留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

薄柔H形截面双向压弯钢构件极限承载力研究

杜辉波 程欣 张超 陈以一

杜辉波, 程欣, 张超, 陈以一. 薄柔H形截面双向压弯钢构件极限承载力研究[J]. 工程力学, 2022, 39(9): 191-203. doi: 10.6052/j.issn.1000-4750.2021.05.0390
引用本文: 杜辉波, 程欣, 张超, 陈以一. 薄柔H形截面双向压弯钢构件极限承载力研究[J]. 工程力学, 2022, 39(9): 191-203. doi: 10.6052/j.issn.1000-4750.2021.05.0390
DU Hui-bo, CHENG Xin, ZHANG Chao, CHEN Yi-yi. STUDY ON ULTIMATE BEARING CAPACITY OF BIAXIAL COMPRESSION-BENDING STEEL MEMBERS WITH THIN AND SLENDER H-SHAPED SECTION[J]. Engineering Mechanics, 2022, 39(9): 191-203. doi: 10.6052/j.issn.1000-4750.2021.05.0390
Citation: DU Hui-bo, CHENG Xin, ZHANG Chao, CHEN Yi-yi. STUDY ON ULTIMATE BEARING CAPACITY OF BIAXIAL COMPRESSION-BENDING STEEL MEMBERS WITH THIN AND SLENDER H-SHAPED SECTION[J]. Engineering Mechanics, 2022, 39(9): 191-203. doi: 10.6052/j.issn.1000-4750.2021.05.0390

薄柔H形截面双向压弯钢构件极限承载力研究

doi: 10.6052/j.issn.1000-4750.2021.05.0390
基金项目: 国家自然科学基金面上项目(51978437)
详细信息
    作者简介:

    杜辉波(1998−),男,山西运城人,硕士生,主要从事钢结构方面的研究(E-mail: duhuibo0456@link.tyut.edu.cn)

    张 超(1995−),男,山西大同人,硕士生,主要从事钢结构方面的研究(E-mail: zhangchao0350@link.tyut.edu.cn)

    陈以一(1955−),男,浙江天台人,教授,工学博士,主要从事钢结构方面的研究(E-mail: yiyichen@tongji.edu.cn)

    通讯作者:

    程 欣(1986−),女,江西景德镇人,教授,博士,主要从事钢结构方面的研究(E-mail: xchengtyut@126.com)

  • 中图分类号: TU391

STUDY ON ULTIMATE BEARING CAPACITY OF BIAXIAL COMPRESSION-BENDING STEEL MEMBERS WITH THIN AND SLENDER H-SHAPED SECTION

  • 摘要: 为探究薄柔H形截面双向压弯构件的极限状态性能,采用ABAQUS建立了不同轴压比、腹板和翼缘宽厚比的H形截面构件在不同加载角度下的参数分析模型,分析中考虑了材料非线性、几何非线性及残余应力的影响,并基于已有试验数据验证了该模型的适用性。基于经典弹塑性稳定理论,提出了用于确定双向压弯构件极限状态的判定准则,对于塑性铰截面定义为截面出现塑性铰时达到其极限状态;对于由局部屈曲控制的薄柔截面其极限状态为屈曲起始时刻,且该准则能够准确识别出板件局部屈曲的发生。通过最小二乘法拟合得到双轴弯矩极限相关曲线,呈现出腹板和翼缘宽厚比及轴压力的复杂相关影响关系。提出了考虑材料的强化作用和板件相关作用的极限相关计算公式,能够良好地预测H形截面双向压弯构件的极限承载力,且不受截面分类的限制,具有良好的适用性。
  • 图  1  截面分类方法及设计准则

    注:Mpc为全截面塑性弯矩;Mppc为部分塑性弯矩;Mec为边缘屈服弯矩;Mu为极限抗弯承载力;fy为屈服应力

    Figure  1.  Section classification method and design criterion

    图  2  悬臂构件等效原理

    Figure  2.  Equivalence principle of cantilever member

    图  3  受力情况及变形特点

    Figure  3.  Force condition and deformation features

    图  4  钢材本构模型

    Figure  4.  Constitutive model of structural steel

    图  5  残余应力分布及截面参数定义

    Figure  5.  Residual stress distribution and definition of cross-section dimensions

    图  6  网格划分与边界条件

    Figure  6.  Finite element meshing and boundary conditions

    图  7  加载方式

    Figure  7.  Loading condition

    图  8  典型试件有限元破坏模态与试验对比

    Figure  8.  Comparison of failure modes between finite element and test of typical specimens

    图  9  参数分析中的加载方向角

    Figure  9.  Loading direction angle in parametric study

    图  10  试件B-0.2-70-21-5的抗弯承载力弯矩分量发展

    Figure  10.  Development of moment components of B-0.2-70-21-5

    11  典型模型双向弯矩发展与极限状态

    注:① σz,1σz,5分别为有限元壳单元在上下积分面的z向应力值,拉应力为正值,压应力为负值,当σz,1σz,5开始分岔时,表征了板件屈曲的发生;② ue为屈服合位移,表征柱底截面受压边缘进入塑性时柱顶施加的合位移: $ {u_{\text{e}}} = \dfrac{{2(1 - n){L^2}{f_{\text{y}}}}}{{3(b\cos \alpha + h\sin \alpha )E}} $,u为柱顶的加载合位移。

    11.  Development of moments about two axes and ultimate state of typical models

    图  12  典型模型双向弯矩相关关系及极限相关曲线

    Figure  12.  Correlation between biaxial bending moments and ultimate interactive curves of typical models

    图  13  不同轴压比下的极限相关曲线

    Figure  13.  Interactive curves under different axial force ratios

    图  14  现行规范与本文提出公式

    Figure  14.  Formulas in current codes and this paper

    15  本文提出公式的试验[21]评价结果

    15.  Evaluation of the proposed formula using the test results[21]

    16  式(6)与EC3和有限元比较结果

    16.  Comparison between formula (6), EC3 and FE results

    表  1  有限元结果与试验结果[21]比较

    Table  1.   Comparison between finite element results and available experimental results[21]

    试件编号rwrfMxmax,test/
    (kN·m)
    Mxmax,FEA/
    (kN·m)
    Mxmax,test/
    Mxmax,FEA
    Mymax,test/
    (kN·m)
    Mymax,FEA/
    (kN·m)
    Mymax,test/
    Mymax,FEA
    B-H1-0.2-15 613561.963.50.97519.020.20.941
    B-H2-0.2-151171679.987.20.91620.820.41.020
    B-H3-0.2-151183054.160.60.89313.213.50.978
    B-H3-0.2-3064.560.91.05910.210.21.000
    B-H4-0.2-151172177.879.80.97535.732.71.092
    B-H4-0.2-30103.8 94.71.09626.327.10.970
    B-H5-0.2-151002174.461.11.21835.335.11.006
    B-H5-0.4-1544.850.20.89232.933.10.994
    B-H6-0.2-151001666.374.20.89420.818.51.124
    B-H7-0.2-30 4211130.8 128.3 1.01930.727.61.112
    B-H7-0.4-1569.173.30.94341.938.61.085
    平均值0.9891.029
    标准差/(%)9.7806.010
    注:${r_{\rm{w}}} = {h_{\rm{w}}}/{t_{\rm{w}}}\sqrt {{f_{\rm{y}}}/235} $,${r_{\rm{f}}} = {b_{\rm{f}}}/{t_{\rm{f}}}\sqrt {{f_{\rm{y}}}/235} $;Mxmax,testMymax,test分别为试验结果的强轴和弱轴弯矩分量的峰值;Mxmax,FEAMymax,FEA分别为有限元结果的强轴和弱轴弯矩分量的峰值。
    下载: 导出CSV

    表  2  参数设置范围

    Table  2.   Range of parameter values

    关键参数参数值
    n0, 0.1, 0.2, 0.3, 0.4, 0.5
    rw40, 55, 70, 85, 100, 115, 130
    rf9, 11, 13, 15, 17, 19, 21
    α/(°)0, 5, 10, 15, 20, 25, 30, 45, 60, 75, 90
    下载: 导出CSV

    表  3  可靠度分析结果

    Table  3.   Reliability analysis results

    截面分类Ru,EC3/Ru,FEMRu,proposed/Ru,FEM
    平均值标准差/(%)平均值标准差/(%)
    I和II类0.6610.321.014.43
    III类0.5613.690.984.94
    IV类0.4714.600.977.48
    I~IV类0.5014.970.986.99
    下载: 导出CSV
  • [1] 陈以一, 王伟, 童乐为, 等. 装配式钢结构住宅建筑的技术研发和市场培育[J]. 住宅产业, 2012(12): 32 − 35.

    Chen Yiyi, Wang Wei, Tong Lewei, et al. Technology Development and Market Cultivation of Prefabricated Steel Structure Residential Building [J]. Housing Industry, 2012(12): 32 − 35. (in Chinese)
    [2] Yong C X, Zhong P T. Comparative study on the design schemes of residential steel structure [J]. Applied Mechanics and Materials, 2012, 2080: 581 − 584.
    [3] 王萌, 柯小刚, 吴照章. 可更换延性耗能连接组件的钢框架节点抗震性能研究[J]. 工程力学, 2018, 35(12): 151 − 163. doi: 10.6052/j.issn.1000-4750.2017.09.0743

    Wang Meng, Ke Xiaogang, Wu Zhaozhang. Seismic behavior of steel frame connections with replaceable high ductility and energy dissipation components [J]. Engineering Mechanics, 2018, 35(12): 151 − 163. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.09.0743
    [4] CEN. Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings [S]. Brussels, CEN/TC250, 2005.
    [5] GB 50017−2017, 钢结构设计规范[S]. 北京: 中国计划出版社, 2017.

    GB 50017−2017, Design code for steel structures [S]. Perking: China Planning Press, 2017. (in Chinese)
    [6] 陈乐川, 程欣, 陈以一. 考虑局部屈曲的H形截面钢构件单轴压弯恢复力模型研究[J]. 工程力学, 2021, 38(4): 80 − 92. doi: 10.6052/j.issn.1000-4750.2020.05.0326

    Chen Lechuan, Cheng Xin, Chen Yiyi. Research on restoring force model of h-section steel members under uniaxial compression and bending considering local buckling [J]. Engineering Mechanics, 2021, 38(4): 80 − 92. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.0326
    [7] 程欣, 侯雪松, 李卓峰. 考虑板件相关作用的H形截面分类准则[J]. 工程力学, 2020, 37(4): 178 − 185. doi: 10.6052/j.issn.1000-4750.2019.05.0266

    Cheng Xin, Hou Xuesong, Li Zhuofeng. Cross-section classification criteria of steel h-sections considering theplate interaction effect [J]. Engineering Mechanics, 2020, 37(4): 178 − 185. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.05.0266
    [8] Watanabe E, Sugiura K, Oyawa W O. Effects of multi-directional displacement paths on the cyclic behaviour of rectangular hollow steel columns [J]. Japan Society of Civil Engineers, 2000(647): 79 − 95.
    [9] Guerrero N, Marante M E, Picón R, et al. Model of local buckling in steel hollow structural elements subjected to biaxial bending [J]. Journal of Constructional Steel Research, 2006, 63(6): 779 − 790.
    [10] 申红侠. 高强钢焊接薄壁箱形截面双向压弯构件的稳定承载力[J]. 建筑钢结构进展, 2020, 22(4): 57 − 67.

    Shen Hongxia. The stability of high-strength steel welded thin-walled box beam-columns under biaxial bending [J]. Progress in Steel Building Structures, 2020, 22(4): 57 − 67. (in Chinese)
    [11] Goto Y, Muraki M, Obata M. Ultimate state of thin-walled circular steel columns under bidirectional seismic accelerations [J]. Journal of Structural Engineering, 2009, 135(12): 1481 − 1490. doi: 10.1061/(ASCE)ST.1943-541X.0000076
    [12] Goto Y, Ebisawa T, Lu X, et al. Ultimate state of thin-walled circular steel columns subjected to biaxial horizontal forces and biaxial bending moments caused by bidirectional seismic accelerations [J]. Journal of Structural Engineering, 2014, 4(141): 4014122-1 − 4014122-12.
    [13] 范峰, 聂桂波, 支旭东, 等. 圆钢管空间滞回试验及材料本构模型[J]. 土木工程学报, 2011, 44(12): 18 − 24.

    Fan Feng, Nie Guibo, Zhi Xudong, et al. Spatial hysteresis experiment and constitutive model for circular steel pipes [J]. China Civil Engineering Journal, 2011, 44(12): 18 − 24. (in Chinese)
    [14] Zubydan A H. Inelastic large deflection analysis of space steel frames including H-shaped cross sectional members [J]. Engineering Structures, 2013, 48: 155 − 165. doi: 10.1016/j.engstruct.2012.09.024
    [15] Baptista A M. Resistance of steel I-sections under axial force and biaxial bending [J]. Journal of Constructional Steel Research, 2012, 72: 1 − 11. doi: 10.1016/j.jcsr.2011.07.013
    [16] Cheng X, Chen Y. Ultimate strength of H-sections under combined compression and uniaxial bending considering plate interaction [J]. Journal of Constructional Steel Research, 2018, 143: 196 − 207. doi: 10.1016/j.jcsr.2017.12.019
    [17] Cheng X, Chen Y, Nethercot D A. Experimental study on H-shaped steel beam-columns with large width-thickness ratios under cyclic bending about weak-axis [J]. Engineering Structures, 2013, 49: 264 − 274. doi: 10.1016/j.engstruct.2012.10.035
    [18] Cheng X, Chen Y, Pan L. Experimental study on steel beam–columns composed of slender H-sections under cyclic bending [J]. Journal of Constructional Steel Research, 2013, 88: 279 − 288. doi: 10.1016/j.jcsr.2013.05.020
    [19] Yun X, Gardner L, Boissonnade N. Ultimate capacity of I-sections under combined loading – Part 1: Experiments and FE model validation [J]. Journal of Constructional Steel Research, 2018, 147: 408 − 421. doi: 10.1016/j.jcsr.2018.04.016
    [20] Yun X, Gardner L, Boissonnade N. Ultimate capacity of I-sections under combined loading – Part 2: Parametric studies and CSM design [J]. Journal of Constructional Steel Research, 2018, 148: 265 − 274. doi: 10.1016/j.jcsr.2018.05.024
    [21] Cheng X, Chen Y, Niu L, et al. Experimental study on H-section steel beam-columns under cyclic biaxial bending considering the effect of local buckling [J]. Engineering Structures, 2018, 174: 826 − 839. doi: 10.1016/j.engstruct.2018.08.001
    [22] 石永久, 王萌, 王元清. 结构钢材循环荷载下的本构模型研究[J]. 工程力学, 2012, 29(9): 92 − 98. doi: 10.6052/j.issn.1000-4750.2010.09.0711

    Shi Yongjiu, Wang Meng, Wang Yuanqing. Study on constitutive model of structural steel under cyclic loading [J]. Engineering Mechanics, 2012, 29(9): 92 − 98. (in Chinese) doi: 10.6052/j.issn.1000-4750.2010.09.0711
    [23] ECCS. Ultimate limit state calculation of sway frames with rigid joints [M]. Brussels (Belgium): ECCS General Secretariat, 1984.
    [24] 胡世光, 梁炳文. 弹塑性稳定理论[M]. 北京: 国防工业出版社, 1983.

    Hu Shiguang, Liang Bingwen. Elastic plastic stability theory [M]. Peking: National Defense Industry Press, 1983. (in Chinese)
    [25] Hill R. A general theory of uniqueness and stability in elastic-plastic solids [J]. Journal of the Mechanics and Physics of Solids, 1958, 3(6): 236 − 249.
    [26] Bresler B. Design criteria for reinforced columns under axial load and biaxial bending [J]. Journal Proceedings, 1960, 57(11): 481 − 490.
    [27] Mohammad A, Ashraf M, Ahmed S. Behaviour and design of stainless steel slender cross-sections subjected to combined loading [J]. Thin-Walled Structures, 2016, 104: 225 − 237. doi: 10.1016/j.tws.2016.03.020
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  107
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-25
  • 修回日期:  2021-09-01
  • 网络出版日期:  2021-09-18
  • 刊出日期:  2022-09-01

目录

    /

    返回文章
    返回