留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核电厂预应力混凝土安全壳中氯离子扩散系数的预测方法

曾滨 荣华 蔡达华 张江涛 耿岩 郑建军

曾滨, 荣华, 蔡达华, 张江涛, 耿岩, 郑建军. 核电厂预应力混凝土安全壳中氯离子扩散系数的预测方法[J]. 工程力学, 2022, 39(9): 160-169. doi: 10.6052/j.issn.1000-4750.2021.05.0381
引用本文: 曾滨, 荣华, 蔡达华, 张江涛, 耿岩, 郑建军. 核电厂预应力混凝土安全壳中氯离子扩散系数的预测方法[J]. 工程力学, 2022, 39(9): 160-169. doi: 10.6052/j.issn.1000-4750.2021.05.0381
ZENG Bin, RONG Hua, CAI Da-hua, ZHANG Jiang-tao, GENG Yan, ZHENG Jian-jun. A PREDICTION METHOD FOR THE CHLORIDE DIFFUSIVITY IN PRESTRESSED CONCRETE CONTAINMENT VESSELS IN NUCLEAR POWER PLANTS[J]. Engineering Mechanics, 2022, 39(9): 160-169. doi: 10.6052/j.issn.1000-4750.2021.05.0381
Citation: ZENG Bin, RONG Hua, CAI Da-hua, ZHANG Jiang-tao, GENG Yan, ZHENG Jian-jun. A PREDICTION METHOD FOR THE CHLORIDE DIFFUSIVITY IN PRESTRESSED CONCRETE CONTAINMENT VESSELS IN NUCLEAR POWER PLANTS[J]. Engineering Mechanics, 2022, 39(9): 160-169. doi: 10.6052/j.issn.1000-4750.2021.05.0381

核电厂预应力混凝土安全壳中氯离子扩散系数的预测方法

doi: 10.6052/j.issn.1000-4750.2021.05.0381
基金项目: 国家自然科学基金项目(52078509,52038010,51978619,51878615);国家重点研发计划项目(2020YFB1901500)
详细信息
    作者简介:

    曾 滨(1968−),男,福建人,教授级高工,博士,主要从事预应力结构研究(E-mail: zengbin@cribc.com)

    蔡达华(1968−),男,浙江人,高工,学士,主要从事核电安全壳结构老化管理和寿命评价研究(E-mail: caidh@cnnp.com.cn)

    张江涛(1985−),男,山西人,高工,学士,主要从事核电安全壳结构材料耐久性研究(E-mail: Zhangjt@cnnp.com.cn)

    耿 岩(1988−),女,黑龙江人,工程师,博士,主要从事混凝土结构性能研究(E-mail: gengyan@cribc.com)

    郑建军(1963−),男,浙江人,教授,博士,博导,主要从事混凝土结构与材料耐久性研究(E-mail: jjzheng@zjut.edu.cn)

    通讯作者:

    荣 华(1985−),女(满族),辽宁人,教授级高工,博士,主要从事混凝土结构服役性能评价研究(E-mail: ronghua@cribc.com)

  • 中图分类号: TU528;TU378

A PREDICTION METHOD FOR THE CHLORIDE DIFFUSIVITY IN PRESTRESSED CONCRETE CONTAINMENT VESSELS IN NUCLEAR POWER PLANTS

  • 摘要: 氯离子扩散系数是评价沿海环境中核电厂预应力混凝土安全壳耐久性的重要参数。该文基于两尺度方法,通过分析双轴等压下水泥浆基体、界面和混凝土细观结构,建立了水泥浆基体和界面毛细孔隙率与预应力之间的定量关系。为了量化预应力对微裂纹闭合、产生和扩展的影响,提出了临界毛细孔隙率与预应力之间的经验公式。将混凝土模拟成由骨料、界面和水泥浆基体组成的三相复合材料,获得预应力混凝土氯离子扩散系数比。通过与试验结果比较,校正了经验公式中的两个参数。用三组试验数据初步验证了该预测方法的有效性。
  • 图  1  混凝土三相复合圆模型

    Figure  1.  Three-phase composite circle model for concrete

    图  2  预应力分解

    Figure  2.  Decomposition of prestresses

    图  3  水泥浆基体两相复合圆模型

    Figure  3.  Two-phase composite circle model for cement paste matrix

    图  4  与孙继成等[6]试验结果比较

    Figure  4.  Comparison with experimental results of Sun et al.[6]

    图  5  与Tran等[7]试验结果比较

    Figure  5.  Comparison with experimental results of Tran et al.[7]

    图  6  与熊建波等[16]试验结果比较

    Figure  6.  Comparison with experimental results of Xiong et al.[16]

    表  1  现有模型和适用范围

    Table  1.   Existing models and scopes of application

    来源模型适用范围
    Tran等[7]格构离散应力比大于0.4
    金浏等[18]多尺度分析低应力混凝土
    Du等[19]两相复合球水泥浆
    Xu和Li[20]三相复合球应力比小于0.3
    Wang等[21]多相复合球应力比小于0.3
    下载: 导出CSV
  • [1] 邢国华, 武名阳, 常召群, 等. 锈蚀预应力混凝土梁承载力及破坏模式研究[J]. 工程力学, 2020, 37(7): 177 − 188. doi: 10.6052/j.issn.1000-4750.2019.08.0503

    Xing Guohua, Wu Mingyang, Chang Zhaoqun, et al. Load bearing capacity and failure mode of corroded prestressed concrete beams [J]. Engineering Mechanics, 2020, 37(7): 177 − 188. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0503
    [2] 金浏, 杜修力, 李悦. 氯离子在饱和混凝土裂缝中的扩散系数分析[J]. 工程力学, 2016, 33(5): 50 − 56, 73. doi: 10.6052/j.issn.1000-4750.2014.12.1008

    Jin Liu, Du Xiuli, Li Yue. Study on chloride diffusivity coefficient in cracks within saturated concrete [J]. Engineering Mechanics, 2016, 33(5): 50 − 56, 73. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.12.1008
    [3] 林刚, 向志海, 刘应华, 等. 置于氯盐环境中混凝土结构钢筋起锈时间预测[J]. 工程力学, 2010, 27(9): 147 − 153.

    Lin Gang, Xiang Zhihai, Liu Yinghua, et al. Initiation time prediction of reinforcement corrosion in concrete structures exposed to chloride environment [J]. Engineering Mechanics, 2010, 27(9): 147 − 153. (in Chinese)
    [4] 罗大明, 牛荻涛, 苏丽. 荷载与环境共同作用下混凝土耐久性研究进展[J]. 工程力学, 2019, 36(1): 1 − 14, 43. doi: 10.6052/j.issn.1000-4750.2018.08.ST11

    Luo Daming, Niu Ditao, Su Li. Research progress on durability of stressed concrete under environmental actions [J]. Engineering Mechanics, 2019, 36(1): 1 − 14, 43. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.08.ST11
    [5] 金松, 李鑫波, 贡金鑫. 严重事故下核电厂安全壳结构概率性能评价[J]. 工程力学, 2021, 38(6): 103 − 112. doi: 10.6052/j.issn.1000-4750.2020.07.0437

    Jin Song, Li Xinbo, Gong Jinxin. Probabilistic performance evaluation of nuclear containment structure subjected to severe accidents [J]. Engineering Mechanics, 2021, 38(6): 103 − 112. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0437
    [6] 孙继成, 姚燕, 王玲, 等. 应力作用下混凝土的氯离子渗透性[J]. 低温建筑技术, 2015, 33(3): 1 − 3.

    Sun Jicheng, Yao Yan, Wang Ling, et al. Permeability of chloride ions in concrete under stress [J]. Low Temperature Building Technology, 2015, 33(3): 1 − 3. (in Chinese)
    [7] Tran T T, Pham D T, Vu M N, et al. Relation between water permeability and chloride diffusivity of concrete under compressive stress: experimental investigation and mesoscale lattice modelling [J]. Construction and Building Materials, 2021, 267: 121164. doi: 10.1016/j.conbuildmat.2020.121164
    [8] Wang H L, Chen Z W, Zhang J, et al. Numerical scheme for predicting chloride diffusivity of concrete [J]. Journal of Materials in Civil Engineering, 2021, 33(9): 04021237-1 − 04021237-9.
    [9] Zheng J J, Zhang J, Zhou X Z, et al. Numerical method for predicting Chloride diffusivity of mature cement paste [J]. Journal of Materials in Civil Engineering, 2019, 31(6): 04019080-1 − 04019080-12.
    [10] 周新刚, 李克非, 陈肇元. 氯离子在混凝土中扩散传输的有限体积法模拟分析[J]. 工程力学, 2013, 30(7): 34 − 39. doi: 10.6052/j.issn.1000-4750.2012.03.0153

    Zhou Xingang, Li Kefei, Chen Zhaoyuan. Simulation analysis of chloride penetration in concrete with finite volume method [J]. Engineering Mechanics, 2013, 30(7): 34 − 39. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.03.0153
    [11] 余波, 凌干展, 范志宏, 等. 基于集中浓度矩阵和精细积分法的氯离子时变扩散模型[J]. 工程力学, 2021, 38(1): 174 − 182, 204. doi: 10.6052/j.issn.1000-4750.2020.03.0153

    Yu Bo, Ling Ganzhan, Fan Zhihong, et al. Time- dependent chloride diffusion model based on lumped concentration matrix and precise time-integration method [J]. Engineering Mechanics, 2021, 38(1): 174 − 182, 204. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.03.0153
    [12] 蔡健, 魏沐杨, 罗赤宇, 等. 弯曲荷载与氯盐侵蚀共同作用下的预应力混凝土梁耐久性能研究[J]. 工程力学, 2018, 35(7): 208 − 218, 242. doi: 10.6052/j.issn.1000-4750.2017.03.0256

    Cai Jian, Wei Muyang, Luo Chiyu, et al. Durability of prestressed concrete beams under simultaneous flexural load and chloride erosion [J]. Engineering Mechanics, 2018, 35(7): 208 − 218, 242. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.03.0256
    [13] 金浏, 杜修力, 张仁波. 荷载作用下饱和水泥浆体中氯离子扩散性能研究[J]. 工程力学, 2015, 32(6): 33 − 40. doi: 10.6052/j.issn.1000-4750.2013.12.1163

    Jin Liu, Du Xiuli, Zhang Renbo. Chloride diffusivity in saturated cement paste subjected to external loadings [J]. Engineering Mechanics, 2015, 32(6): 33 − 40. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.12.1163
    [14] Lu X Y. Application of the Nernst-Einstein equation to concrete [J]. Cement and Concrete Research, 1997, 27(2): 293 − 302. doi: 10.1016/S0008-8846(96)00200-1
    [15] 袁承斌, 张德峰, 刘荣桂, 等. 不同应力状态下混凝土抗氯离子侵蚀的研究[J]. 河海大学学报(自然科学版), 2003, 31(1): 50 − 54.

    Yuan Chengbin, Zhang Defeng, Liu Ronggui, et al. Diffusivity of chloride in concrete in different stress states [J]. Journal of Hohai University (Natural Sciences), 2003, 31(1): 50 − 54. (in Chinese)
    [16] 熊建波, 王胜年, 黎鹏平. 荷载与氯盐共同作用下海港工程混凝土耐久性研究[J]. 混凝土, 2016(4): 4 − 8. doi: 10.3969/j.issn.1002-3550.2016.04.002

    Xiong Jianbo, Wang Shengnian, Li Pengping. Study on the durability of concrete structures under the combined action of load and chloride salts of harbor engineering [J]. Concrete, 2016(4): 4 − 8. (in Chinese) doi: 10.3969/j.issn.1002-3550.2016.04.002
    [17] 张伟平, 张庆章, 顾祥林, 等. 环境条件和应力水平对混凝土中氯离子传输的影响[J]. 江苏大学学报(自然科学版), 2013, 34(1): 101 − 106.

    Zhang Weiping, Zhang Qingzhang, Gu Xianglin, et al. Effects of environmental conditions and stress level on chloride ion transport in concrete [J]. Journal of Jiangsu University (Natural Science Edition), 2013, 34(1): 101 − 106. (in Chinese)
    [18] 金浏, 张仁波, 杜修力. 低应力水平下混凝土中氯离子扩散行为多尺度分析方法[J]. 工程力学, 2017, 34(3): 84 − 92. doi: 10.6052/j.issn.1000-4750.2015.08.0694

    Jin Liu, Zhang Renbo, Du Xiuli. Multi-scale analysis for the chloride diffusivity in concrete subjected to low-level stress [J]. Engineering Mechanics, 2017, 34(3): 84 − 92. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.08.0694
    [19] Du X L, Jin L, Zhang R B. Chloride diffusivity in saturated cement paste subjected to external mechanical loadings [J]. Ocean Engineering, 2015, 95: 1 − 10. doi: 10.1016/j.oceaneng.2014.11.028
    [20] Xu J, Li F M. A meso-scale model for analyzing the chloride diffusion of concrete subjected to external stress [J]. Construction and Building Materials, 2017, 130: 11 − 21. doi: 10.1016/j.conbuildmat.2016.11.054
    [21] Wang J, Ng P L, Su H, et al. Meso-scale modelling of stress effect on chloride diffusion in concrete using three-phase composite sphere model [J]. Materials and Structures, 2019, 52(3): 55. doi: 10.1617/s11527-019-1355-8
    [22] Sahimi M. Applications of percolation theory [M]. London: Taylor & Francis, 1994.
    [23] Garboczi E J, Bentz D P. Computer simulation of the diffusivity of cement-based materials [J]. Journal of Materials Science, 1992, 27(8): 2083 − 2092. doi: 10.1007/BF01117921
    [24] Zheng J J, Zhou X Z. Analytical solution for the chloride diffusivity of hardened cement paste [J]. Journal of Materials in Civil Engineering, 2008, 20(5): 384 − 391. doi: 10.1061/(ASCE)0899-1561(2008)20:5(384)
    [25] Garboczi E J, Bentz D P. The effect of statistical fluctuation, finite size error, and digital resolution on the phase percolation and transport properties of the NIST cement hydration model [J]. Cement and Concrete Research, 2001, 31(10): 1501 − 1514. doi: 10.1016/S0008-8846(01)00593-2
    [26] 沈聚敏, 王传志, 江见鲸. 钢筋混凝土有限元与板壳极限分析 [M]. 北京: 清华大学出版社, 1993.

    Shen Jumin, Wang Chuanzhi, Jiang Jianjing. Finite element method of reinforced concrete and limit analysis of plates and shells [M]. Beijing: Tsinghua University Press, 1993. (in Chinese)
    [27] 王志良, 张跃, 申林方, 等. 考虑微观结构影响的混凝土界面过渡区裂隙渗流-溶蚀耦合模型[J]. 工程力学, 2021, 38(6): 133 − 142. doi: 10.6052/j.issn.1000-4750.2020.07.0444

    Wang Zhiliang, Zhang Yue, Shen Linfang, et al. Coupled model of fracture seepage and dissolution in concrete interface transition zone considering the influence of microstructure [J]. Engineering Mechanics, 2021, 38(6): 133 − 142. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0444
    [28] Wu L J, Ju X L, Liu M W, et al. Influences of multiple factors on the chloride diffusivity of the interfacial transition zone in concrete composites [J]. Composites Part B, 2020, 199: 108236-1 − 108236-13.
    [29] Wu K, Long J F, Xu L L, et al. A study on the chloride diffusion behavior of blended cement concrete in relation to aggregate and ITZ [J]. Construction and Building Materials, 2019, 223: 1063 − 1073. doi: 10.1016/j.conbuildmat.2019.07.068
    [30] Pollmann N, Larsson F, Runesson K, et al. Modeling and computational homogenization of chloride diffusion in three-phase meso-scale concrete [J]. Construction and Building Materials, 2021, 271: 121558-1 − 121558-11.
    [31] Zheng J J, Zhou X Z. Prediction of the chloride diffusion coefficient of concrete [J]. Materials and Structures, 2007, 40(7): 693 − 701. doi: 10.1617/s11527-006-9182-0
    [32] Zheng J J, Wong H S, Buenfeld N R. Assessing the influence of ITZ on the steady-state chloride diffusivity of concrete using a numerical model [J]. Cement and Concrete Research, 2009, 39(9): 805 − 813. doi: 10.1016/j.cemconres.2009.06.002
    [33] Crumbie A K. Characterisation of the microstructure of concrete [D]. London: Imperial College London, 1994.
    [34] Lam L, Wong Y L, Poon C S. Degree of hydration and gel/space ratio of high-volume fly ash/cement systems [J]. Cement and Concrete Research, 2000, 30(5): 747 − 756. doi: 10.1016/S0008-8846(00)00213-1
    [35] Hansen T C. Physical structure of hardened cement paste: A classical approach [J]. Materials and Structures, 1986, 19(6): 423 − 436. doi: 10.1007/BF02472146
    [36] Zheng J J, Zhou X Z, Shao L, et al. Simple three-step analytical scheme for prediction of elastic moduli of hardened cement paste [J]. Journal of Materials in Civil Engineering, 2010, 22(11): 1191 − 1194. doi: 10.1061/(ASCE)MT.1943-5533.0000103
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  39
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-23
  • 修回日期:  2021-09-10
  • 网络出版日期:  2021-10-21
  • 刊出日期:  2022-09-01

目录

    /

    返回文章
    返回