A COMPARATIVE STUDY ON TRANSLATION FUNCTION WITH THE UNRESTRICTED APPLICATION REGION FOR EXTREME VALUE ESTIMATION OF NON-GAUSSIAN WIND PRESSURES
-
摘要: 非高斯风压的极值估计对建筑围护结构抗风设计是极其重要的。由于简便性和无可行区限制,基于矩的piecewise HPM(PHPM)、Johnson转换模型(JTM)和piecewise JTM(PJTM)常用于非高斯风压极值估计。现阶段,PJTM对非高斯风压极值的估计效果还缺乏系统的研究,且对于三种无可行区限制模型的极值估计差别尚不明确。为探明三种模型的差别,从而提供一定的选择原则,该文系统对比了三种模型估计非高斯风压极值的精度。该文从理论上对比了三种模型的母本概率密度函数和传递函数;选用超长风洞试验风压数据对三种模型估计非高斯风压极值的精度进行了评估。结果表明:PHPM对非高斯风压(负偏度)极小值的估计精度比PJTM和JTM高,PHPM和PJTM对非高斯风压(负偏度)极大值的估计精度比JTM高。
-
关键词:
- 结构工程 /
- 结构风工程 /
- 非高斯风压 /
- 极值估计 /
- piecewise Hermite多项式模型 /
- Johnson转换模型 /
- piecewise Johnson转换模型
Abstract: The extreme value estimation for the non-Gaussian wind pressures is extremely important for the wind-resistant design of building envelope. With its simplicity and unrestricted application region, the moment-based piecewise HPM (PHPM), Johnson transformation model (JTM) and piecewise JTM (PJTM) are usually used to estimate the non-Gaussian wind pressure extremes. Currently, the systematic research on the performance of the PJTM in the non-Gaussian wind pressure extreme estimation is less addressed, and the differences in extreme values estimated by the three unrestricted application region models are unclear. To compare the differences of the three models and provide certain selection principles, this paper systematically compares the accuracy of the three models to estimate the non-Gaussian wind pressure extremes. Firstly, this paper compares the parent probability distribution functions (PDFs) and translation functions by the three models theoretically. Secondly, the very long wind pressure data from a wind tunnel test are used to evaluate the accuracy of the three models to estimate the extreme values of the non-Gaussian wind pressures. The results show that, for the minimum value estimation of the non-Gaussian wind pressure with negative skewness, the accuracy of PHPM is generally higher than that of JTM and PJTM, while for the maximum value estimation of the non-Gaussian wind pressure with negative skewness, the accuracy of PJTM and PHPM is generally higher than that of JTM. -
表 1 SU&SU、SU&SB和SB&SB三种情况的原始和新统计矩
Table 1. The original and new statistical moments for the cases SU&SU、SU&SB and SB&SB
案例 原始统计矩 新定义统计矩 均值 标准差 偏度 峰度 尾部 均值 标准差 偏度 峰度 SU&SU 0 1 −1.0 8.0 N 0.10 1.16 0 7.76 P 0.10 0.82 0 4.75 0 1 −1.0 13.0 N 0.07 1.23 0 11.17 P 0.07 0.86 0 7.88 SU&SB 0 1 −1.0 4.5 N 0.16 1.24 0 4.27 P 0.16 0.72 0 2.17 0 1 −1.0 5.5 P 0.13 1.20 0 5.39 N 0.13 0.77 0 2.76 SB&SB 0 1 −0.2 2.5 N 0.05 1.07 0 2.59 P 0.05 0.93 0 2.31 0 1 −0.2 2.8 N 0.04 1.06 0 2.93 P 0.04 0.94 0 2.57 注:N表示与极小值相关的统计矩;P表示与极大值相关的统计矩。 表 2 三种模型对测点56的极值估计结果
Table 2. Extreme value by three models for Tap 56
模型 高斯峰值
因子PG非高斯峰值
因子PNG (极大值)非高斯峰值
因子PNG (极小值)观测值 估计值
(|误差|/(%))观测值 估计值
(|误差|/(%))JTM 3.7 3.56 4.28 (20.2) −7.84 −8.66 (10.5) PJTM 3.7 3.56 3.63 (2.0) −7.84 −8.74 (11.5) PHPM 3.7 3.56 3.61 (1.4) −7.84 −8.54 (8.9) 表 3 三种模型对测点32的极值估计结果
Table 3. Extreme values by three models for Tap 32
模型 高斯峰值
因子PG非高斯峰值
因子PNG (极大值)非高斯峰值
因子PNG (极小值)观测值 估计值(误差/(%)) 观测值 估计值 (误差/(%)) JTM 3.7 2.80 5.14 (83.6) −9.52 −9.56 (0.4) PJTM 3.7 2.80 2.68 (4.3) −9.52 −9.69 (1.8) PHPM 3.7 2.80 2.71 (3.2) −9.52 −9.49 (0.3) 表 4 三种模型对测点46的极值估计结果
Table 4. Extreme values by three models for Tap 46
模型 高斯峰值
因子PG非高斯峰值
因子PNG (极大值)非高斯峰值
因子PNG (极小值)观测值 估计值(误差/(%)) 观测值 估计值 (误差/(%)) JTM 3.6 2.12 1.58 (25.5) −4.22 −3.68 (12.8) PJTM 3.6 2.12 1.63 (23.1) −4.22 −4.06 (3.8) PHPM 3.6 2.12 1.82 (14.2) −4.22 −4.06 (3.8) 表 5 三种模型估计的峰值因子误差水平
Table 5. Error level of peak factor estimated by three models
估计模型 误差/(%) 数量(极小) 数量(极大) 总数 百分比/(%) JTM <5 456 214 670 42.1 5~15 305 389 694 43.7 15~25 20 68 88 5.5 >25 14 124 138 8.7 PJTM <5 468 477 945 59.4 5~15 288 291 579 36.4 15~25 23 18 41 2.6 >25 16 9 25 1.6 PHPM <5 540 533 1073 67.5 5~15 233 252 485 30.5 15~25 9 9 18 1.1 >25 13 1 14 0.9 -
[1] 全涌, 肖钰川, 顾明. 平均时距对良态风气候地区极值风速的影响研究[J]. 工程力学, 2020, 37(4): 129 − 134, 152. doi: 10.6052/j.issn.1000-4750.2019.06.0308Quan Yong, Xiao Yuchuan, Gu Ming. Study on the effect of average time intervals on extremes wind speed in normal wind climate areas [J]. Engineering Mechanics, 2020, 37(4): 129 − 134, 152. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.06.0308 [2] 许秋华, 万恬, 刘凯. 直立锁缝金属屋面加强抗风揭能力的优化设计[J]. 工程力学, 2020, 37(7): 17 − 26, 167. doi: 10.6052/j.issn.1000-4750.2020.02.ST13Xu Qiuhua, Wan Tian, Liu Kai. Optimal design of strengthening wind exposure resistance of vertical whipstitch mental roofing board [J]. Engineering Mechanics, 2020, 37(7): 17 − 26, 167. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.ST13 [3] Holmes J D. Non-gaussian characteristics of wind pressure fluctuations [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1981, 7(1): 103 − 108. doi: 10.1016/0167-6105(81)90070-2 [4] 潘小涛, 黄铭枫, 楼文娟. 复杂体型屋盖表面风压的高阶统计量与非高斯峰值因子[J]. 工程力学, 2014, 31(10): 181 − 187. doi: 10.6052/j.issn.1000-4750.2013.05.0398Pan Xiaotao, Huang Mingfeng, Lou Wenjuan. High-order statistics and non-gaussian peak factors of pressure processes on a complex long-span roof [J]. Engineering Mechanics, 2014, 31(10): 181 − 187. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.05.0398 [5] Ding J, Chen X. Assessment of methods for extreme value analysis of non-Gaussian wind effects with short-term time history samples [J]. Engineering Structures, 2014, 80: 75 − 88. doi: 10.1016/j.engstruct.2014.08.041 [6] Winterstein S R. Nonlinear vibration models for extremes and fatigue [J]. Journal of Engineering Mechanics, 1988, 114(10): 1772 − 1790. doi: 10.1061/(ASCE)0733-9399(1988)114:10(1772) [7] 高山, 郑向远, 黄一. 非高斯随机过程的短期极值估计: 复合Hermite 模型[J]. 工程力学, 2019, 36(1): 23 − 31. doi: 10.6052/j.issn.1000-4750.2018.10.0855Gao Shan, Zheng Xiangyuan, Huang Yi. Hybrid Hermite models for short term extrema estimation of non-Gaussian processes [J]. Engineering Mechanics, 2019, 36(1): 23 − 31. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.10.0855 [8] Huang G, Luo Y, Yang Q, et al. A semi-analytical formula for estimating peak wind load effects based on Hermite polynomial model [J]. Engineering Structures, 2017, 152: 856 − 864. doi: 10.1016/j.engstruct.2017.09.062 [9] Liu M, Chen X, Yang Q. Estimation of peak factor of non-gaussian wind pressures by improved moment-based Hermite model [J]. Journal of Engineering Mechanics, 2017, 143(7): 06017006. doi: 10.1061/(ASCE)EM.1943-7889.0001233 [10] 林强, 刘敏, 杨庆山, 等. 非高斯风压峰值因子估计: 基于矩的转换过程法的对比研究[J]. 工程力学, 2020, 37(4): 78 − 86. doi: 10.6052/j.issn.1000-4750.2019.04.0201Lin Qiang, Liu Min, Yang Qingshan, et al. Extremes estimation of non-gaussian pressures: A comparative study on moment-based translation process methods for the peak factor estimation of non-gaussian wind pressures [J]. Engineering Mechanics, 2020, 37(4): 78 − 86. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.0201 [11] 吴凤波, 黄国庆, 刘敏, 等. 非高斯风压极值估计: 基于矩的转换过程法的抽样误差对比研究[J]. 振动与冲击, 2020, 39(18): 20 − 26, 43. doi: 10.13465/j.cnki.jvs.2020.18.003Wu Fengbo, Huang Guoqing, Liu Min, et al. Extremes estimation of non-gaussian pressures: A comparative study of sampling errors based on moment-based translation process model [J]. Journal of Vibration and Shock, 2020, 39(18): 20 − 26, 43. (in Chinese) doi: 10.13465/j.cnki.jvs.2020.18.003 [12] 庄翔, 董欣, 郑毅敏, 等. 矩形高层建筑非高斯风压时程峰值因子计算方法[J]. 工程力学, 2017, 34(7): 177 − 185, 223. doi: 10.6052/j.issn.1000-4750.2016.02.0134Zhuang Xiang, Dong Xin, Zheng Yimin, et al. Peak factor estimation methods of non-gaussian wind pressures on a rectangular high-rise building [J]. Engineering Mechanics, 2017, 34(7): 177 − 185, 223. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.02.0134 [13] Johnson N L. Systems of frequency curves generated by methods of translation [J]. Biometrika, 1949, 36(1/2): 149 − 176. doi: 10.2307/2332539 [14] Ma X, Xu F, Kareem A, et al. Estimation of surface pressure extremes: Hybrid data and simulation-based approach [J]. Journal of Engineering Mechanics, 2016, 142(10): 04016068. doi: 10.1061/(ASCE)EM.1943-7889.0001127 [15] Wu F, Huang G, Liu M. Simulation and peak value estimation of non-gaussian wind pressures based on johnson transformation model [J]. Journal of Engineering Mechanics, 2019, 146(1): 04019116. [16] Hill I D, Hill R, Holder R L. Algorithm AS 99: Fitting Johnson curves by moments [J]. Journal of the Royal Statistical Society: Series C (Applied Statistics), 1976, 25(2): 180 − 189. [17] Winterstein S R, Kashef T. Moment-based load and response models with wind engineering applications [J]. Journal of Solar Energy Engineering, 2000, 122(3): 122 − 128. doi: 10.1115/1.1288028 [18] Ding J, Chen X. Moment-based translation model for hardening non-Gaussian response processes [J]. Journal of Engineering Mechanics, 2015, 14(2): 06015006. [19] Davenport A G. Note on the distribution of the largest value of a random function with application to gust loading [J]. Proceedings of the Institution of Civil Engineers, 1964, 28(2): 187 − 196. doi: 10.1680/iicep.1964.10112 -