留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

穿越平移断层海底埋地管道屈曲失效分析

余杨 李振眠 余建星 孙文正 刘晓伟 马建东 刘成

余杨, 李振眠, 余建星, 孙文正, 刘晓伟, 马建东, 刘成. 穿越平移断层海底埋地管道屈曲失效分析[J]. 工程力学, 2022, 39(9): 242-256. doi: 10.6052/j.issn.1000-4750.2021.05.0391
引用本文: 余杨, 李振眠, 余建星, 孙文正, 刘晓伟, 马建东, 刘成. 穿越平移断层海底埋地管道屈曲失效分析[J]. 工程力学, 2022, 39(9): 242-256. doi: 10.6052/j.issn.1000-4750.2021.05.0391
YU Yang, LI Zhen-mian, YU Jian-xing, SUN Wen-zheng, LIU Xiao-wei, MA Jian-dong, LIU Cheng. BUCKLING FAILURE ANALYSIS OF SUBSEA BURIED PIPELINE CROSSING STRIKE-SLIP FAULT[J]. Engineering Mechanics, 2022, 39(9): 242-256. doi: 10.6052/j.issn.1000-4750.2021.05.0391
Citation: YU Yang, LI Zhen-mian, YU Jian-xing, SUN Wen-zheng, LIU Xiao-wei, MA Jian-dong, LIU Cheng. BUCKLING FAILURE ANALYSIS OF SUBSEA BURIED PIPELINE CROSSING STRIKE-SLIP FAULT[J]. Engineering Mechanics, 2022, 39(9): 242-256. doi: 10.6052/j.issn.1000-4750.2021.05.0391

穿越平移断层海底埋地管道屈曲失效分析

doi: 10.6052/j.issn.1000-4750.2021.05.0391
基金项目: 高技术船舶科研项目(MC-202030-H04);陵水半潜式生产平台研究专项项目(LSZX-2020-HN-01-03);河南省重点研发与推广专项项目(科技攻关)(192102310210)
详细信息
    作者简介:

    余 杨(1988−),男,天津人,副教授,博士,主要从事海洋工程研究(E-mail: yang.yu@tju.edu.cn)

    余建星(1958−),男,福建人,教授,博士,博导,主要从事船舶与海洋工程研究(E-mail: yjx2000@tju.edu.cn)

    孙文正(1996−),男,辽宁人,硕士生,主要从事海洋结构物设计研究(E-mail: sun.wenzheng@hotmail.com)

    刘晓伟(1997−),男,山东人,硕士生,主要从事海洋结构物设计研究(E-mail: 3016205416@tju.edu.cn)

    马建东(1999−),男,河北人,硕士生,主要从事海洋管线设计研究(E-mail: youke990120@tju.edu.cn)

    刘 成(1998−),男,湖南人,硕士生,主要从事海洋油气采输结构系统设计研究(E-mail: 2020205155@tju.edu.cn)

    通讯作者:

    李振眠(1994−),男,福建人,博士生,主要从事复杂载荷下深水结构物力学响应和灾变控制研究(E-mail: lizhenmian@tju.edu.cn)

  • 中图分类号: TU312+.1;P756.2

BUCKLING FAILURE ANALYSIS OF SUBSEA BURIED PIPELINE CROSSING STRIKE-SLIP FAULT

  • 摘要: 长输海底管道常不可避免地穿过地震断层,地震断层活动可能导致管道发生扭曲、皱折甚至断裂,极大威胁管道安全。采用创新性的向量式有限元方法(VFIFE)分析穿越地震断层海底管道屈曲失效行为,首先推导考虑材料非线性的VFIFE空间壳单元计算公式,提出适用壳单元的非线性管土耦合模型,然后重点解决了海底管道屈曲及屈曲传播过程中存在的内壁自碰撞接触问题,编制了Fortran计算程序和相应后处理程序。通过文献对比证明了模型的正确性。开展了平移断层作用下空载状态海底管道屈曲失效过程模拟,分析了穿越角度、土体性质和水压大小对海底管道屈曲失效行为的影响,结果表明:海底管道径厚比小,用钢等级高,周围土体强度低,具有更高的抵抗断层位移载荷能力;较低外压和平移断层联合作用下,管道变形呈S形,屈曲失效由断层位移引起的过度弯曲主导,失效模式是第二个弯曲处或者两个弯曲处的受压侧出现明显内陷,截面变形呈椭圆形;穿越角度越小,屈曲失效的临界断层位移越小;周围土体强度越高(砂土>黏土>淤泥夹砂),管道弯曲变形越严重,屈曲失效的临界断层位移越小;较高外压和平移断层联合作用下,屈曲失效由外压主导,主要模式是第一个弯曲处或者第二个弯曲处首先出现压溃,然后发生屈曲传播现象;不同水压和平移断层位移组合下海底管道破坏程度不一,压溃位置、屈曲传播方向和范围、截面变形呈现不同模式。结果可用于指导穿越地震断层海底管道抗震设计和止屈防护研究。
  • 图  1  三角形壳单元的逆向运动

    Figure  1.  Reverse motion of a triangular shell element

    图  2  VFIFE计算流程

    Figure  2.  Computation flow of VFIFE method

    图  3  海底埋地管道管土耦合模型

    Figure  3.  Coupling model of pipe-soil interaction for subsea buried pipeline

    图  4  断层加载方式示意图

    Figure  4.  Schematic of fault displacement

    图  5  基于应力积分回退算法的弹塑性材料处理

    Figure  5.  Elastoplastic material treatment based on stress integral regression algorithm

    图  6  碰撞检测和位移修正流程

    Figure  6.  Procedure of collision detection and displacement correction

    图  7  质点i与单元j之间的碰撞检测

    Figure  7.  Collision detection between particle i and element j

    图  8  与文献对比验证

    Figure  8.  Comparison with the published results

    图  9  穿越平移断层海底管道变形、应力和应变分布 /m

    Figure  9.  Strain and stress distribution and deformation of buried subsea pipeline crossing strike-slip fault

    图  10  应变判据随断层位移变化情况

    Figure  10.  The strain criterion vs. the fault displacement

    图  11  截面倒塌前后管道变形和应变分布 /m

    Figure  11.  Deformation and distribution of strain along the pipeline before local collapse

    图  12  应变判据随断层位移变化情况

    Figure  12.  The strain criterion vs. the fault displacement

    图  13  截面倒塌前后管道变形和应变分布 /m

    Figure  13.  Deformation and distribution of strain along the pipeline before local collapse

    图  14  应变判据随断层位移变化情况

    Figure  14.  The strain criterion vs. the fault displacement

    图  15  截面倒塌前后管道变形和应变分布 /m

    Figure  15.  Deformation and distribution of strain along the pipeline before local collapse

    图  16  应变判据随断层位移变化情况

    Figure  16.  The strain criterion vs. the fault displacement

    图  17  不同压力载荷下的管道局部压溃和屈曲传播 /m

    Figure  17.  Local collapse and buckle propagation under different pressure loadings

    表  1  海底管道参数

    Table  1.   Parameters of the subsea pipeline

    参数及单位直径D/mm壁厚t/mm长度L/m弹性模量E/GPa静态屈服应力${A_{{\rm{C}} - {\rm{S}}}}$/MPa静态应变硬化参数
    ${B_{{\rm{C}} - {\rm{S}}}}$${n_{{\rm{C}} - {\rm{S}}}}$
    81325.480.00201.77403.51286.400.29
    下载: 导出CSV

    表  2  海床土壤参数[28]

    Table  2.   Parameters of the subsea soil

    土体类型内聚力/Pa上覆土有效重度/(N·m−3)天然土有效重度/(N·m−3)天然土总重度/(N·m−3)静止土压力系数值内摩擦角/(°)
    淤泥夹砂10 40015 40015 40016 4000.63.9
    砂土016 20016 20017 2000.435.0
    黏土30 00016 70016 70016 7000.520.0
    下载: 导出CSV

    表  3  土弹簧参数

    Table  3.   Parameters of the soil springs

    土弹簧参数淤泥夹砂砂土黏土
    屈服力/(kN·m−1)屈服位移/mm屈服力/(kN·m−1)屈服位移/mm屈服力/(kN·m−1)屈服位移/mm
    轴向土弹簧4.3210.040.545.023.3510.0
    水平横向土弹簧82.96120.0289.80120.090.06120.0
    垂直隆起土弹簧5.50162.651.5252.030.47162.6
    垂直支撑土弹簧36.48162.6113.0681.3193.61162.6
    下载: 导出CSV
  • [1] 李昕, 周晶. 长输管道地震反应分析 [M]. 北京: 科学出版社, 2017.

    Li Xin, Zhou Jing. Seismic response analysis of long-distance pipeline [M]. Beijing: Science Press, 2017. (in Chinese)
    [2] Triantafyllaki A, Papanastasiou P, Loukidis D. Offshore pipeline performance under strike-slip fault movements [J]. Soil Dynamics and Earthquake Engineering, 2021(5): 106698.
    [3] DNVGL-ST-F101, Submarine pipeline system [S]. 2017.
    [4] API RP 1111, Design, construction, operation and maintenance of offshore hydrocarbon pipelines (Limit state design) [S]. 2009.
    [5] Nath B, Soh C H. Transverse seismic response analysis of offshore pipelines in proximity to the sea‐bed [J]. Earthquake Engineering & Structural Dynamics, 1978, 6(6): 569 − 583.
    [6] Datta T K, Mashaly E A. Transverse response of offshore pipelines to random ground motion [J]. Earthquake Engineering & Structural Dynamics, 2010, 19(2): 217 − 228.
    [7] Azimov P, Sari P, Arablouei P. Assessment of subsea pipelines crossing seismic fault [C]. Offshore Technology Conference, 2017.
    [8] Arifin R B, Wan M. Sh af rizal B. et al. Seismic analysis for the subsea pipeline system [C]. Shanghai, China: Proceedings of the ASME 29th International Conference on Ocean, Offshore and Arctic Engineering, 2010.
    [9] Chen X, Zhang Q, Zheng X Y. Effect of offshore earthquake ground motions and temporal-spatial correlation on the dynamic response of subsea pipelines [C]. Shanghai, China: The 30th International Offshore and Polar Engineering Conference, 2020.
    [10] ALA−2001, Guidelines for the design of buried steel pipe [S]. 2001.
    [11] PR-268−9823, Guidelines for the seismic design and assessment of natural gas and liquid hydrocarbon pipelines [S]. 2004.
    [12] American Society of Civil Engineers (ASCE). Guidelines for the seismic design of oil and gas pipeline system [S]. 1984.
    [13] Japan Society of Civil Engineers (JSCE). Earthquake resistant design codes in Japan [S]. 2000.
    [14] CSA Z662-19, Oil and gas pipeline system [S]. Mississauga, Canada: Canadian Standards Association, 2019.
    [15] SY/T 0450−2004, 输油(气)钢质管道抗震设计规范 [S]. 北京: 中国计划出版社, 2004.

    SY/T 0450−2004, Code for seismic design of oil (gas) steel pipelines [S]. Beijing: China Planning Press, 2004. (in Chinese)
    [16] GB 50470, 油气输送管道线路工程抗震技术规范 [S]. 北京: 中国计划出版社, 2008.

    GB 50470, Seismic technical code for oil and gas transmission pipeline engineering [S]. Beijing: China Planning Press, 2008. (in Chinese)
    [17] Newmark N M, Hall W J. Pipeline design to resist large fault displacement [A]. Proceedings of US Conference on Earthquake Engineering [C]. University of Michigan, 1975: 416 − 425.
    [18] Kennedy R P, Chow A W, Williamson R A. Fault movement effects on buried oil pipeline [J]. Transportation Engineering Journal, 1977, 103(5): 617 − 633.
    [19] Trifonov O V, Cherniy V P. Elastoplastic stress–strain analysis of buried steel pipelines subjected to fault displacements with account for service loads [J]. Soil Dynamics and Earthquake Engineering, 2012, 33(1): 54 − 62. doi: 10.1016/j.soildyn.2011.10.001
    [20] Karamitros D K, Bouckovalas G D, Kouretzis G P. Stress analysis of buried steel pipelines at strike-slip fault crossings [J]. Soil Dynamics & Earthquake Engineering, 2007, 27(3): 200 − 211.
    [21] 张宏涛, 赵宇飞, 高明旭, 等. 穿越非均匀土体埋地管道地震离心实验研究[J]. 工程力学, 2021, 38(11): 88 − 94. doi: 10.6052/j.issn.1000-4750.2020.10.0747

    Zhang Hongtao, Zhao Yufei, Gao Mingxu, et al. Centrifugal seismic experimental strudy of buied pipelines in non-uniform soil [J]. Engineering Mechanics, 2021, 38(11): 88 − 94. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.10.0747
    [22] Wei X, Jiao W, Zeng X, et al. Mechanical behavior of buried pipelines subjected to faults [J]. Advances in Civil Engineering, 2021, 2021(3): 1 − 19.
    [23] 谢礼立, 徐龙军, 陶晓燕, 杨绪剑. 跨断层土木工程研究与实验装置研发现状[J]. 工程力学, 2021, 38(4): 20 − 29. doi: 10.6052/j.issn.1000-4750.2020.06.0346

    Xie Lili, Xu Longjun, Tao Xiaoyan, Yang Xujian. Research status of civil engineering structures across faults and the development of experimental devices for fault simulation [J]. Engineering Mechanics, 2021, 38(4): 20 − 29. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0346
    [24] Cheng X, Ma C, Huang R, et al. Failure mode analysis of X80 buried steel pipeline under oblique-reverse fault [J]. Soil Dynamics and Earthquake Engineering, 2019, 125(10): 105723.1 − 105723.11.
    [25] 徐龙军, 刘庆阳, 谢礼立. 海底跨断层输气管道动力特性数值模拟与分析[J]. 工程力学, 2015, 32(12): 99 − 107. doi: 10.6052/j.issn.1000-4750.2014.05.0413

    Xu Longjun, Liu Qingyang, Xie Lili. Numerical simulation and analysis for submarine pipeline systems crossing active strike-slip fault [J]. Engineering Mechanics, 2015, 32(12): 99 − 107. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.05.0413
    [26] Zhang J, Chen Y, Liang B F, et al. Damage evolution mechanism of buried pipeline crossing reverse fault [J]. Journal of Mechanical Science and Technology, 2021, 35(1): 71 − 77. doi: 10.1007/s12206-020-1206-0
    [27] 陈笑宇, 王东升, 付建宇, 国巍. 近断层地震动脉冲特性研究综述[J]. 工程力学, 2021, 38(8): 1 − 14, 54. doi: 10.6052/j.issn.1000-4750.2020.08.0582

    Chen Xiaoyu, Wang Dongsheng, Fu Jianyu, Guo Wei. State-of-the-art review on pulse characteristics of near-fault ground motions [J]. Engineering Mechanics, 2021, 38(8): 1 − 14, 54. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0582
    [28] 黄水祥, 张勋, 冯郁雯, 等. 海底管道穿越地震断层分析方法探讨[J]. 现代化工, 2017, 37(11): 213 − 218.

    Huang Shuixiang, Zhang Xun, Feng Yuwen, et al. Analysis methods for seabed pipeline passing through seismic fault [J]. Modern Chemical Industry, 2017, 37(11): 213 − 218. (in Chinese)
    [29] 张小玲. 地震作用下海底管线及周围海床动力响应分析 [D]. 大连: 大连理工大学, 2009.

    Zhang Xiaoling. Numerical analysis of dynamic response of submarine pipeline and seabed under seismic loading [D]. Dalian: Dalian University of Technology, 2009. (in Chinese)
    [30] Bi K, Hao H, Li C, et al. Stochastic seismic response analysis of buried onshore and offshore pipelines [J]. Soil Dynamics and Earthquake Engineering, 2017, 94: 60 − 65. doi: 10.1016/j.soildyn.2017.01.005
    [31] 李振眠, 余杨, 余建星, 等. 基于向量有限元的深水管道屈曲行为分析[J]. 工程力学, 2021, 38(4): 247 − 256. doi: 10.6052/j.issn.1000-4750.2020.06.0357

    Li Zhenmian, Yu Yang, Yu Jianxing, et al. Buckling analysis of deepwater pipelines by vector form intrinsic finite element method [J]. Engineering Mechanics, 2021, 38(4): 247 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0357
    [32] Yang Yu, Zhenmian Li, Jiangxing Yu, et al. Buckling analysis of subsea pipeline with integral buckle arrestor using vector form intrinsic finite thin shell element [J]. Thin Wall Structure, 2021, 164: 107533. doi: 10.1016/j.tws.2021.107533
    [33] Xu Leige, Lin Min. Analysis of buried pipelines subjected to reverse fault motion using the vector form intrinsic finite element method - Science direct [J]. Soil Dynamics and Earthquake Engineering, 2017, 93: 61 − 83. doi: 10.1016/j.soildyn.2016.12.004
    [34] Rofooei F R, Jalali H H, Attari N, et al. Parametric study of buried steel and high density polyethylene gas pipelines due to oblique-reverse faulting [J]. Canadian Journal of Civil Engineering, 2015, 42(3): 178 − 189. doi: 10.1139/cjce-2014-0047
    [35] Zang M, Wei G, Zhou L. A contact algorithm for 3D discrete and finite element contact problems based on penalty function method [J]. Computational Mechanics, 2011, 48(5): 541 − 550. doi: 10.1007/s00466-011-0606-5
    [36] 帅健. 管线力学[M]. 北京: 科学出版社, 2010.

    Shuai Jian. Pipeline mechanics [M]. Beijing: Science Press, 2010. (in Chinese)
    [37] Normalisatie-Instituut N. NEN 3650, Requirements for pipeline sytems. Part-1: General, and Part-2: Steel pipelines [S]. 2006.
    [38] Vazouras P, Karamanos S A, Da Koulas P. Finite element analysis of buried steel pipelines under strike-slip fault displacements [J]. Soil Dynamics and Earthquake Engineering, 2010, 30(11): 1361 − 1376. doi: 10.1016/j.soildyn.2010.06.011
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  52
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-25
  • 修回日期:  2021-08-16
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2022-09-01

目录

    /

    返回文章
    返回