of a rock salt [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 104: 78 − 83. doi: 10.1016/j.ijrmms.2018.02.014 [7] THIRUKUMARAN S, INDRARATNA B. A review of shear strength models for rock joints subjected to constant normal stiffness [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8: 405 − 414. doi: 10.1016/j.jrmge.2015.10.006 [8] BARTON N. Non-linear shear strength for rock, rock joints, rockfill and interfaces [J]. Innovative Infrastructure Solutions, 2016, 1: 30. doi: 10.1007/s41062-016-0011-1 [9] LI B, YE X N, DOU Z H, et al. Shear strength of rock fractures under dry, surface wet and saturated conditions [J]. Rock Mechanics and Rock Engineering, 2020, 53: 2605 − 2622. doi: 10.1007/s00603-020-02061-y [10] ASADIZADEH M, MOOSAVI M, MOHAMMAD F H. Shear strength and cracking process of non-persistent jointed rocks: An extensive experimental investigation [J]. Rock Mechanics and Rock Engineering, 2018, 51: 415 − 428. doi: 10.1007/s00603-017-1328-6 [11] LIU Q S, TIAN Y C, JI P Q, et al. Experimental investigation of the peak shear strength criterion based on three-dimensional surface description [J]. Rock Mechanics and Rock Engineering, 2018, 51: 1005 − 1025. doi: 10.1007/s00603-017-1390-0 [12] TANG Z C, LOUIS N Y W. New criterion for evaluating the peak shear strength of rock joints under different contact states [J]. Rock Mechanics and Rock Engineering, 2016, 49: 1191 − 1199. doi: 10.1007/s00603-015-0811-1 [13] JOHANSSON F. Influence of scale and matedness on the peak shear strength of fresh, unweathered rock joints [J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 82: 36 − 47. doi: 10.1016/j.ijrmms.2015.11.010 [14] CHENG Y H, YANG W J, HE D L. Influence of sample size on the shear strength of structural plane [J]. Geotechnical and Geological Engineering, 2018, 36: 4029 − 4036. doi: 10.1007/s10706-018-0573-0 [15] WANG H, LIN H. Non-linear shear strength criterion for a rock joint with consideration of friction variation [J]. Geotechnical and Geological Engineering, 2018, 36: 3731 − 3741. doi: 10.1007/s10706-018-0567-y [16] WU Q, XU Y J, TANG H M, et al. Peak shear strength prediction for discontinuities between two different rock types using a neural network approach [J]. Bulletin of Engineering Geology and the Environment, 2019, 78: 2315 − 2329. [17] SINGH P K, TRIPATHY A, KAINTHOLA A, et al. Indirect estimation of compressive and shear strength from simple index tests [J]. Engineering with Computers, 2017, 33: 1 − 11. doi: 10.1007/s00366-016-0451-4 [18] 苗胜军, 王辉, 黄正均, 等. 不同循环上限荷载下泥质石英粉砂岩力学特性试验研究[J]. 工程力学, 2021, 38(7): 75 − 85. doi: 10.6052/j.issn.1000-4750.2020.07.0465MIAO Shengjun, WANG Hui, HUANG Zhengjun, et al. Experimental study on the mechanical properties of argillaceous quartz siltstone under different upper limit cyclic loadings [J]. Engineering Mechanics, 2021, 38(7): 75 − 85. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0465 [19] 卜宜顺, 杨圣奇, 黄彦华. 温度和损伤程度对砂岩渗透特性影响的试验研究[J]. 工程力学, 2021, 38(5): 122 − 130. doi: 10.6052/j.issn.1000-4750.2020.06.0374BU Yishun, YANG Shengqi, HUANG Yanhua. Experimental study on the influence of temperature and damage degree on the permeability of sandstone [J]. Engineering Mechanics, 2021, 38(5): 122 − 130. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0374 [20] LUO S, GONG F Q. Linear energy storage and dissipation laws of rocks under preset angle shear conditions [J]. Rock Mechanics and Rock Engineering, 2020, 53: 3303 − 3323. [21] 李鹏飞, 朱其志, 顾水涛, 等. 岩石类材料裂隙形成和扩展的相场方法模拟[J]. 工程力学, 2018, 35(3): 41 − 48. doi: 10.6052/j.issn.1000-4750.2016.11.0899LI Pengfei, ZHU Qizhi, GU Shuitao, et al. A phase field method to simulate crack nucleation and crack propagation in rock-like materials [J]. Engineering Mechanics, 2018, 35(3): 41 − 48. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.11.0899 [22] GARCIA-FERNANDEZ C C, GONZALEZ-NICIEZA C, ALVAREZ-FERNANDEZ M I, et al. New methodology for estimating the shear strength of layering in slate by using the Brazilian test [J]. Bulletin of Engineering Geology and the Environment, 2019, 78: 2283 − 2297. doi: 10.1007/s10064-018-1297-3 [23] BUZZI O, CASAGRANDE D. A step towards the end of the scale effect conundrum when predicting the shear strength of large in situ discontinuities [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 105: 210 − 219. doi: 10.1016/j.ijrmms.2018.01.027 [24] PRASSETYO S H, GUTIERREZ M, BARTON N. Nonlinear shear behavior of rock joints using a linearized implementation of the Barton-Bandis model [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(4): 671 − 682. doi: 10.1016/j.jrmge.2017.01.006 [25] CASAGRANDE D, BUZZI O, GIACOMINI A, et al. A new stochastic approach to predict peak and residual shear strength of natural rock discontinuities [J]. Rock Mechanics and Rock Engineering, 2018, 51: 69 − 99. doi: 10.1007/s00603-017-1302-3 [26] LÊ H K, HUANG W C, LIAO M C, et al. Spatial characteristics of rock joint profile roughness and mechanical behavior of a randomly generated rock joint [J]. Engineering Geology, 2018, 245: 97 − 10. doi: 10.1016/j.enggeo.2018.06.017 [27] GB/T 50266−2013, 工程岩体试验方法标准[S]. 北京: 中国计划出版社, 2013.GB/T 50266−2013, Standard for test methods of engineering rock mass [S]. Beijing: China Planning Press, 2013. (in Chinese) -