留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高强钢绞线网增强ECC与混凝土界面黏结-滑移关系研究

朱俊涛 张凯 王新玲 李可

朱俊涛, 张凯, 王新玲, 李可. 高强钢绞线网增强ECC与混凝土界面黏结-滑移关系研究[J]. 工程力学, 2022, 39(9): 204-214. doi: 10.6052/j.issn.1000-4750.2021.05.0399
引用本文: 朱俊涛, 张凯, 王新玲, 李可. 高强钢绞线网增强ECC与混凝土界面黏结-滑移关系研究[J]. 工程力学, 2022, 39(9): 204-214. doi: 10.6052/j.issn.1000-4750.2021.05.0399
ZHU Jun-tao, ZHANG Kai, WANG Xin-ling, LI Ke. STUDY ON INTERFACIAL BOND-SLIP RELATIONSHIP BETWEEN HSSWM-ECC AND CONCRETE[J]. Engineering Mechanics, 2022, 39(9): 204-214. doi: 10.6052/j.issn.1000-4750.2021.05.0399
Citation: ZHU Jun-tao, ZHANG Kai, WANG Xin-ling, LI Ke. STUDY ON INTERFACIAL BOND-SLIP RELATIONSHIP BETWEEN HSSWM-ECC AND CONCRETE[J]. Engineering Mechanics, 2022, 39(9): 204-214. doi: 10.6052/j.issn.1000-4750.2021.05.0399

高强钢绞线网增强ECC与混凝土界面黏结-滑移关系研究

doi: 10.6052/j.issn.1000-4750.2021.05.0399
基金项目: 国家自然科学基金项目 (51879243,U1804137);住房和城乡建设部科学技术计划项目(2019-K-059);河南省青年骨干教师项目
详细信息
    作者简介:

    朱俊涛(1983−),男,河南人,副教授,博士,主要从事新型复合材料性能及结构加固方面的研究(E-mail: juntaozhu@zzu.edu.com)

    张 凯(1997−),男,陕西人,博士生,主要从事新型复合材料性能研究(E-mail: zkai2766@163.com)

    王新玲(1963−),女,河南人,教授,博士,主要从事结构加固与改造方面的研究(E-mail: xinlingwang@zzu.edu.cn)

    通讯作者:

    李 可(1985−),女,河南人,副教授,博士,主要从事新型复合材料性能及结构加固方面的研究(E-mail: irwinlike@163.com)

  • 中图分类号: TU528

STUDY ON INTERFACIAL BOND-SLIP RELATIONSHIP BETWEEN HSSWM-ECC AND CONCRETE

  • 摘要: 良好的界面黏结是保证高强钢绞线网增强工程用水泥基复合材料(HSSWM-ECC)与混凝土协同工作的前提,其界面黏结的有效程度决定着HSSWM-ECC材料性能的发挥。为研究HSSWM-ECC与混凝土界面黏结性能,以混凝土抗压强度、界面黏结长度、黏结宽度和界面处理方式为参数,对设计制作的9组27个梁铰式试件进行了界面黏结性能试验。试验结果表明:界面黏结-滑移受力过程呈现明显的两阶段特征:非线性上升段和下降段。基于试验结果,探究了HSSWM-ECC与混凝土间界面黏结破坏特征和受力机理,构建了考虑各参数影响的界面黏结-滑移关系模型;采用微段分析法对模型特征参数进行了分析,结果表明:所建模型及特征参数计算与试验结果吻合良好,可较好表征HSSWM-ECC与混凝土界面黏结-滑移关系力学行为。
  • 图  1  界面试验试件示意图 /mm

    Figure  1.  The schematics of interfacial test specimens

    图  2  高强钢绞线网固定及绑扎方式

    Figure  2.  The method of fixing and binding the steel wire meshes

    图  3  界面黏结试验加载装置

    Figure  3.  The interfacial bonding test loading setup

    图  4  测点布置方案

    Figure  4.  The arrangement of measuring points

    图  5  界面黏结性能与不同影响参数关系曲线

    Figure  5.  The Phenetic relationships between the bonding performance and the various influencing factors

    图  6  试件破坏模式

    Figure  6.  The failure modes of specimens

    图  7  界面试验试件微段受力图

    Figure  7.  Micro-segment force diagram of interfacial test specimen

    图  8  界面试验试件应变分布规律图

    Figure  8.  Strain distribution diagram of interfacial test specimen

    图  9  HSSWM-ECC与混凝土界面黏结-滑移曲线

    Figure  9.  The interfacial bond-slip curves between HSSWM-ECC and concrete

    图  10  HSSWM-ECC与混凝土界面黏结-滑移模型

    Figure  10.  The interfacial bond-slip model between HSSWM-ECC and concrete

    图  11  验证组试件界面黏结-滑移对比曲线

    Figure  11.  The comparison of interfacial bond-slip curves of specimens in verification group

    图  12  验证组试件荷载-端部滑移对比曲线

    Figure  12.  The comparison of load-end slip curves of specimens in verification group

    表  1  试件参数及界面粗糙度

    Table  1.   The parameters of specimens and interfacial roughness

    组号编号混凝土
    等级
    界面
    尺寸/
    (mm×mm)
    界面处理
    方式
    界面粗糙度/
    mm
    均值/
    mm
    AA1-IC3075×120凿毛1.06、1.10、1.111.09
    A2-IC4075×120凿毛0.75、0.62、0.590.65
    A3-IC5075×120凿毛1.08、1.05、1.091.07
    BB1-IC4060×120凿毛1.10、1.09、1.121.10
    B2-IC4090×120凿毛1.15、1.03、1.061.08
    CC1-IC4075×180凿毛0.73、0.64、0.650.67
    C2-IC4075×240凿毛1.17、1.19、1.181.18
    DD1-IIC4075×120高压水冲2.14、1.91、1.881.98
    D2-IIIC4075×120刻槽1.00、1.00、1.001.00
    注:界面粗糙度为同工况3个试件实测粗糙度。
    下载: 导出CSV

    表  2  混凝土配合比

    Table  2.   Mix proportion of concrete

    材料C30/(kg/m3)C40/(kg/m3)C50/(kg/m3)
    水泥270.00365.24442.56
    158.08168.01185.87
    粗骨料1423.861344.091275.46
    细骨料555.52522.66496.11
    下载: 导出CSV

    表  3  水泥基材料(ECC)配合比

    Table  3.   Mix proportion of ECC

    材料单位体积用量/(kg/m3)
    水泥347.5
    粉煤灰1042.5
    硅灰32.0
    石英砂139.0
    397.0
    PVA纤维26.0
    减水剂20.0
    下载: 导出CSV

    表  4  HSSWM-ECC与混凝土的界面黏结性能

    Table  4.   The interfacial bonding performance between HSSWM-ECC and concrete

    试件
    编号
    破坏模式界面
    承载力/kN
    承载力
    均值/kN
    端部滑移/
    mm
    端部滑移
    均值/mm
    A1-I-1剥离7.2697.6200.00450.0041
    A1-I-2剥离8.1810.0040
    A1-I-3剥离7.4110.0038
    A2-I -1剥离9.3188.7270.00650.0060
    A2-I-2剥离8.0150.0048
    A2-I-3剥离8.8480.0067
    A3-I-1剥离12.25012.2230.00760.0080
    A3-I-2剥离12.0200.0082
    A3-I-3剥离12.4000.0083
    B1-I-1剥离9.2518.9320.00840.0081
    B1-I-2剥离7.8530.0078
    B1-I-3剥离9.7320.0081
    B2-I-1剥离9.1639.3280.0052
    B2-I-2剥离10.2400.0049
    B2-I-3剥离8.5820.0055
    C1-I-1剥离14.64014.0130.00730.0066
    C1-I-2剥离13.4700.0067
    C1-I-3剥离13.9300.0057
    C2-I-1钢绞线断裂14.22013.5500.00780.0076
    C2-I-2钢绞线断裂13.530
    C2-I-3剥离12.9000.0074
    D2-II-1剥离16.61015.1270.01370.0137
    D2-II-2钢绞线断裂13.010
    D2-II-3钢绞线断裂15.760
    D3-III-1混凝土拉断17.14015.487
    D3-III-2混凝土拉断12.670
    D3-III-3钢绞线断裂16.650
    下载: 导出CSV

    表  5  迭代分析计算结果

    Table  5.   Iterative calculation results

    编号Ge/(N·mm)αPu计算值/kNPu试验值/kN计算/试验
    A1-I0.150.0367.9407.6201.04
    A2-I0.180.0549.1188.7271.04
    B1-I0.230.0648.9768.9391.00
    C1-I0.180.10613.58014.0100.97
    注:Ge为界面破坏能;α为式(10)中的系数αPu为黏结承载力。
    下载: 导出CSV

    表  6  参数试验值与计算值

    Table  6.   The calculated values and test values of parameters

    编号τuSuGe
    TCT/CTCT/CT
    A3-I-11.601.630.980.00760.00800.950.2338
    A3-I-21.591.630.970.00820.00801.030.2338
    A3-I-31.561.630.960.00830.00801.040.2338
    B2-I-11.110.00550.1598
    B2-I-20.981.110.880.00490.00550.890.1598
    B2-I-31.131.111.010.00550.00551.000.1598
    C2-I-11.321.340.970.00780.00661.180.1921
    C2-I-21.340.00660.1921
    C2-I-31.291.340.960.00740.00661.120.1921
    D2-II-12.462.540.970.01370.01251.100.3649
    注:τu/MPa为界面峰值黏结应力;Su/mm为峰值黏结应力对应滑移量;Ge/(N·mm)为界面破坏能 ;T代表基于试验计算所得结果;C代表基于所给参数计算表达式计算所得结果。
    下载: 导出CSV
  • [1] Li V C, Horikoshi T, Ogaw A, et al. Micromechanics-based durability study of polyvinyl alcohol-engineered cementitious composite [J]. ACI Materials Journal, 2004, 101: 242 − 248.
    [2] Lu C, Leung C K Y. Theoretical evaluation of fiber orientation and its effects on mechanical properties in engineered cementitious composites (ECC) with various thickness [J]. Cement and Concrete Research, 2017, 443(5): 240 − 246.
    [3] 陈善富, 陈静芬, 杨凤祥, 等. 双轴受压状态下的高延性纤维增强水泥基复合材料本构模型[J]. 工程力学, 2020, 37(12): 87 − 98. doi: 10.6052/j.issn.1000-4750.2020.01.0018

    Chen Shanfu, Chen Jingfen, Yang Fengxiang, et al. Constitutive model for engineered cementitious composites under biaxial compression [J]. Engineering Mechanics, 2020, 37(12): 87 − 98. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0018
    [4] 聂建国, 王寒冰, 张天申, 等. 高强不锈钢绞线网-渗透性聚合砂浆抗弯加固的试验研究[J]. 建筑结构学报, 2005, 26(2): 1 − 9. doi: 10.3321/j.issn:1000-6869.2005.02.001

    Nie Jianguo, Wang Hanbing, Zhang Tianshen, et al. Experimental study on flexural behavior of RC beams strengthened with stainless steel wire mesh and permeability polymer mortar [J]. Journal of Building Structures, 2005, 26(2): 1 − 9. (in Chinese) doi: 10.3321/j.issn:1000-6869.2005.02.001
    [5] 林于东, 宗周红, 林秋峰. 高强钢绞线网-聚合物砂浆加固混凝土及预应力混凝土梁的抗弯性能试验研究[J]. 工程力学, 2012, 29(9): 141 − 149. doi: 10.6052/j.issn.1000-4750.2011.04.0193

    Lin Yudong, Zong Zhouhong, Lin Qiufeng. Experimental study on flexural behavior of RC/PRC beams strengthened with high strength steel wire mesh and permeable polymer mortar [J]. Engineering Mechanics, 2012, 29(9): 141 − 149. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.04.0193
    [6] 朱俊涛, 张凯, 王新玲, 等. 高强不锈钢绞线网与ECC黏结- 滑移关系模型[J]. 土木工程学报, 2020, 53(4): 83 − 92.

    Zhu Juntao, Zhang Kai, Wang Xinling, el al. Bond-slip relational model between high-strength stainless steel wire mesh and ECC [J]. China Civil Engineering Journal, 2020, 53(4): 83 − 92. (in Chinese)
    [7] 朱俊涛, 赵亚楼, 李燚, 等. 高强不锈钢绞线网与工程水泥 基复合材料黏结锚固性能试验[J]. 复合材料学报, 2020, 37(7): 1731 − 1742. doi: 10.13801/j.cnki.fhclxb.20191010.001

    Zhu Juntao, Zhao Yalou, Li Yi, et al. Experiment on bonding and anchoring performance between high-strength stainless steel wire mesh and engineered cementitious composites [J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1731 − 1742. (in Chinese) doi: 10.13801/j.cnki.fhclxb.20191010.001
    [8] 王新玲, 杨广华, 钱文文, 等. 高强不锈钢绞线网增强工程水泥基复合材料受拉应力-应变关系[J]. 复合材料学报, 2020, 37(12): 3220 − 3228. doi: 10.13801/j.cnki.fhclxb.20200428.002

    Wang Xinling, Yang Guanghua, Qian Wenwen, el al. Tensile stress-strain relationship of engineered cementitious composites reinforced by high-strength stainless steel wire mesh [J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3220 − 3228. (in Chinese) doi: 10.13801/j.cnki.fhclxb.20200428.002
    [9] Cheng Y, Chen W, Thong M, el al. Strain rate effect on interfacial bond behavior between BFRP sheets and steel fibre reinforced concrete [J]. Composites Part B, 2019, 174: 107032. doi: 10.1016/j.compositesb.2019.107032
    [10] Azevedo A S, Firmo J P, Correia J R, et al. Influence of elevated temperatures on the bond behaviour between concrete and NSM-CFRP strips [J]. Cement and Concrete Composites, 2020, 111: 103603.
    [11] 董坤, 郝建文, 李鹏, 等. 环境温差下FRP-混凝土界面粘结行为分析[J]. 工程力学, 2020, 37(11): 117 − 126. doi: 10.6052/j.issn.1000-4750.2019.12.0783

    Dong Kun, Hao Jianwen, Li Peng, et al. Studies on the bond performance of FRP-to-concrete interfaces under environmental temperature difference [J]. Engineering Mechanics, 2020, 37(11): 117 − 126. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0783
    [12] 陆新征, 叶列平, 滕锦光, 等. FRP-混凝土界面粘结滑移本构模型[J]. 建筑结构学报, 2005, 26(4): 10 − 18. doi: 10.3321/j.issn:1000-6869.2005.04.002

    Lu Xinzheng, Ye Lieping, Teng Jinguang, et al. Bond slip model for FRP to concrete interface [J]. Journal of Building Structures, 2005, 26(4): 10 − 18. (in Chinese) doi: 10.3321/j.issn:1000-6869.2005.04.002
    [13] 郭樟根, 孙伟民, 曹双寅. FRP与混凝土界面黏结-滑移本构关系的试验研究[J]. 土木工程学报, 2007, 40(3): 1 − 5. doi: 10.3321/j.issn:1000-131X.2007.03.001

    Guo Zhanggen, Sun Weimin, Cao Shuangyin. Experimental study on bond-slip behavior between FRP and concrete [J]. China Civil Engineering Journal, 2007, 40(3): 1 − 5. (in Chinese) doi: 10.3321/j.issn:1000-131X.2007.03.001
    [14] D'Ambrisi A, Feo L, Focacci F. Bond-slip relations for PBO-FRCM materials externally bonded to concrete [J]. Cement and Concrete Composites, 2017, 80: 287 − 297.
    [15] Luciano O. Analysis of the bond between fabric reinforced cementitious mortar (FRCM) strengthening systems and concrete [J]. Composites Part B, 2015, 69: 418 − 426. doi: 10.1016/j.compositesb.2014.10.027
    [16] 李庆华, 银星, 郭康安, 等. 超高韧性水泥基复合材料与活性粉末混凝土界面剪切强度试验研究[J]. 工程力学, 2022, 39(8): 232 − 244. doi: 10.6052/j.issn.1000-4750.2021.05.0355

    Li Qinghua, Yin Xing, Guo Kangan, et al. Experimental study on the interfacial shear strength between Ultra-high toughness cementitious composites and reactive powder concrete [J]. Engineering Mechanics, 2022, 39(8): 232 − 244. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.0355
    [17] Li B, Lam E S S. Influence of interfacial characteristics on the shear bond behaviour between concrete and ferrocement [J]. Construction and Building Materials, 2018, 176: 462 − 469.
    [18] Mustafa S, Hasan E Y, Gurkan Y, et al. Investigation of the bond between concrete substrate and ECC overlays [J]. Journal of Materials in Civil Engineering, 2014, 26(1): 167 − 174. doi: 10.1061/(ASCE)MT.1943-5533.0000805
    [19] Tayeh B A, Abu B B H, Johari M A M, et al. Mechanical and permeability properties of the interface between normal concrete substrate and ultra-high performance fiber concrete overlay [J]. Construction and Building Materials, 2012, 36(6): 538 − 548.
    [20] 邓明科, 范洪侃, 马福栋, 等. 高延性混凝土与带肋钢筋黏结性能试验研究[J]. 工程力学. doi: 10.6052/j.issn.1000-4750.2021.08.0672.

    Deng Mingke, Fan Hongkan, Ma Fudong, et al. Experimental study on bond behavior between high ductile concrete and ribbed steel bar [J]. Engineering Mechanics. doi: 10.6052/j.issn.1000-4750.2021.08.0672. (in Chinese)
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  309
  • HTML全文浏览量:  144
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-28
  • 修回日期:  2021-12-02
  • 录用日期:  2021-12-10
  • 网络出版日期:  2021-12-10
  • 刊出日期:  2022-09-01

目录

    /

    返回文章
    返回