STUDY ON INTERFACIAL BOND-SLIP RELATIONSHIP BETWEEN HSSWM-ECC AND CONCRETE
-
摘要: 良好的界面黏结是保证高强钢绞线网增强工程用水泥基复合材料(HSSWM-ECC)与混凝土协同工作的前提,其界面黏结的有效程度决定着HSSWM-ECC材料性能的发挥。为研究HSSWM-ECC与混凝土界面黏结性能,以混凝土抗压强度、界面黏结长度、黏结宽度和界面处理方式为参数,对设计制作的9组27个梁铰式试件进行了界面黏结性能试验。试验结果表明:界面黏结-滑移受力过程呈现明显的两阶段特征:非线性上升段和下降段。基于试验结果,探究了HSSWM-ECC与混凝土间界面黏结破坏特征和受力机理,构建了考虑各参数影响的界面黏结-滑移关系模型;采用微段分析法对模型特征参数进行了分析,结果表明:所建模型及特征参数计算与试验结果吻合良好,可较好表征HSSWM-ECC与混凝土界面黏结-滑移关系力学行为。
-
关键词:
- 混凝土 /
- 高强钢绞线网增强ECC /
- 界面黏结性能 /
- 梁式试验 /
- 黏结-滑移关系
Abstract: Eminent interfacial bond behavior is a prerequisite to ensure the cooperative work between high-strength steel wire mesh reinforced engineered cementitious composite (HSSWM-ECC) and concrete, and the effectiveness of the interfacial bonding determines the utilization of the performance of HSWM-ECC. In order to study the interfacial bond performance between HSSWM-ECC and concrete, nine groups of modified beam specimens (totally 27 specimens) were designed and tested by considering the influences of the factors such as concrete compressive strength, interfacial bond length, interfacial bond width and, interfacial treatment methods. According to the test results, the bond failure characteristics and stress mechanism of the interface between HSSWM-ECC and ECC were explored, and the interfacial bond-slip relationship model was developed by considering the influences of design parameters. A micro-segment analysis method was used to analyze the characteristic parameters of the model. The study results showed that the proposed model and model parameter calculation formulas agree well with test results and can well characterize the mechanical behavior of the interfacial bond-slip relationship between HSSWM-ECC and concrete.-
Key words:
- concrete /
- HSSWM-ECC /
- interfacial bond performance /
- beam type test /
- bond-slip relationship
-
表 1 试件参数及界面粗糙度
Table 1. The parameters of specimens and interfacial roughness
组号 编号 混凝土
等级界面
尺寸/
(mm×mm)界面处理
方式界面粗糙度/
mm均值/
mmA A1-I C30 75×120 凿毛 1.06、1.10、1.11 1.09 A2-I C40 75×120 凿毛 0.75、0.62、0.59 0.65 A3-I C50 75×120 凿毛 1.08、1.05、1.09 1.07 B B1-I C40 60×120 凿毛 1.10、1.09、1.12 1.10 B2-I C40 90×120 凿毛 1.15、1.03、1.06 1.08 C C1-I C40 75×180 凿毛 0.73、0.64、0.65 0.67 C2-I C40 75×240 凿毛 1.17、1.19、1.18 1.18 D D1-II C40 75×120 高压水冲 2.14、1.91、1.88 1.98 D2-III C40 75×120 刻槽 1.00、1.00、1.00 1.00 注:界面粗糙度为同工况3个试件实测粗糙度。 表 2 混凝土配合比
Table 2. Mix proportion of concrete
材料 C30/(kg/m3) C40/(kg/m3) C50/(kg/m3) 水泥 270.00 365.24 442.56 水 158.08 168.01 185.87 粗骨料 1423.86 1344.09 1275.46 细骨料 555.52 522.66 496.11 表 3 水泥基材料(ECC)配合比
Table 3. Mix proportion of ECC
材料 单位体积用量/(kg/m3) 水泥 347.5 粉煤灰 1042.5 硅灰 32.0 石英砂 139.0 水 397.0 PVA纤维 26.0 减水剂 20.0 表 4 HSSWM-ECC与混凝土的界面黏结性能
Table 4. The interfacial bonding performance between HSSWM-ECC and concrete
试件
编号破坏模式 界面
承载力/kN承载力
均值/kN端部滑移/
mm端部滑移
均值/mmA1-I-1 剥离 7.269 7.620 0.0045 0.0041 A1-I-2 剥离 8.181 0.0040 A1-I-3 剥离 7.411 0.0038 A2-I -1 剥离 9.318 8.727 0.0065 0.0060 A2-I-2 剥离 8.015 0.0048 A2-I-3 剥离 8.848 0.0067 A3-I-1 剥离 12.250 12.223 0.0076 0.0080 A3-I-2 剥离 12.020 0.0082 A3-I-3 剥离 12.400 0.0083 B1-I-1 剥离 9.251 8.932 0.0084 0.0081 B1-I-2 剥离 7.853 0.0078 B1-I-3 剥离 9.732 0.0081 B2-I-1 剥离 9.163 9.328 − 0.0052 B2-I-2 剥离 10.240 0.0049 B2-I-3 剥离 8.582 0.0055 C1-I-1 剥离 14.640 14.013 0.0073 0.0066 C1-I-2 剥离 13.470 0.0067 C1-I-3 剥离 13.930 0.0057 C2-I-1 钢绞线断裂 14.220 13.550 0.0078 0.0076 C2-I-2 钢绞线断裂 13.530 − C2-I-3 剥离 12.900 0.0074 D2-II-1 剥离 16.610 15.127 0.0137 0.0137 D2-II-2 钢绞线断裂 13.010 − D2-II-3 钢绞线断裂 15.760 − D3-III-1 混凝土拉断 17.140 15.487 − − D3-III-2 混凝土拉断 12.670 − D3-III-3 钢绞线断裂 16.650 − 表 5 迭代分析计算结果
Table 5. Iterative calculation results
编号 Ge/(N·mm) α Pu计算值/kN Pu试验值/kN 计算/试验 A1-I 0.15 0.036 7.940 7.620 1.04 A2-I 0.18 0.054 9.118 8.727 1.04 B1-I 0.23 0.064 8.976 8.939 1.00 C1-I 0.18 0.106 13.580 14.010 0.97 注:Ge为界面破坏能;α为式(10)中的系数α;Pu为黏结承载力。 表 6 参数试验值与计算值
Table 6. The calculated values and test values of parameters
编号 τu Su Ge T C T/C T C T/C T A3-I-1 1.60 1.63 0.98 0.0076 0.0080 0.95 0.2338 A3-I-2 1.59 1.63 0.97 0.0082 0.0080 1.03 0.2338 A3-I-3 1.56 1.63 0.96 0.0083 0.0080 1.04 0.2338 B2-I-1 − 1.11 − − 0.0055 − 0.1598 B2-I-2 0.98 1.11 0.88 0.0049 0.0055 0.89 0.1598 B2-I-3 1.13 1.11 1.01 0.0055 0.0055 1.00 0.1598 C2-I-1 1.32 1.34 0.97 0.0078 0.0066 1.18 0.1921 C2-I-2 − 1.34 − − 0.0066 − 0.1921 C2-I-3 1.29 1.34 0.96 0.0074 0.0066 1.12 0.1921 D2-II-1 2.46 2.54 0.97 0.0137 0.0125 1.10 0.3649 注:τu/MPa为界面峰值黏结应力;Su/mm为峰值黏结应力对应滑移量;Ge/(N·mm) 为界面破坏能 ;T代表基于试验计算所得结果;C代表基于所给参数计算表达式计算所得结果。 -
[1] Li V C, Horikoshi T, Ogaw A, et al. Micromechanics-based durability study of polyvinyl alcohol-engineered cementitious composite [J]. ACI Materials Journal, 2004, 101: 242 − 248. [2] Lu C, Leung C K Y. Theoretical evaluation of fiber orientation and its effects on mechanical properties in engineered cementitious composites (ECC) with various thickness [J]. Cement and Concrete Research, 2017, 443(5): 240 − 246. [3] 陈善富, 陈静芬, 杨凤祥, 等. 双轴受压状态下的高延性纤维增强水泥基复合材料本构模型[J]. 工程力学, 2020, 37(12): 87 − 98. doi: 10.6052/j.issn.1000-4750.2020.01.0018Chen Shanfu, Chen Jingfen, Yang Fengxiang, et al. Constitutive model for engineered cementitious composites under biaxial compression [J]. Engineering Mechanics, 2020, 37(12): 87 − 98. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0018 [4] 聂建国, 王寒冰, 张天申, 等. 高强不锈钢绞线网-渗透性聚合砂浆抗弯加固的试验研究[J]. 建筑结构学报, 2005, 26(2): 1 − 9. doi: 10.3321/j.issn:1000-6869.2005.02.001Nie Jianguo, Wang Hanbing, Zhang Tianshen, et al. Experimental study on flexural behavior of RC beams strengthened with stainless steel wire mesh and permeability polymer mortar [J]. Journal of Building Structures, 2005, 26(2): 1 − 9. (in Chinese) doi: 10.3321/j.issn:1000-6869.2005.02.001 [5] 林于东, 宗周红, 林秋峰. 高强钢绞线网-聚合物砂浆加固混凝土及预应力混凝土梁的抗弯性能试验研究[J]. 工程力学, 2012, 29(9): 141 − 149. doi: 10.6052/j.issn.1000-4750.2011.04.0193Lin Yudong, Zong Zhouhong, Lin Qiufeng. Experimental study on flexural behavior of RC/PRC beams strengthened with high strength steel wire mesh and permeable polymer mortar [J]. Engineering Mechanics, 2012, 29(9): 141 − 149. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.04.0193 [6] 朱俊涛, 张凯, 王新玲, 等. 高强不锈钢绞线网与ECC黏结- 滑移关系模型[J]. 土木工程学报, 2020, 53(4): 83 − 92.Zhu Juntao, Zhang Kai, Wang Xinling, el al. Bond-slip relational model between high-strength stainless steel wire mesh and ECC [J]. China Civil Engineering Journal, 2020, 53(4): 83 − 92. (in Chinese) [7] 朱俊涛, 赵亚楼, 李燚, 等. 高强不锈钢绞线网与工程水泥 基复合材料黏结锚固性能试验[J]. 复合材料学报, 2020, 37(7): 1731 − 1742. doi: 10.13801/j.cnki.fhclxb.20191010.001Zhu Juntao, Zhao Yalou, Li Yi, et al. Experiment on bonding and anchoring performance between high-strength stainless steel wire mesh and engineered cementitious composites [J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1731 − 1742. (in Chinese) doi: 10.13801/j.cnki.fhclxb.20191010.001 [8] 王新玲, 杨广华, 钱文文, 等. 高强不锈钢绞线网增强工程水泥基复合材料受拉应力-应变关系[J]. 复合材料学报, 2020, 37(12): 3220 − 3228. doi: 10.13801/j.cnki.fhclxb.20200428.002Wang Xinling, Yang Guanghua, Qian Wenwen, el al. Tensile stress-strain relationship of engineered cementitious composites reinforced by high-strength stainless steel wire mesh [J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3220 − 3228. (in Chinese) doi: 10.13801/j.cnki.fhclxb.20200428.002 [9] Cheng Y, Chen W, Thong M, el al. Strain rate effect on interfacial bond behavior between BFRP sheets and steel fibre reinforced concrete [J]. Composites Part B, 2019, 174: 107032. doi: 10.1016/j.compositesb.2019.107032 [10] Azevedo A S, Firmo J P, Correia J R, et al. Influence of elevated temperatures on the bond behaviour between concrete and NSM-CFRP strips [J]. Cement and Concrete Composites, 2020, 111: 103603. [11] 董坤, 郝建文, 李鹏, 等. 环境温差下FRP-混凝土界面粘结行为分析[J]. 工程力学, 2020, 37(11): 117 − 126. doi: 10.6052/j.issn.1000-4750.2019.12.0783Dong Kun, Hao Jianwen, Li Peng, et al. Studies on the bond performance of FRP-to-concrete interfaces under environmental temperature difference [J]. Engineering Mechanics, 2020, 37(11): 117 − 126. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0783 [12] 陆新征, 叶列平, 滕锦光, 等. FRP-混凝土界面粘结滑移本构模型[J]. 建筑结构学报, 2005, 26(4): 10 − 18. doi: 10.3321/j.issn:1000-6869.2005.04.002Lu Xinzheng, Ye Lieping, Teng Jinguang, et al. Bond slip model for FRP to concrete interface [J]. Journal of Building Structures, 2005, 26(4): 10 − 18. (in Chinese) doi: 10.3321/j.issn:1000-6869.2005.04.002 [13] 郭樟根, 孙伟民, 曹双寅. FRP与混凝土界面黏结-滑移本构关系的试验研究[J]. 土木工程学报, 2007, 40(3): 1 − 5. doi: 10.3321/j.issn:1000-131X.2007.03.001Guo Zhanggen, Sun Weimin, Cao Shuangyin. Experimental study on bond-slip behavior between FRP and concrete [J]. China Civil Engineering Journal, 2007, 40(3): 1 − 5. (in Chinese) doi: 10.3321/j.issn:1000-131X.2007.03.001 [14] D'Ambrisi A, Feo L, Focacci F. Bond-slip relations for PBO-FRCM materials externally bonded to concrete [J]. Cement and Concrete Composites, 2017, 80: 287 − 297. [15] Luciano O. Analysis of the bond between fabric reinforced cementitious mortar (FRCM) strengthening systems and concrete [J]. Composites Part B, 2015, 69: 418 − 426. doi: 10.1016/j.compositesb.2014.10.027 [16] 李庆华, 银星, 郭康安, 等. 超高韧性水泥基复合材料与活性粉末混凝土界面剪切强度试验研究[J]. 工程力学, 2022, 39(8): 232 − 244. doi: 10.6052/j.issn.1000-4750.2021.05.0355Li Qinghua, Yin Xing, Guo Kangan, et al. Experimental study on the interfacial shear strength between Ultra-high toughness cementitious composites and reactive powder concrete [J]. Engineering Mechanics, 2022, 39(8): 232 − 244. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.0355 [17] Li B, Lam E S S. Influence of interfacial characteristics on the shear bond behaviour between concrete and ferrocement [J]. Construction and Building Materials, 2018, 176: 462 − 469. [18] Mustafa S, Hasan E Y, Gurkan Y, et al. Investigation of the bond between concrete substrate and ECC overlays [J]. Journal of Materials in Civil Engineering, 2014, 26(1): 167 − 174. doi: 10.1061/(ASCE)MT.1943-5533.0000805 [19] Tayeh B A, Abu B B H, Johari M A M, et al. Mechanical and permeability properties of the interface between normal concrete substrate and ultra-high performance fiber concrete overlay [J]. Construction and Building Materials, 2012, 36(6): 538 − 548. [20] 邓明科, 范洪侃, 马福栋, 等. 高延性混凝土与带肋钢筋黏结性能试验研究[J]. 工程力学. doi: 10.6052/j.issn.1000-4750.2021.08.0672.Deng Mingke, Fan Hongkan, Ma Fudong, et al. Experimental study on bond behavior between high ductile concrete and ribbed steel bar [J]. Engineering Mechanics. doi: 10.6052/j.issn.1000-4750.2021.08.0672. (in Chinese) -