留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Park-Ang损伤模型的网壳结构地震作用下双参数准则研究

华文 叶继红

华文, 叶继红. 基于Park-Ang损伤模型的网壳结构地震作用下双参数准则研究[J]. 工程力学, 2022, 39(9): 48-57. doi: 10.6052/j.issn.1000-4750.2021.05.0375
引用本文: 华文, 叶继红. 基于Park-Ang损伤模型的网壳结构地震作用下双参数准则研究[J]. 工程力学, 2022, 39(9): 48-57. doi: 10.6052/j.issn.1000-4750.2021.05.0375
HUA Wen, YE Ji-hong. STUDY ON TWO-PARAMETER CRITERION OF RETICULATED SHELL STRUCTURES UNDER EARTHQUAKE ACTION BASED ON PARK-ANG DAMAGE MODEL[J]. Engineering Mechanics, 2022, 39(9): 48-57. doi: 10.6052/j.issn.1000-4750.2021.05.0375
Citation: HUA Wen, YE Ji-hong. STUDY ON TWO-PARAMETER CRITERION OF RETICULATED SHELL STRUCTURES UNDER EARTHQUAKE ACTION BASED ON PARK-ANG DAMAGE MODEL[J]. Engineering Mechanics, 2022, 39(9): 48-57. doi: 10.6052/j.issn.1000-4750.2021.05.0375

基于Park-Ang损伤模型的网壳结构地震作用下双参数准则研究

doi: 10.6052/j.issn.1000-4750.2021.05.0375
基金项目: 国家重点研发计划项目(2017YFC1500702);2021年江苏省研究生科研与创新计划项目(KYCX21_2272)
详细信息
    作者简介:

    华 文(1994−),女,山东淄博人,博士生,主要从事大跨空间结构抗震研究(E-mail: 444796160@qq.com)

    通讯作者:

    叶继红(1967−),女,辽宁锦州人,教授,博士,主要从事大跨空间结构、轻钢结构、结构抗震、抗火、抗风分析与设计研究(E-mail: jhye@cumt.edu.cn)

  • 中图分类号: TU393.3

STUDY ON TWO-PARAMETER CRITERION OF RETICULATED SHELL STRUCTURES UNDER EARTHQUAKE ACTION BASED ON PARK-ANG DAMAGE MODEL

  • 摘要: 基于性能的抗震设计方法要求将结构划分为多个性能状态,并合理定义结构的性能指标。该文基于Park-Ang损伤模型,根据网壳结构的位移与耗能在地震作用下的响应特点,提出由最大变形与塑性耗能两项无量纲参数非线性组合的双参数模型。结合我国抗震规范、网壳结构自身特性与以往学者的研究成果,通过四个性能点LS-1、LS-2、LS-3与LS-4将网壳结构划分为五种性能状态:基本完好、轻微破坏、中等破坏、严重破坏与倒塌。通过216组考虑不同跨度、矢跨比、屋面质量、杆件尺寸与地震作用的覆盖性算例,拟合得到模型的待定参数取值,进而提出适用于网壳结构的双参数准则,在四个性能点LS-1、LS-2、LS-3与LS-4处相应的指标(D)值分别为0.3、0.6、1.0与∞。以两个大型网壳振动台试验验证准则的有效性和普适性。结果表明,该文提出的双参数准则与各性能点的指标值能够体现网壳结构的性能状态,具有良好的有效性和普适性。该准则可服务于网壳结构基于性能的抗震设计方法与地震风险评估。
  • 图  1  K8,6型单层球面网壳结构

    Figure  1.  K8,6 single-layer spherical reticulated shell structure

    图  2  网壳结构位移项与耗能项随地震动强度发展情况

    Figure  2.  The development of displacement term and energy dissipation term of the reticulated shell structure with the intensity of ground motion

    图  3  相应于各级性能点的D值计算结果

    Figure  3.  Calculation results of D values corresponding to performance points at all levels

    图  4  模型与振动台[36]

    Figure  4.  Model and shaking tables[36]

    图  5  模型2薄弱区与振动台编号[36]

    Figure  5.  The weakened zones of model 2 and shaking table number[36]

    图  6  模型支座约束[36]

    Figure  6.  Model support constraints[36]

    图  7  地震波时程曲线[36]

    Figure  7.  Seismic wave time history curves[36]

    图  8  模型1试验过程[36]

    Figure  8.  Test process of model 1[36]

    图  9  模型2试验过程[36]

    Figure  9.  Test process of model 2[36]

    表  1  网壳结构性能状态与划分界限[9, 35, 37-40]

    Table  1.   Performance levels and descriptions of reticulated shell structures[9, 35, 37-40]

    性能状态结构响应情况震后措施划分依据
    基本完好结构处于弹性状态,杆件完好,位移发展较小。不需修理。P=0且δMδP
    轻微破坏结构开始有杆件进入塑性,位移发展微小。不需或稍加修理。0<P≤15%或δPδM<2.5δP
    中等破坏结构中有较多杆件进入塑性,位移发展较大。需要修理并采取一定的加固措施。15%<P≤45%或2.5δPδM<10δP
    严重破坏结构中有很多杆件进入塑性,位移发展很大。需要大修且拆除危险构件。45%<P<100%或δM≥10δP
    倒塌结构失去承载能力。需拆除重建。δM=∞
    注:P为塑性杆件比例;δM为结构最大位移响应;δP为结构开始进入塑性时的最大位移响应。
    下载: 导出CSV

    表  2  各级性能点判断依据

    Table  2.   Judgment criterion for performance points at all levels

    性能点LS-1LS-2LS-3LS-4
    判断依据开始出现
    P>0
    开始出现
    δM≥2.5δP
    P>15%
    开始出现
    δM≥10δP
    P>45%
    开始出现
    δM=∞
    注:LS-1、LS-2、LS-3与LS-4分别为划分五种性能状态的四个性能点;P为塑性杆件比例;δM为结构最大位移响应;δP为结构开始进入塑性时的最大位移响应;各判断依据均为临界状态。
    下载: 导出CSV

    表  3  K6、K8型单层球面网壳结构数值计算模型参数

    Table  3.   Numerical calculation model parameters of K6, K8 single-layer spherical shell structures

    结构参数参数取值
    跨度-频数40 m-6;50 m-7;60 m-8
    矢跨比1/3;1/5;1/7
    屋面质量60 kg/m2;120 kg/m2;180 kg/m2
    地震作用Northridge-01;Imperial Valley-06;Duzce;Hector Mine
    杆件尺寸种类/mmϕ95×3.5、ϕ102×3.5、ϕ114×3.5、ϕ121×3.5、ϕ127×3.5、ϕ133×3.5、ϕ140×3.5、ϕ146×3.5、ϕ152×3.5、ϕ159×4、ϕ168×4
    下载: 导出CSV

    表  4  网壳结构双参数准则性能状态划分

    Table  4.   Performance level divisions of the two-parameter criterion for reticulated shell structures

    破坏状态基本完好轻微破坏中等破坏严重破坏倒塌
    划分依据δM<δPP=0δPδM<2.5δP或0<P≤15%2.5δPδM<10δP或15%<P≤45%δM≥10δP或45%<P<100%δM=∞
    D0≤D<0.30.3≤D<0.60.6≤D<1.0D≥1.0D=∞
    注:P为塑性杆件比例;δM为结构最大位移响应;δP为结构开始进入塑性时的最大位移响应;D为描述网壳结构损伤程度的指标。
    下载: 导出CSV

    表  5  网壳试验模型1对双参数准则的验证

    Table  5.   Validation of the two-parameter criterion by the reticulated shell test model 1

    PGA/galδM /mmP/(%)性能状态(依据表1)性能状态所对应的理论D值(依据表4)计算得到的D
    1004.8 (0.5δP)0.00基本完好0.0~0.30.02
    2009.6 (δP)0.74轻微破坏0.3~0.60.38
    25020.3 (2.1δP)1.52轻微破坏0.3~0.60.43
    30044 (4.6δP)2.10中等破坏0.6~1.00.61
    35071 (7.4δP)3.90中等破坏0.6~1.00.72
    400倒塌
    注:δM为结构最大位移响应;δP为结构开始进入塑性时的最大位移响应,9.6 mm;P为塑性杆件比例;D为描述网壳结构损伤程度的指标。
    下载: 导出CSV

    表  6  网壳试验模型2对双参数准则的验证

    Table  6.   Validation of the two-parameter criterion by the reticulated shell test model 2

    PGA/galδM /mmP/(%)性能状态(依据表1)性能状态所对应的理论D值(依据表4)计算得到的D
    100 7.3 (0.5δP) 0.00 基本完好 0.0~0.3 0.03
    200 15 (δP) 0.49 轻微破坏 0.3~0.6 0.34
    250 72 (4.8δP) 5.90 中等破坏 0.6~1.0 0.71
    300 150 (10δP) 7.00 严重破坏 ≥1.0 1.03
    350 倒塌
    注:δM为结构最大位移响应;δP为结构开始进入塑性时的最大位移响应,15 mm;P为塑性杆件比例;D为描述网壳结构损伤程度的指标。
    下载: 导出CSV
  • [1] 马宏旺, 吕西林. 建筑结构基于性能抗震设计的几个问题[J]. 同济大学学报, 2002, 30(12): 1429 − 1434.

    Ma Hongwang, Lü Xilin. Some problems about performance-based seismic design [J]. Journal of Tongji University, 2002, 30(12): 1429 − 1434. (in Chinese)
    [2] 吕大刚, 李晓鹏, 王光远. 基于可靠度和性能的结构整体地震易损性分析[J]. 自然灾害学报, 2006, 15(2): 107 − 114. doi: 10.3969/j.issn.1004-4574.2006.02.018

    Lü Dagang, Li Xiaopeng, Wang Guangyuan. Global seismic fragility analysis of structures based on reliability and performance [J]. Journal of Nature Disasters, 2006, 15(2): 107 − 114. (in Chinese) doi: 10.3969/j.issn.1004-4574.2006.02.018
    [3] 聂桂波, 王薇, 杜柯, 等. 大跨空间结构抗震理论发展综述[J]. 世界地震工程, 2020, 36(2): 24 − 37.

    Nie Guibo, Wang Wei, Du Ke, et al. A review and prospect of the seismic design theory for large span spatial structures [J]. World Earthquake Engineering, 2020, 36(2): 24 − 37. (in Chinese)
    [4] Shahnazaryan D, O'Reilly G J. Integrating expected loss and collapse risk in performance-based seismic design of structures [J]. Bulletin of Earthquake Engineering, 2021, 3: 1 − 39.
    [5] SEAOC Vision 2000 Committee, Performance-based seismic engineering of buildings [R]. Engineers Association of California, Sacramento, California, USA, 1995: 1 − 10.
    [6] ATC-40, Seismic evaluation and retrofit of concrete buildings [R]. Applied Technology Council Red Wood City, California, 1996: 1 − 12.
    [7] FEMA 273, NEHRP Commentary on the guidelines for the rehabilitation of buildings [R]. Federal Emergency Management Agency, Washington, D. C. , 1996: 1 − 8.
    [8] CECS 160: 2004, 建筑工程抗震性态设计通则(试用)[S]. 北京: 中国计划出版社, 2004.

    CECS 160: 2004, General rule for performance-based seismic design of buildings [S]. Beijing: China Planning Press, 2004. (in Chinese)
    [9] GB 50011−2010, 建筑抗震设计规范(2016年版)[S]. 北京: 中国建筑工业出版社, 2016.

    GB 50011−2010, Cord for seismic design of building [S]. Beijing: China Construction Industry Press, 2016. (in Chinese).
    [10] 周定松, 吕西林, 蒋欢军. 钢筋混凝土框架结构基于性能的抗震设计方法[J]. 四川建筑科学研究, 2005, 31(6): 122 − 127. doi: 10.3969/j.issn.1008-1933.2005.06.035

    Zhou Dingsong, Lü Xilin, Jiang Huanjun. Performance-based seismic design method for RC frame structures [J]. Sichuan Building Science, 2005, 31(6): 122 − 127. (in Chinese) doi: 10.3969/j.issn.1008-1933.2005.06.035
    [11] 章红梅. 剪力墙结构基于性态的抗震设计方法研究[D]. 上海: 同济大学, 2007: 130 − 149.

    Zhang Hongmei. Study on the performance-based seismic design method for shear wall structure [D]. Shanghai: Tongji University, 2007: 130 − 149. (in Chinese)
    [12] 辛力, 梁兴文. 基于性能的RC框架结构抗震设计新法[J]. 西安建筑科技大学学报(自然科学版), 2007, 39(6): 790 − 796.

    Xin Li, Liang Xingwen. A new seismic design method of RC frames according to performance-based theory [J]. Journal of Xi’an University of Architectural Science and Technology (Natural Science Edition), 2007, 39(6): 790 − 796. (in Chinese)
    [13] 肖明葵, 马占杰. 结构抗震性能评估的改进模态能力谱法[J]. 重庆大学学报(自然科学版), 2007, 30(2): 115 − 119.

    Xiao Mingkui, Ma Zhanjie. Improved modal capacity spectrum method for estimating seismic performance of structures [J]. Journal of Chongqing University (Natural Science Edition), 2007, 30(2): 115 − 119. (in Chinese)
    [14] 郑山锁, 杨威, 杨丰, 等. 基于多远增量动力分析(MIDA)方法的RC核心筒结构地震易损性分析[J]. 振动与冲击, 2015, 34(1): 117 − 123.

    Zheng Shansuo, Yang Wei, Yang Feng, et al. Seismic fragility analysis for RC core walls structure based on MIDA method [J]. Journal of Vibration and Shock, 2015, 34(1): 117 − 123. (in Chinese)
    [15] 李进, 张娇磊, 李书锋, 等. 某新型梁柱节点的装配式钢筋混凝土框架结构基于性能的抗震设计研究[J]. 地震工程学报, 2020, 42(6): 35 − 43.

    Li Jin, Zhang Jiaolei, Li Shufeng, et al. Performance-based seismic design of fabricated reinforced-concrete-frame structures with new beam-column joints [J]. China Earthquake Engineering Journal, 2020, 42(6): 35 − 43. (in Chinese)
    [16] 杜轲, 燕登, 高嘉伟. 基于FEMA P-58的RC框架结构抗震及减隔震性能评估[J]. 工程力学, 2020, 37(8): 134 − 147. doi: 10.6052/j.issn.1000-4750.2019.09.0551

    Du Ke, Yan Deng, Gao Jiawei. Seismic performance assessment of RC frame structures with energy dissipation and isolation devices based on FEMA P-58 [J]. Engineering Mechanics, 2020, 37(8): 134 − 147. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0551
    [17] 楚留声, 赫约西, 赵军, 等. CFRP筋-钢筋混凝土剪力墙基于位移的抗震设计方法研究[J]. 建筑结构, 2021, 51(8): 57 − 65.

    Chu Liusheng, He Yuexi, Zhao Jun, et al. Study on displacement-based seismic design method of CFRP-reinforced concrete shear wall [J]. Building Structure, 2021, 51(8): 57 − 65. (in Chinese)
    [18] Wu F, Zhou J, Zhao Y, et al. Performance-based seismic fragility and risk assessment of five-span continuous rigid frame bridges [J]. Advances in Civil Engineering, 2021, 1: 1 − 15.
    [19] Gwa D, Edrc B, Lw B, et al. Performance-based seismic assessment of an historic high-rise masonry building considering soil-structure interaction-Science Direct [J]. Structures, 2021, 32: 38 − 53. doi: 10.1016/j.istruc.2021.02.060
    [20] 张耀庭, 杨力, 张江, 等. PC框架结构基于易损性的“强柱弱梁”设计方法研究[J]. 工程力学, 2018(7): 104 − 116. doi: 10.6052/j.issn.1000-4750.2017.03.0200

    Zhang Yaoting, Yang Li, Zhang Jiang, et al. Study on design method of strong column and weak beam based on fragility for prestressed concrete frame structures [J]. Engineering Mechanics, 2018(7): 104 − 116. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.03.0200
    [21] 程诗焱, 韩建平, 于晓辉, 等. 基于BP神经网络的RC框架结构地震易损性曲面分析: 考虑地震动强度和持时的影响[J]. 工程力学, 2021, 38(12): 107 − 117. doi: 10.6052/j.issn.1000-4750.2020.11.0837

    Cheng Shiyan, Han Jianping, Yu Xiaohui, et al. Seismic fragility surface analysis of RC frame structures based on BP neural networks: accounting for the effects of ground motion intensity and duration [J]. Engineering Mechanics, 2021, 38(12): 107 − 117. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0837
    [22] 郑晓伟, 李宏男, 张营营, 等. 基于概率的高层建筑地震需求模型与风险评估[J]. 工程力学, 2022, 39(9): 31 − 39. doi: 10.6052/j.issn.1000-4750.2021.05.0329

    Zheng Xiaowei, Li Hongnan, Zhang Yingying, et al. Probabilistic seismic demand models and risk assessment for high-rise buildings [J]. Engineering Mechanics, 2022, 39(9): 31 − 39. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.0329
    [23] Shama A, Jones M. Seismic performance-based design of cable-supported bridges: state of practice in the United States [J]. Journal of Bridge Engineering, 2020, 25(12): 04020101: 1 − 10.
    [24] Filiatrault A, Perrone D, Merino R J, et al. Performance-based seismic design of nonstructural building elements [J]. Journal of Earthquake Engineering, 2021, 25(2): 237 − 269. doi: 10.1080/13632469.2018.1512910
    [25] Razavi N, Gholizadeh S. Seismic collapse safety analysis of performance-based optimally designed reinforced concrete frames considering life-cycle cost [J]. Journal of Building Engineering, 2021, 44: 1 − 14.
    [26] Park Y J, Ang H S. Mechanistic seismic damage model for reinforced concrete [J]. Journal of Structural Engineering, 1985, 111(4): 722 − 739. doi: 10.1061/(ASCE)0733-9445(1985)111:4(722)
    [27] Chai Y H, Romstad K M, Bird S M. Energy-based linear damage model for high-intensity seismic loading [J]. Journal of Structural Engineering, 1995, 121(5): 857 − 864. doi: 10.1061/(ASCE)0733-9445(1995)121:5(857)
    [28] 江近仁, 孙景江. 砖结构的地震破坏模型[J]. 地震工程与工程振动, 1987, 7(1): 20 − 34.

    Jiang Jinren, Sun Jingjiang. Seismic damage model of brick structure [J]. Earthquake Engineering and Engineering Vibration, 1987, 7(1): 20 − 34. (in Chinese)
    [29] 欧进萍, 牛荻涛, 王光远. 多层非线性抗震钢结构的模糊动力可靠性分析与设计[J]. 地震工程与工程振动, 1990, 10(4): 27 − 37.

    Ou Jinping, Niu Ditao, Wang Guangyuan. Fuzzy dynamic reliability analysis and design of multi-storey nonlinear seismic steel structures [J]. Earthquake Engineering and Engineering Vibration, 1990, 10(4): 27 − 37. (in Chinese)
    [30] 牛荻涛, 任利杰. 改进的钢筋混凝土结构双参数地震破坏模型[J]. 地震工程与工程振动, 1996, 4: 44 − 54.

    Niu Ditao, Ren Lijie. A modified seismic damage model with double variables for reinforced concrete structures [J]. Earthquake Engineering and Engineering Vibration, 1996, 4: 44 − 54. (in Chinese)
    [31] 周知, 钱江, 黄维. 基于修正的Park-Ang损伤模型在钢构件中的应用[J]. 建筑结构学报, 2016, 37(增刊 1): 448 − 454.

    Zhou Zhi, Qian Jiang, Huang Wei. Application of modified Park-Ang damage model to steel members [J]. Journal of Building Structures, 2016, 37(Suppl 1): 448 − 454. (in Chinese)
    [32] 周知, 钱江, 黄维. 修正的RC剪力墙构件Park-Ang损伤模型[J]. 力学季刊, 2019, 40(1): 97 − 105.

    Zhou Zhi, Qian Jiang, Huang Wei. Application of modified Park-Ang damage model to RC shear wall [J]. Chinese Quarterly of Mechanics, 2019, 40(1): 97 − 105. (in Chinese)
    [33] 门进杰, 张谦, 徐超, 等. 基于改进 Park-Ang 双参数模型的RCS混合框架结构地震损伤评估[J]. 工程力学, 2020, 37(9): 133 − 143. doi: 10.6052/j.issn.1000-4750.2019.10.0604

    Men Jinjie, Zhang Qian, Xu Chao, et al. Seismic damage assessment of composite frame with reinforced concrete columns and steel beams based on improved Park-Ang double parameter model [J]. Engineering Mechanics, 2020, 37(9): 133 − 143. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.10.0604
    [34] 尚庆学, 刘瑞康, 王涛. 基于修正Park-Ang 模型的RC剪力墙损伤指数研究[J]. 地震工程与工程振动, 2020, 40(4): 148 − 154.

    Shang Qingxue, Liu Ruikang, Wang Tao. Damage index of RC shear walls based on modified Park-Ang model [J]. Earthquake Engineering and Engineering Vibration, 2020, 40(4): 148 − 154. (in Chinese)
    [35] 杜文风, 高博青, 董石麟. 单层网壳动力失效的形式与特征研究[J]. 工程力学, 2009, 26(7): 39 − 46.

    Du Wenfeng, Gao Boqing, Dong Shilin. Study on types and characters of dynamical failure for single layer latticed shells [J]. Engineering Mechanics, 2009, 26(7): 39 − 46. (in Chinese)
    [36] 陆明飞. 考虑节点力学特性的单层网壳结构稳定优化研究[D]. 南京: 东南大学, 2020: 42 − 58.

    Lu Mingfei. Optimization of domes against instability considering joints’ mechanical performance [D]. Nanjing: Southeast University, 2020: 42 − 58. (in Chinese)
    [37] 郭海山, 沈世钊. 单层网壳结构动力稳定性分析方法[J]. 建筑结构学报, 2003, 24(3): 1 − 9. doi: 10.3321/j.issn:1000-6869.2003.03.001

    Guo Haishan, Shen Shizhao. Analysis method of dynamic stability of single-layer reticulated domes [J]. Journal of Building Structures, 2003, 24(3): 1 − 9. (in Chinese) doi: 10.3321/j.issn:1000-6869.2003.03.001
    [38] 沈世钊, 支旭东. 球面网壳结构在强震下的失效机理[J]. 土木工程学报, 2005, 38(1): 11 − 20. doi: 10.3321/j.issn:1000-131X.2005.01.002

    Shen Shizhao, Zhi Xudong. Failure mechanism of reticular shells subjected to dynamic actions [J]. China Civil Engineering Journal, 2005, 38(1): 11 − 20. (in Chinese) doi: 10.3321/j.issn:1000-131X.2005.01.002
    [39] 支旭东, 范峰, 沈世钊. 凯威特型单层球面网壳在强震下的失效研究[J]. 工程力学, 2008, 25(9): 7 − 12.

    Zhi Xudong, Fan Feng, Shen Shizhao. Seismic failure of single-layer reticulated domes [J]. Engineering Mechanics, 2008, 25(9): 7 − 12. (in Chinese)
    [40] 聂桂波, 刘坤, 支旭东, 等. 网壳结构基于性能的抗震设计方法研究[J]. 土木工程学报, 2018, 51(1): 8 − 12.

    Nie Guibo, Liu Kun, Zhi Xudong, et al. Performance-based seismic design of reticulated shells [J]. China Civil Engineering Journal, 2018, 51(1): 8 − 12. (in Chinese)
    [41] JGJ 7−2010, 空间网格结构技术规程[S]. 北京: 中国建筑工业出版社, 2010.

    JGJ 7−2010, Technical specification for space frame structures [S]. Beijing: China Construction Industry Press, 2010. (in Chinese)
    [42] ATC-63, Quantification of building seismic performance factors [S]. Redwood City: Applied Technology Council, 2008.
    [43] Trifunac M D, Brady A G. A study on the duration of strong earthquake ground motion [J]. Bulletin of the Seismological Society of America, 1975, 65(3): 581 − 626.
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  64
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-20
  • 录用日期:  2021-12-31
  • 修回日期:  2021-12-16
  • 网络出版日期:  2021-12-31
  • 刊出日期:  2022-09-01

目录

    /

    返回文章
    返回