留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两边连接竖放波折钢板墙内嵌墙板抗侧性能及优化设计

窦超 谢志栋 杨娜

窦超, 谢志栋, 杨娜. 两边连接竖放波折钢板墙内嵌墙板抗侧性能及优化设计[J]. 工程力学, 2022, 39(12): 60-73. doi: 10.6052/j.issn.1000-4750.2021.06.0459
引用本文: 窦超, 谢志栋, 杨娜. 两边连接竖放波折钢板墙内嵌墙板抗侧性能及优化设计[J]. 工程力学, 2022, 39(12): 60-73. doi: 10.6052/j.issn.1000-4750.2021.06.0459
DOU Chao, XIE Zhi-dong, YANG Na. LATERAL RESISTANCE AND OPTIMIZED DESIGN OF EMBEDDED PANELS IN FOLDED STEEL PLATE WALLS WITH VERTICAL CONNECTIONS ON BOTH SIDES[J]. Engineering Mechanics, 2022, 39(12): 60-73. doi: 10.6052/j.issn.1000-4750.2021.06.0459
Citation: DOU Chao, XIE Zhi-dong, YANG Na. LATERAL RESISTANCE AND OPTIMIZED DESIGN OF EMBEDDED PANELS IN FOLDED STEEL PLATE WALLS WITH VERTICAL CONNECTIONS ON BOTH SIDES[J]. Engineering Mechanics, 2022, 39(12): 60-73. doi: 10.6052/j.issn.1000-4750.2021.06.0459

两边连接竖放波折钢板墙内嵌墙板抗侧性能及优化设计

doi: 10.6052/j.issn.1000-4750.2021.06.0459
基金项目: 国家自然科学基金项目(51808032);中央高校基本科研业务费项目(2020JBM041)
详细信息
    作者简介:

    窦 超(1984−),男,陕西咸阳人,副教授,博士,主要从事钢结构稳定及抗震研究(E-mail: douchao@bjtu.edu.cn)

    杨 娜(1974−),女,黑龙江人,教授,博士,主要从事钢结构稳定及耐久性研究(E-mail: nyang@bjtu.edu.cn)

    通讯作者:

    谢志栋(1996−),男,山东济南人,硕士,主要从事钢结构抗震研究(E-mail: 19125895@bjtu.edu.cn)

  • 中图分类号: TU393.2

LATERAL RESISTANCE AND OPTIMIZED DESIGN OF EMBEDDED PANELS IN FOLDED STEEL PLATE WALLS WITH VERTICAL CONNECTIONS ON BOTH SIDES

  • 摘要: 该文基于有限元数值方法,对仅与框架梁相连的竖放波折钢板剪力墙中内嵌墙板的抗侧性能进行研究,并提出优化设计方法。通过与试验结果的对比,验证了有限元模型及分析方法的可靠性,接着在单向推覆下揭示了波折墙板的“强墙板”和“弱墙板”两种典型抗侧机理,研究了波折墙板参数对其单向推覆抗侧性能的影响。随着宽度的增加,波折墙板的低效抗剪区占比减小,抗侧效率提高;墙板波折角度和厚度的增大,能改善屈曲后承载性能;在其他参数确定的情况下,给出了最优波长的计算式。针对侧边存在低效抗剪区的问题,在墙板两自由边设置加劲构件,并给出起充分加劲作用的界限约束刚度比。加劲构件的引入显著提升了墙板的极限承载力和屈曲后承载性能,对于小宽高比的情况尤为有效。接着,对墙板进行滞回分析发现,由于往复加载下面外累积残余变形的影响,“弱墙板”的骨架曲线相比单向加载时明显下降;而“强墙板”面外变形始终较小,抗侧承载性能稳定。基于滞回分析的大量变参数算例结果,提出了两边连接竖放波折墙板的优化选型建议,为初步设计提供了重要参考。
  • 图  1  铰接刚性框架模型

    Figure  1.  Hinged rigid frame model

    图  2  有限元与文献[11]的试验结果对比

    Figure  2.  Comparison of FEA and test results in Ref. [11]

    图  3  有限元与文献[15]的试验结果对比

    Figure  3.  Comparison of FEA and test results in Ref. [15]

    图  4  有限元与文献[28]的试验结果对比

    Figure  4.  Comparison of FEA and test results in Ref. [28]

    图  5  典型波折钢板的荷载-位移曲线

    Figure  5.  Load-displacement curves of typical corrugated steel plates

    图  6  典型波折钢板的等效应力图(层间位移角2%)

    Figure  6.  Equivalent stress diagram of typical corrugated steel plate (drift ratio 2%)

    图  7  典型波折钢板的面外变形(层间位移角2%)

    Figure  7.  Out-of-plane deformation of typical corrugated steel plate (drift ratio 2%)

    图  8  墙板高度对抗侧承载力的影响

    Figure  8.  Effect of wall panel height on lateral resistance

    图  9  子板面波折角度对抗侧承载力的影响

    Figure  9.  Effect of sub-panel inclined angle on shear resistance

    图  10  宽高比对墙板承载力系数的影响

    Figure  10.  Effect of aspect ratio on strength coefficient

    图  11  墙板主应力(层间位移角2.0%时)

    Figure  11.  Principal stress distribution (drift ratio 2%)

    图  12  宽高比对墙板屈服面积的影响

    Figure  12.  Effect of aspect ratio on yield area of wall

    图  13  波形比Ca/Cl对承载力的影响

    Figure  13.  Effect of corrugation ratio on lateral resistance Ca/Cl

    图  14  不同波形比墙板的面外变形(层间位移角2%)

    Figure  14.  Out-of-plane deformation of panels with different corrugation ratios (drift ratio 2%)

    图  15  高厚比对承载力的影响

    Figure  15.  Effect of height-to-thickness ratio on lateral resistance

    图  16  波长对承载性能的影响

    Figure  16.  Effect of corrugation length on lateral resistance

    图  17  不同波长墙板的面外变形(层间位移角2%)

    Figure  17.  Deformation of corrugated panels with different corrugation length (drift ratio 2%)

    图  18  不同波长墙板的主应力(层间位移角2%)

    Figure  18.  Principal stress distribution of wall panels with different wavelengths (drift ratio 2%)

    图  19  最优波长结果

    Figure  19.  Result of optimal corrugation length

    图  20  加劲构件的形式

    Figure  20.  Form of stiffening member

    图  21  墙板加劲构件对抗侧性能的影响

    Figure  21.  Effect of stiffeners on the lateral resistance

    图  22  加劲构件面内抗弯刚度对抗侧性能的影响

    Figure  22.  Effect of in-plane flexural stiffness of stiffening members on lateral resistance

    图  23  加劲构件约束刚度比的影响

    Figure  23.  Effect of restraint stiffness ratio on lateral resistance

    图  24  墙板加劲前后屈服区域对比(层间位移角2%)

    Figure  24.  Yielding areas before and after stiffening for corrugated panels (drift ratio 2%)

    图  25  单向推覆与滞回分析对比(弱墙板)

    Figure  25.  Comparison of monotonic loading and hysteresis analysis (weak wall panel)

    图  26  单向推覆与滞回分析对比(强墙板)

    Figure  26.  Comparison of monotonic pushover and hysteresis analysis (strong wall panel)

    图  27  优化选型墙板的滞回曲线

    Figure  27.  Hysteresis curve of optimized panels

    表  1  竖放波折墙板优化选型表

    Table  1.   Recommended configurations for corrugated panels

    试件
    编号
    墙板
    高度/m
    宽高比波形
    厚度t/mm波长/mm波折
    角度
    极限承
    载力
    系数
    残余承
    载力
    系数
    1 ≤3.6 0.5 0.10 ≥12.0 式(4)最优波长 θ≥75° ≥0.92 ≥0.87
    1.0 ≥0.97 ≥0.86
    1.5 ≥0.98 ≥0.87
    2.0 ≥0.98 ≥0.86
    2 ≤3.6 0.5 0.15 ≥8.0 式(4)最优波长 θ≥60° ≥0.94 ≥0.91
    1.0 ≥0.96 ≥0.86
    1.5 ≥0.97 ≥0.86
    2.0 ≥0.98 ≥0.85
    3 ≤3.6 0.5 0.20 ≥8.0 式(4)最优波长 θ≥60° ≥0.98 ≥0.98
    1.0 ≥0.98 ≥0.98
    1.5 ≥0.98 ≥0.98
    2.0 ≥0.98 ≥0.98
    注:当墙板高度更低、厚度更大、波折角度更大时,抗侧性能将比表中更好。
    下载: 导出CSV
  • [1] 郭彦林, 周明. 钢板剪力墙的分类及性能[J]. 建筑科学与工程学报, 2009, 26(3): 1 − 13. doi: 10.3321/j.issn:1673-2049.2009.03.001

    GUO Yanlin, ZHOU Ming. Categorization and performance of steel plate shear wall [J]. Journal of Architecture and Civil Engineering, 2009, 26(3): 1 − 13. (in Chinese) doi: 10.3321/j.issn:1673-2049.2009.03.001
    [2] 郭彦林, 朱靖申. 剪力墙的型式、设计理论研究进展[J]. 工程力学, 2020, 37(6): 19 − 33.

    GUO Yanlin, ZHU Jingshen. Research progress of shear walls: types and design methods [J]. Engineering Mechanics, 2020, 37(6): 19 − 33. (in Chinese)
    [3] 张艳霞, 庞占洋, 武丙龙, 等. 装配式自复位钢框架-开缝钢板剪力墙结构试验研究[J]. 工程力学, 2020, 37(10): 168 − 178. doi: 10.6052/j.issn.1000-4750.2019.11.0701

    ZHANG Yanxia, PANG Zhanyang, WU Binglong, et al. Experimental study on prefabricated self-centering steel frame with slit steel plate shear walls [J]. Engineering Mechanics, 2020, 37(10): 168 − 178. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.11.0701
    [4] 叶露, 王宇航, 石宇, 等. 冷弯薄壁型钢框架-开缝钢板剪力墙力学性能研究[J]. 工程力学, 2020, 37(11): 156 − 166. doi: 10.6052/j.issn.1000-4750.2020.01.0005

    YE Lu, WANG Yuhang, SHI Yu, et al. Study on the mechanical properties of cold-formed steel framed shear wall with slits [J]. Engineering Mechanics, 2020, 37(11): 156 − 166. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0005
    [5] PARK H, KWACK J, JEON S, et al. Framed steel plate wall behavior under cyclic lateral loading [J]. Journal of Structural Engineering, ASCE, 2007, 133(3): 378 − 388. doi: 10.1061/(ASCE)0733-9445(2007)133:3(378)
    [6] CHOI I, PARK H. Ductility and energy dissipation capacity of shear-dominated steel plate walls [J]. Journal of Structural Engineering, ASCE, 2008, 134(9): 1495 − 1507. doi: 10.1061/(ASCE)0733-9445(2008)134:9(1495)
    [7] CLAYTON P M, BERMAN J W, LOWES L N. Seismic performance of self-centering steel plate shear walls with beam-only-connected web plates [J]. Journal of Constructional Steel Research, 2015, 106: 198 − 208. doi: 10.1016/j.jcsr.2014.12.017
    [8] XUE M, LU L W. Interaction of infilled steel shear wall panels with surrounding frame members [R]// Proceedings, 1994 Annual Task Group Technical Session, Structural stability Research Council:reports on current research activities. Bethlehem, Pa, Lehigh University, 1994.
    [9] 于金光, 刘利明, 郝际平. 部分组合框架-钢板剪力墙边框柱设计方法研究[J]. 工程力学, 2020, 37(2): 98 − 110. doi: 10.6052/j.issn.1000-4750.2019.01.0110

    YU Jinguang, LIU Liming, HAO Jiping. Study on design method of vertical boundary element of partially encased composite frame-steel plate shear walls [J]. Engineering Mechanics, 2020, 37(2): 98 − 110. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.01.0110
    [10] 牟在根, 杨雨青. 对角槽钢加劲钢板剪力墙抗震性能试验研究[J]. 工程力学, 2021, 38(3): 214 − 227, 238. doi: 10.6052/j.issn.1000-4750.2020.05.0312

    MU Zaigen, YANG Yuqing. Experimental study on seismic behavior of steel plate shear walls with diagonal channel stiffeners [J]. Engineering Mechanics, 2021, 38(3): 214 − 227, 238. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.0312
    [11] EMAMI F, MOFID M, VAFAI A. Experimental study on cyclic behavior of trapezoidal corrugated steel shear walls [J]. Engineering Structures, 2013, 48: 750 − 762. doi: 10.1016/j.engstruct.2012.11.028
    [12] EMAMI F, MOFID M. On the hysteretic behavior of trapezoidally corrugated steel shear walls [J]. The Structural Design of Tall and Special Buildings, 2014, 23(2): 94 − 104. doi: 10.1002/tal.1025
    [13] KALALI H, HAJSADEGHI M, ZIRAKIAN T, et al. Hysteretic performance of SPSWs with trapezoidally horizontal corrugated web-plates [J]. Steel and Composite Structures, 2015, 19(2): 277 − 292. doi: 10.12989/scs.2015.19.2.277
    [14] ZHAO Q, SUN J, LI Y, et al. Cyclic analyses of corrugated steel plate shear walls [J]. The Structural Design of Tall and Special Buildings, 2017, 26(16): 1 − 17.
    [15] QIU J, ZHAO Q H, YU C, et al. Experimental studies on cyclic behaviour of corrugated steel plate shear walls [J]. Journal of Structural Engineering, ASCE, 2018, 144(11): 04018200. doi: 10.1061/(ASCE)ST.1943-541X.0002165
    [16] DOU C, PI Y, GAO W. Shear resistance and post-buckling behavior of corrugated panels in steel plate shear walls [J]. Thin-Walled Structures, 2018, 131: 816 − 826. doi: 10.1016/j.tws.2018.07.039
    [17] TONG J Z, GUO Y L. Shear resistance of stiffened steel corrugated shear walls [J]. Thin-Walled Structures, 2018, 127: 76 − 89. doi: 10.1016/j.tws.2018.01.036
    [18] TONG J Z, GUO Y L. Ultimate shear resistance and post-ultimate behaviour of double-corrugated-plate shear walls [J]. Journal of Constructional Steel Research, 2020, 165: 1 − 14.
    [19] FENG L F, SUN T S, OU J P. Elastic buckling analysis of steel-strip-stiffened trapezoidal corrugated steel plate shear walls [J]. Journal of Constructional Steel Research, 2021, 184: 106833. doi: 10.1016/j.jcsr.2021.106833
    [20] ROUDSARI S S, SOLEIMANI S M, HAMOUSH S A. Analytical study of the effects of opening characteristics and plate thickness on the performance of sinusoidal and trapezoidal corrugated steel plate shear walls [J]. Journal of Constructional Steel Research, 2021, 182: 106660. doi: 10.1016/j.jcsr.2021.106660
    [21] 王威, 刘格炜, 苏三庆, 等. 波形钢板剪力墙及组合墙抗剪承载力研究[J]. 工程力学, 2019, 36(7): 197 − 206, 226. doi: 10.6052/j.issn.1000-4750.2018.06.0356

    WANG Wei, LIU Gewei, SU Sanqing, et al. Research on the shear bearing capacity of corrugated steel plate shear wall and composite wall [J]. Engineering Mechanics, 2019, 36(7): 197 − 206, 226. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.06.0356
    [22] DENG E F, ZONG L, WANG H P, et al. High efficiency analysis model for corrugated steel plate shear walls in modular steel construction [J]. Thin–Walled Structures, 2020, 156: 106963.
    [23] BROUJERDIAN V, GHAMARI A, ABBASZADEH A. Introducing an efficient compound section for steel shear wall using flat and corrugated plates [J]. Structures, 2021, 33: 2855 − 2871. doi: 10.1016/j.istruc.2021.06.027
    [24] 魏瑶, 谭平, 李洋, 等. 侧边加劲波纹钢板墙弹性剪切屈曲分析[J]. 地震工程与工程振动, 2015, 35(3): 199 − 209.

    WEI Yao, TAN Ping, LI Yang, et al. Elastic shear buckling analysis of corrugated steel plate wall with edge stiffeners [J]. Earthquake Engineering and Engineering Dynamics, 2015, 35(3): 199 − 209. (in Chinese)
    [25] 赵秋红, 邱静, 郝博超, 等. 两边连接竖向波纹钢板剪力墙的抗侧性能[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(增刊 2): 46 − 53.

    ZHAO Qiuhong, QIU Jing, HAO Bochao, et al. Lateral behavior of vertically-corrugated steel plate shear walls connected with beams only [J]. Journal of Tianjin University (Science and Technology), 2019, 52(Suppl 2): 46 − 53. (in Chinese)
    [26] FANG J P, BAO W, REN F M, et al. Experimental study of hysteretic behavior of semi-rigid frame with a corrugated plate [J]. Journal of Constructional Steel Research, 2020, 174: 106289. doi: 10.1016/j.jcsr.2020.106289
    [27] DOU C, XIE C, ZHAO Y Y, et al. Shear resistance and design of infill panels in corrugated plate shear walls [J]. Journal of Structural Engineering, ASCE, 2021, 147(11): 04021179-1 − 04021179-13. doi: 10.1061/(ASCE)ST.1943-541X.0003162
    [28] 郝博超. 开洞竖向波纹钢板剪力墙抗震性能试验与受力机理研究[D]. 天津: 天津大学, 2018.

    HAO Bochao. Cyclic test and mechanism of vertically corrugated steel plate shear walls with various openings [D]. Tianjin: Tianjin University, 2018. (in Chinese)
    [29] GB 50368−2005, 住宅建筑规范[S]. 北京: 中国建筑工业出版社, 2005.

    GB 50368−2005, Residential building code [S]. Beijing: China Architecture & Building Press, 2005. (in Chinese)
    [30] JGJ 36−2016, 宿舍建筑设计规范[S]. 北京: 中国建筑工业出版社, 2016.

    JGJ 36−2016, Code for design of dormitory building [S]. Beijing: China Architecture & Building Press, 2016. (in Chinese)
    [31] JGJ/T 67−2019, 办公建筑设计规范[S]. 北京: 中国建筑工业出版社, 2019.

    JGJ/T 67−2019, Standard for design of office building [S]. Beijing: China Architecture & Building Press, 2016. (in Chinese)
  • 加载中
图(27) / 表(1)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  28
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-17
  • 录用日期:  2021-11-02
  • 修回日期:  2021-10-14
  • 网络出版日期:  2021-11-02
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回