留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

型钢混凝土深梁受剪性能及承载能力研究

陈步青 曾磊 刘昌俊 莫金旭

陈步青, 曾磊, 刘昌俊, 莫金旭. 型钢混凝土深梁受剪性能及承载能力研究[J]. 工程力学, 2022, 39(9): 215-224. doi: 10.6052/j.issn.1000-4750.2021.05.0402
引用本文: 陈步青, 曾磊, 刘昌俊, 莫金旭. 型钢混凝土深梁受剪性能及承载能力研究[J]. 工程力学, 2022, 39(9): 215-224. doi: 10.6052/j.issn.1000-4750.2021.05.0402
CHEN Bu-qing, ZENG Lei, LIU Chang-jun, MO Jin-xu. STUDY ON SHEAR BEHAVIOR AND BEARING CAPACITY OF STEEL REINFORCED CONCRTE DEEP BEAMS[J]. Engineering Mechanics, 2022, 39(9): 215-224. doi: 10.6052/j.issn.1000-4750.2021.05.0402
Citation: CHEN Bu-qing, ZENG Lei, LIU Chang-jun, MO Jin-xu. STUDY ON SHEAR BEHAVIOR AND BEARING CAPACITY OF STEEL REINFORCED CONCRTE DEEP BEAMS[J]. Engineering Mechanics, 2022, 39(9): 215-224. doi: 10.6052/j.issn.1000-4750.2021.05.0402

型钢混凝土深梁受剪性能及承载能力研究

doi: 10.6052/j.issn.1000-4750.2021.05.0402
基金项目: 国家自然科学基金面上项目(51978078)
详细信息
    作者简介:

    陈步青(1995−),男,湖北仙桃人,硕士生,主要从事型钢混凝土组合结构研究(E-mail: chenbuqing47@126.com)

    刘昌俊(1992−),男,湖北仙桃人,硕士生,主要从事型钢混凝土组合结构研究(E-mail: liucj92@126.com)

    莫金旭(1996−),男,湖北监利人,博士生,主要从事型钢混凝土组合结构研究(E-mail: mojinxu625@126.com)

    通讯作者:

    曾 磊(1979−),男,湖北洪湖人,教授,博士,主要从事组合结构与工程抗震研究(E-mail: zenglei@yangtzeu.edu.cn)

  • 中图分类号: TU398

STUDY ON SHEAR BEHAVIOR AND BEARING CAPACITY OF STEEL REINFORCED CONCRTE DEEP BEAMS

  • 摘要: 为了研究型钢混凝土深梁的受剪机理,以剪跨比、型钢截面高度比、翼缘宽度比为影响因素,设计7个试件进行了跨中集中荷载作用下的抗剪性能试验,对受力过程、荷载-位移曲线、破坏形态、受剪承载力等进行了比较分析,基于修正压力场理论提出了型钢混凝土深梁受剪承载力计算模型。结果表明:剪跨比是型钢混凝土深梁破坏形态主要影响因素,较大翼缘宽度比的试件具有更高的受剪承载力;基于修正压力场理论的计算模型能够综合考虑剪跨比和翼缘宽度比的影响,模型计算值与试验结果吻合较好。
  • 图  1  试件截面尺寸及配筋图 /mm

    Figure  1.  Section dimension and reinforcement

    图  2  试验加载示意图

    Figure  2.  Schematic diagram of test setup

    图  3  试件破坏形态

    Figure  3.  Failure forms of specimens

    图  4  荷载-位移曲线

    Figure  4.  Load-displacement curve

    图  5  沿截面高度应变分布

    Figure  5.  Strain distribution along cross-section

    图  6  型钢腹板主应变及其方向

    Figure  6.  Principal Strain and direction of web steel

    图  7  平均应力莫尔圆

    Figure  7.  Mohr's circle of average concrete stresses

    图  8  开裂后混凝土薄膜单元平均应变莫尔圆

    Figure  8.  Mean strain Mohr circle for cracked concrete membrane element

    图  9  裂缝处剪力传递图

    Figure  9.  Force transmission across crack

    图  10  截面平衡关系

    Figure  10.  Equilibrium condition for section

    图  11  计算流程

    Figure  11.  Calculation flow

    图  12  不同理论预测的受剪承载力

    Figure  12.  Bearing capacity predicted by different modulus

    表  1  试件设计参数

    Table  1.   Design parameters of specimens

    试件
    编号
    试件长度/mm型钢
    截面
    剪跨比λ宽度比高度比
    SRCDB-1 860 A1 1.1 0.50 0.60
    SRCDB-2 1020 A1 1.4 0.50 0.60
    SRCDB-3 1200 A1 1.7 0.50 0.60
    SRCDB-4 860 A2 1.1 0.50 0.45
    SRCDB-5 860 A3 1.1 0.50 0.30
    SRCDB-6 860 A4 1.1 0.67 0.60
    SRCDB-7 860 A5 1.1 0.33 0.60
    注:型钢截面A1为H192×90×6×8;A2为H144×90×6×8;A3为H80×90×6×8;A4为H192×120×6×8;A5为H192×60×6×8。
    下载: 导出CSV

    表  2  钢材力学性能参数

    Table  2.   Material properties of steel

    型号直径
    d/mm
    屈服强度
    fy/MPa
    抗拉强度
    fu/MPa
    弹性模量
    Es/MPa
    HPB3006313534$2.1 \times {10^5}$
    HRB33518440515$2.1 \times {10^5}$
    Q2356272406$2.0 \times {10^5}$
    8315430$2.0 \times {10^5}$
    下载: 导出CSV

    表  3  特征点荷载及位移

    Table  3.   Load and displacement at characteristic points

    试件编号剪跨比开裂点屈服点峰值荷载点极限位移
    Δu/mm
    延性系数$ \mu $破坏形态
    开裂荷载Pcr/kN开裂位移Δcr/mm屈服荷载Py/kN屈服位移Δy/mm峰值荷载Pm/kN峰值位移Δm/mm
    SRCDB-1 1.1 85.0 0.31 660 4.5 788 7.2 8.6 1.91 斜压破坏
    SRCDB-2 1.4 66.5 0.35 568 4.5 682 6.2 9.0 2.00 剪压破坏
    SRCDB-3 1.7 72.0 0.51 490 4.4 548 5.2 9.5 2.16 剪压破坏
    SRCDB-4 1.1 102.0 0.34 620 3.2 734 5.6 7.6 2.38 斜压破坏
    SRCDB-5 1.1 99.4 0.55 510 4.0 645 6.0 9.0 2.25 斜压破坏
    SRCDB-6 1.1 113.0 0.32 660 3.8 816 8.0 10.0 2.63 斜压破坏
    SRCDB-7 1.1 65.0 0.37 580 4.1 698 6.5 8.0 1.95 斜压破坏
    下载: 导出CSV

    表  4  受剪承载力计算结果与试验结果对比

    Table  4.   Comparison of predicted and experiment results

    数据来源编号剪跨比${\lambda}$${V_{\text{e}}}$/kN${V^{{\text{JGJ}}}}/{V_{\text{e}}}$${V^{{\text{YB}}}}/{V_{\text{e}}}$${V^{{\text{MCFT}}}}{\text{/}}{V_{\text{e}}}$
    本文试件SRCDB-11.1394.00.900.920.93
    SRCDB-21.4314.51.021.060.95
    SRCDB-31.7274.01.051.181.02
    SRCDB-41.1367.00.860.880.89
    SRCDB-51.1322.50.820.860.99
    SRCDB-61.1408.00.860.880.88
    SRCDB-71.1349.01.011.041.02
    文献[23]SCDB-11.2318.50.660.781.07
    SCDB-21.7239.00.771.010.95
    SCDB-41.2343.00.620.731.04
    SCDB-51.7245.00.761.000.93
    SCDB-101.2367.50.630.781.03
    SCDB-111.2367.50.790.841.14
    SCDB-121.2343.00.910.790.97
    文献[24]D-1-N1.2408.00.710.761.04
    D-2-FS1.2415.00.830.871.13
    D-3-WS1.2395.00.751.091.08
    DB-1-NS1.2391.00.641.210.97
    DB-2-NS1.2409.00.790.780.94
    DB-3-NS1.2396.00.870.930.87
    文献[25]C-11.2650.00.760.590.81
    C-151.7473.00.880.720.89
    文献[19]11.0457.11.020.620.93
    文献[26]SRC-181.0475.00.940.840.97
    SRC-261.5350.01.030.870.94
    文献[27]SRC-21.7358.00.840.770.93
    文献[28]DB1-15-NS1.11391.00.870.940.89
    DB2-15-NS1.11409.00.650.840.94
    DB3-NT-NS1.11396.00.740.951.09
    DB4-15-FS1.11414.00.640.740.88
    DB5-15-WS1.11398.00.790.840.94
    DB6-NT-WS1.11430.00.861.070.87
    AVE0.8200.8500.97
    COV0.1490.1790.08
    注:Ve为试验实测极限受剪承载力;VJGJVYB分别为采用JGJ 138−2016规范和YB 9082−2006规程计算的受剪承载力;VMCFT为采用修正压力场模型计算的受剪承载力。
    下载: 导出CSV
  • [1] 刘昌俊, 曾磊, 刘焱华. 基于修正软化拉-压杆模型的型钢混凝土深梁受剪承载力研究[J]. 土木工程学报, 2020, 53(增刊 2): 47 − 52.

    Liu Changjun, Zeng Lei, Liu Yanhua. The study of shear capacity of steel reinforced concrete deep beams based on modified softened strut-and-tie model [J]. China Civil Engineering Journal, 2020, 53(Suppl 2): 47 − 52. (in Chinese)
    [2] Liu J, Mihaylov B I. A comparative study of models for shear strength of reinforced concrete deep beams [J]. Engineering Structures, 2016, 112: 81 − 89.
    [3] Xue Y, Yang Y, Yu Y. Shear strength model for steel reinforced concrete composite members: Short columns and deep beams [J]. Engineering Structures, 2020, 216: 110748. doi: 10.1016/j.engstruct.2020.110748
    [4] JGJ 138−2016, 组合结构设计规范[S]. 北京: 中国建筑工业出版社, 2016.

    JGJ 138−2016, Code for design of composite structures [S]. Beijing: China Architecture & Building Press, 2016. (in Chinese)
    [5] AISC 360-10, Specification for Structural Steel Buildings [S]. Chicago-Illinois: American Institute of Steel Construction, 2010.
    [6] YB 9082−2006, 钢骨混凝土结构技术规程[S]. 北京: 冶金工业出版社, 2006.

    YB 9082−2006, Technical specification of steel reinforced concrete structures [S]. Beijing: Metallurgical Industry Press, 2006. (in Chinese)
    [7] EN 1994-1-1: 2004, Eurocode 4: Design of composite steel and concrete structures-Part 1-1: General rules and rules for buildings [S]. Brussels: European Committee for standardization, 2004.
    [8] 曾磊, 谢炜, 郑山锁, 等. T形配钢型钢混凝土柱-钢梁框架抗震性能研究[J]. 工程力学, 2019, 36(5): 157 − 165. doi: 10.6052/j.issn.1000-4750.2018.04.0221

    Zeng Lei, Xie Wei, Zheng Shansuo, et al. Research on the seismic behavior of frame structures with T-shaped steel reinforced concrete columns and steel beams [J]. Engineering Mechanics, 2019, 36(5): 157 − 165. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.04.0221
    [9] 杨勇, 薛亦聪, 于云龙. 预制装配型钢混凝土梁受剪承载力试验与计算方法研究[J]. 工程力学, 2019, 36(6): 92 − 100. doi: 10.6052/j.issn.1000-4750.2018.04.0217

    Yang Yong, Xue Yicong, Yu Yunlong. Research on the shear strength of precast steel reinforced concrete beams [J]. Engineering Mechanics, 2019, 36(6): 92 − 100. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.04.0217
    [10] 马佳星, 陈柯宇, 王银辉, 等. 工字形钢筋混凝土矮墙抗剪承载力研究[J]. 工程力学, 2021, 38(4): 123 − 135. doi: 10.6052/j.issn.1000-4750.2020.05.0337

    Ma Jiaxing, Chen Keyu, Wang Yinhui, et al. Peak shear strength of H-shaped reinforced concrete squat walls [J]. Engineering Mechanics, 2021, 38(4): 123 − 135. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.0337
    [11] 丁发兴, 王恩, 吕飞, 等. 考虑组合作用的钢-混凝土组合梁抗剪承载力[J]. 工程力学, 2021, 38(7): 86 − 98. doi: 10.6052/j.issn.1000-4750.2020.07.0479

    Ding Faxing, Wang En, Lü Fei, et al. Composite action of steel-concrete composite beams under lateral shear force [J]. Engineering Mechanics, 2021, 38(7): 86 − 98. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0479
    [12] 杨勇, 陈阳, 张锦涛, 等. 部分预制装配型钢混凝土构件斜截面抗剪承载能力试验研究[J]. 工程力学, 2019, 36(4): 109 − 116. doi: 10.6052/j.issn.1000-4750.2018.01.0071

    Yang Yong, Chen Yang, Zhang Jintao, et al. Experimental study on the oblique section shear capacity of partially prefabricated steel reinforced concreted (PRSRC) members [J]. Engineering Mechanics, 2019, 36(4): 109 − 116. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.01.0071
    [13] Rueda L, Senach J, Miguel P F, et al. Experimental analysis of the shear strength of composite concrete beams without web reinforcement [J]. Engineering Structures, 2020, 229(15): 111664. doi: 10.1016/j.engstruct.2020.111664
    [14] Ferreira F, Tsavdaridis K D, Martins C H, et al. Ultimate strength prediction of steel-concrete composite cellular beams with PCHCS [J]. Engineering Structures, 2021, 236(1): 112082. doi: 10.1016/j.engstruct.2021.112082
    [15] Goliath K, Cardoso D, Silva F. Flexural behavior of carbon-textile-reinforced concrete I-section beams [J]. Composite Structures, 2021, 260(15): 113540. doi: 10.1016/j.compstruct.2021.113540
    [16] Vecchio F J, Collins M P. The modified compression-field theory for reinforced concrete elements subjected to shear [J]. ACI Structural Journal, 1986, 83(2): 219 − 231.
    [17] CSA A23.3-14, Design of concrete structures [S]. Mississauga: Canadian Standards Association, 2015.
    [18] ACI 318-08, Building code requirements for structural concrete and commentary [S]. Michigan: American Concrete Institute, 2008.
    [19] 朱伟庆, 贾金青, 孟刚. 基于修正压力场理论的型钢超高强混凝土柱受剪承载力研究[J]. 建筑结构学报, 2013, 34(10): 101 − 107.

    Zhu Weiqing, Jia Jinqing, Meng Gang. Shear strength of steel reinforced high strength concrete columns based on modified compression field theory [J]. Journal of Building Structures, 2013, 34(10): 101 − 107. (in Chinese)
    [20] 柯晓军, 丁文, 梁昊, 等. 钢管高强混凝土组合柱的受剪性能及承载力计算[J]. 建筑结构学报, 2022, 43(2): 137 − 146. doi: 10.14006/j.jzjgxb.2019.0746

    Ke Xiaojun, Ding Wen, Liang Hao, et al. Shear behavior and bearing capacity calculation of high strength concrete-encased concrete-filled steel tube composite columns [J]. Journal of Building Structures, 2022, 43(2): 137 − 146. (in Chinese) doi: 10.14006/j.jzjgxb.2019.0746
    [21] 朱孔峰, 逯静洲, 刘亚, 等. 基于修正压力场理论的混杂纤维钢筋混凝土深梁的抗剪承载力研究[J]. 烟台大学学报(自然科学与工程版), 2016, 29(3): 216 − 221.

    Zhu Kongfeng, Lu Jingzhou, Liu Ya, et al. Shear capacity of hybrid fiber reinforced concrete deep beams based on modified compression field theory [J]. Journal of Yantai University (Natural Science and Engineering Edition), 2016, 29(3): 216 − 221. (in Chinese)
    [22] 郑山锁, 胡义, 车顺利, 等. 型钢高强高性能混凝土梁抗剪承载力试验研究[J]. 工程力学, 2011, 28(3): 129 − 135.

    Zheng Shansuo, Hu Yi, Che Shunli, Wang Bin, et al. Experimental study on the shear capacity of SRHSHPS beams [J]. Engineering Mechanics, 2011, 28(3): 129 − 135. (in Chinese)
    [23] Bentz E C, Collins M P. Development of the 2004 CSA A23.3 shear provisions for reinforced concrete [J]. Canadian Journal of Civil Engineering, 2006, 33(5): 521 − 534. doi: 10.1139/l06-005
    [24] 童立强, 逯静洲, 田立宗, 等. 基于MCFT的钢筋钢纤维混凝土深梁受剪承载力计算[J]. 烟台大学学报(自然科学与工程版), 2018, 31(4): 336 − 342.

    Tong Liqiang, Lu Jingzhou, Tian Lizong, et al. Calculation for shear capacity of steel fiber reinforced concrete deep beams based on MCFT [J]. Journal of Yantai University (Natural Science and Engineering Edition), 2018, 31(4): 336 − 342. (in Chinese)
    [25] 余波, 陈冰, 唐睿楷, 等. 钢筋混凝土梁临界斜裂缝倾角计算的概率模型[J]. 计算力学学报, 2018, 35(1): 98 − 104.

    Yu Bo, Chen Bing, Tang Ruikai, et al. Probabilistic model for critical crack angle of reinforced concrete beams [J]. Chinese Journal of Computational Mechanics, 2018, 35(1): 98 − 104. (in Chinese)
    [26] 薛建阳, 王秀振, 马辉, 等. 型钢再生混凝土梁受剪性能试验研究[J]. 建筑结构, 2013, 43(7): 69 − 72.

    Xue Jianyang, Wang Xiuzhen, Ma Hui, et al. Experimental study on shear performance of steel reinforced recycled aggregate concrete beams [J]. Building Structure, 2013, 43(7): 69 − 72. (in Chinese)
    [27] Hwang S J, Lu W Y, Lee H J. Shear strength prediction for deep beams [J]. ACI Structural Journal, 2000, 97(3): 367 − 376.
    [28] 杨泽宇. 型钢高延性混凝土短梁抗剪性能试验研究及有限元分析[D]. 西安: 西安建筑科技大学, 2015.

    Yang Zeyu. Experimental study on shear behavior of steel reinforced high ductile concrete short beams and nonlinear finite element analysis [D]. Xi’an: Xi’an University of Architecture and Technology, 2015. (in Chinese)
    [29] 车顺利. 型钢高强高性能混凝土梁的基本性能及设计计算理论研究[D]. 西安: 西安建筑科技大学, 2008.

    Che Shunli. Research on basic behaviors and design theory of steel reinforced high strength and high performance concrete beams [D]. Xi’an: Xi’an University of Architecture and Technology, 2008. (in Chinese)
    [30] 张伟军. 型钢高强高性能混凝土梁抗剪承载力的计算理论及设计方法研究[D]. 西安: 西安建筑科技大学, 2008.

    Zhang Weijun. Calculating theory and design method study on shear bearing capacity of SRHSHPC beams [D]. Xi’an: Xi’an University of Architecture and Technology, 2008. ( in Chinese)
    [31] 翁正强. 压拉杆模式应用于评估SRC深梁抗剪强度的研究[J]. 中国土木水利工程学刊, 2004, 16(3): 403 − 414.

    Weng Zhengqiang. Shear strength of steel reinforced concrete (SRC) deep beams [J]. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 2004, 16(3): 403 − 414. (in Chinese)
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  147
  • HTML全文浏览量:  47
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-29
  • 录用日期:  2021-12-10
  • 修回日期:  2021-10-25
  • 网络出版日期:  2021-12-10
  • 刊出日期:  2022-09-01

目录

    /

    返回文章
    返回