SHAKING TABLE TESTS ON RIGID-DRAINAGE PIPE PILE GROUPS AT LIQUEFIED LATERALLY SPREADING SITE
-
摘要: 地震作用下土体发生液化侧向扩展对建筑物极具破坏性,特别是对建筑物的桩基、高架桥梁等,消除和减小土体液化扩展引起的对结构安全的危害具有极大的意义。刚性排水管桩由圆形空心刚性桩与排水体结合而成,其在具有排水功能的同时,又具有较大的承载力,但是目前针对刚性排水管桩群桩抗液化性能的研究仍十分有限。基于振动台试验,开展了桩顶承台竖向荷载作用下刚性排水管桩群桩与普通桩群桩处理液化侧向扩展场地的振动响应对比研究,分析了地基土的超孔压比、加速度、平均沉降、承台位移、挡板位移以及桩身弯矩等。研究结果表明:刚性排水管桩地基与普通桩地基相比,超孔压、桩身弯矩、地基沉降、承台位移、岸壁位移明显减小,而加速度增大,充分表明刚性排水管桩的抗液化效果显著。Abstract: The lateral expansion of soil liquefaction under the action of an earthquake may well be fatally destructive to foundations, especially for the piles of building structures and bridges, thus, it is of urge demand to reduce and to eliminate the threaten of soil liquefaction and expansion to the structure safety. The rigid drainage pipe pile is composed of a circular hollow rigid pile and a drainage body, which enables the large bearing capacity and the favorable drainage characteristics. However, the research on the anti-liquefaction performance of rigid drainage pipe pile groups is still limited. In this study, a series of shaking table tests on rigid drainage pipe piles and on ordinary piles under vertical loads were carried out, and the dynamic responses of excess pore pressure ratios, of accelerations, of average settlements, of cap displacements, of quay wall displacements and of pile bending moments were comparatively analyzed. The results show that compared with the ordinary pile model, the rigid drainage pipe pile foundation the excess pore pressure, pile body bending moment, foundation settlement, cap displacement, and quay wall displacement of rigid drainage pipe pile foundation are obviously reduced, while the acceleration is increased, which fully shows that the anti-liquefaction effect of rigid drainage pipe pile is remarkable.
-
表 1 振动台参数
Table 1. Parameters of the shaking table system
参数 数值 台面尺寸/m 1.2×1.2 最大载重/kg 1000 最大水平向加速度/g 2.0 频率范围/Hz 0~50 最大水平速度/(m/s) 0.5 最大水平位移/mm 100 表 2 振动台模型试验相似比
Table 2. Similitude ratios of shaking table tests
物理量 换算方式 相似比 几何尺寸L SL 0.05 材料密度$ \rho $ $ {S_{ \rho} } $ 1 弹性模量E SE 0.05 加速度a $ {S_{ a}} = {S_{ E}}S_{ L}^ {- 1} S_{ \rho} ^ {- 1} $ 1 频率f $ {S_{ f}} = S_{ E}^{0.5} S_{ L}^ {- 1} S_{ \rho} ^ {- 0.5} $ 4.472 质量m $ {S_{ m}} = S_{ L}^3{S_{ \rho} } $ 1.25×10−4 力F $ {S_{ F}} = {S_{ L}^2}{S_{ E}} $ 1.25×10−4 正应力$ \sigma $ $ {S_{ \sigma} } = {S_{ E}} $ 0.05 时间T $ {S_{ T}} = {S_{ L}}S_{ E}^{ - 0.5}S_{ \rho} ^{0.5} $ 0.233 横截面A $ {S_{ A}} = S_{ L}^2 $ 2.5×10−3 惯性矩I $ {S_{ I}} = S_{ L}^4 $ 6.25×10−6 表 3 7#硅砂物理参数
Table 3. Physical properties of 7# silica sand
平均粒径
d50/mm不均匀系数
Cu颗粒比重
Gs最大干密度
ρd,max
/(g·cm−3)最小干密度
ρd,min/(g·cm−3)0.13 2.11 2.64 2.11 1.34 表 4 试验工况布置
Table 4. Decoration of tests
组别 工况 加载
波形加速度
幅值相对
密实度/(%)振动
持时/s振动
频率/Hz1 1 正弦波 0.05 40 10 5 2 0.10 3 0.20 2 4 正弦波 0.05 70 10 5 5 0.10 6 0.20 表 5 排水桩与普通桩桩身弯矩峰值的均值之比
Table 5. The ratio of the mean value of the peak bending moment of the drainage pile and the ordinary pile
工况 桩身弯矩峰值的均值之比/(%) A桩 B桩 C桩 40%-0.1 g 78.66 50.07 36.35 70%-0.1 g 46.63 63.70 72.98 40%-0.2 g 82.73 99.88 53.64 70%-0.2 g 74.60 60.35 92.69 -
[1] 邱毅. 唐山地震液化场地再调查及数据分析[D]. 哈尔滨: 中国地震局工程力学研究所, 2008.Qiu Yi. Reinvestigation on the liquefied site in the Tangshan earthquake [D]. Harbin: Institute of Engineering Mechanics China Earthquake Administration, 2008. (in Chinese) [2] Sugimura Y, Karkee M B, Mitsuji K. An investigation on aspects of damage to precast concrete piles due to the 1995 Hyogoken-Nambu earthquake [C]// Proceedings Third UJNR Workshop on Soil-structure Interaction. California, USA, USGS, 2004: 1 − 16. [3] 刘惠珊. 1995年阪神大地震的液化特点[J]. 工程抗震与加固改造, 2001(1): 22 − 26. doi: 10.3969/j.issn.1002-8412.2001.01.006Liu Huishan. Liquefaction characteristics of the Great Hanshin earthquake in 1995 [J]. Earthquake Resistant Engineering and Retrofitting, 2001(1): 22 − 26. (in Chinese) doi: 10.3969/j.issn.1002-8412.2001.01.006 [4] Zhou Y G, Xia P, Ling D S, et al. A liquefaction case study of gently sloping gravelly soil deposits in the near-fault region of the 2008 MW7.9 Wenchuan earthquake [J]. Bulletin of Earthquake Engineering, 2020, 18(14): 6181 − 6201. doi: 10.1007/s10518-020-00939-4 [5] 刘恢先. 唐山大地震震害[M]. 北京: 地震出版社, 1986.Liu Huixian. Tangshan earthquake damage [M]. Beijing: Earthquake Press, 1986. (in Chinese) [6] Werner S, McCullough N, Bruin W, et al. Seismic performance of Port de Port-au-Prince during the Haiti earthquake and post-earthquake restoration of cargo throughput [J]. Earthquake Spectra, 2011, 27(Suppl 1): 387 − 410. doi: 10.1193/1.3638716 [7] Brunet S, de la Llera J C, Jacobsen A, et al. Performance of port facilities in Southern Chile during the 27 February 2010 Maule earthquake [J]. Earthquake Spectra, 2012, 28(Suppl 1): 553 − 579. doi: 10.1193/1.4000022 [8] Adalier K, Elgamal A, Meneses J, et al. Stone columns as liquefaction countermeasure in non-plastic siltysoils [J]. Soil Dynamics and Earthquake Engineering, 2003, 23(7): 571 − 584. doi: 10.1016/S0267-7261(03)00070-8 [9] Adalier K, Elgamal A. Mitigation of liquefaction and associated ground deformations by stone columns [J]. Engineering Geology, 2004, 72(3): 275 − 291. [10] Moayedi H, Huat B B K, Mokhberi M, et al. Using stone column as a suitable liquefaction remediation in Persian Gulf coast [J]. Electronic Journal of Geotechnical Engineering, 2010, 15: 1757 − 1767. [11] Matsubara K, Mihara M, Tsujita M. Analysis of gravel drain against liquefaction and its application to design [C]// Proceedings 9th World Conference on Earthquake Engineering. Tokyo, Japan, International Conference for Earthquake Engineering (IAEE) & the 9th WCEE Organizing Committee, 1988, 3: 249− 254. [12] Sasaki Y, Taniguchi E. Shaking table tests on gravel drains to prevent liquefaction of sand deposits [J]. Soils and Foundations, 1982, 22(3): 1 − 14. doi: 10.3208/sandf1972.22.3_1 [13] Sasrekarimi A, Ghalandrzadeh A. Evaluation of gravel drains and compacted sand piles in mitigating liquefaction [J]. Ground Improvement, 2005, 9(3): 91 − 104. doi: 10.1680/grim.2005.9.3.91 [14] 邹佑学, 王睿, 张建民. 可液化场地碎石桩复合地基地震动力响应分析[J]. 岩土力学, 2019, 40(6): 2443 − 2455.Zou Youxue, Wang Rui, Zhang Jianmin. Analysis on the seismic response of stone columns composite foundation in liquefiable soils [J]. Rock and Soil Mechanics, 2019, 40(6): 2443 − 2455. (in Chinese) [15] Tanaka H, Kita H, Iida T. Countermeasure using steel sheet pile with drain capability [C]// Eleventh World Conference on Earthquake Engineering. Mexico, International Association Earthquake Engineering, 1996. [16] Tanaka H, Kita H, Iida T, et al. Liquefaction countermeasure using steel sheet pile with drain capability [J]. Sumitomo Search, 1996, 9(58): 72 − 81. [17] Harada N, Towhata I, Takatsu T, et al. Development of new drain method for protection of existing pile foundations from liquefaction effects [J]. Soil Dynamics and Earthquake Engineering, 2006, 26(2/3/4): 297 − 312. doi: 10.1016/j.soildyn.2005.02.019 [18] 邹佑学, 王睿, 张建民. 碎石桩加固可液化场地数值模拟与分析[J]. 工程力学, 2019, 36(10): 152 − 163. doi: 10.6052/j.issn.1000-4750.2018.10.0559Zou Youxue, Wang Rui, Zhang Jianmin. Numerical investigation on liquefaction mitigation of liquefiable soil improved by stone columns [J]. Engineering Mechanics, 2019, 36(10): 152 − 163. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.10.0559 [19] 刘汉龙. 一种抗液化排水刚性桩[P]. 中国: CN2873886Y, 2007-02-28.Liu Hanlong. A kind of rigid drainage pile of mitigation of liquefaction [P]. China: CN2873886Y 2007-02-28. (in Chinese) [20] 陈育民, 刘汉龙, 赵楠. 抗液化刚性排水桩振动台试验的数值模拟研究[J]. 土木工程学报, 2010, 43(12): 114 − 119. doi: 10.15951/j.tmgcxb.2010.12.017Chen Yumin, Liu Hanlong, Zhao Nan. Laboratory test on anti-liquefaction characteristics of rigidity-drain pile [J]. China Civil Engineering Journal, 2010, 43(12): 114 − 119. (in Chinese) doi: 10.15951/j.tmgcxb.2010.12.017 [21] Liu H L , Chen Y M , Zhao N. Development technology of rigidity-drain pile and numerical analysis of its anti-liquefaction characteristics [J]. Journal of Central South University of Technology, 2008, 15(Suppl 2): 101 − 107. [22] 杨耀辉, 陈育民, 刘汉龙, 等. 排水刚性桩单桩抗液化性能的振动台试验研究[J]. 岩土工程学报, 2018, 40(2): 287 − 295. doi: 10.11779/CJGE201802009Yang Yaohui, Chen Yumin, Liu Hanlong, et al. Shaking table tests on liquefaction resistance performance of single rigid-drainage pile [J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 287 − 295. (in Chinese) doi: 10.11779/CJGE201802009 [23] 陈志雄, 潘小东, 陈育民, 等. 排水刚性桩处置可液化倾斜场地的振动台试验研究[J]. 防灾减灾工程学报, 2021, 41(1): 12 − 20.Chen Zhixiong, Pan Xiaodong, Chen Yumin, et al. Research on efficacy of rigid-drainage pile improvement on liquefiable sloping ground by shaking table tests [J]. Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(1): 12 − 20. (in Chinese) [24] 王翔鹰, 刘汉龙, 江强, 等. 抗液化排水刚性桩沉桩过程中的孔压响应[J]. 岩土工程学报, 2017, 39(4): 645 − 651. doi: 10.11779/CJGE201704008Wang Xiangying, Liu Hanlong, Jiang Qiang, et al. Field tests on the response of excess pore water pressures of the liquefaction resistance rigid-drainage pile [J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 645 − 651. (in Chinese) doi: 10.11779/CJGE201704008 [25] 徐丹, 杜春波, 王涛, 等. 可液化场地高桩桥梁振动台模型试验研究[J]. 工程力学, 2020, 37(增刊): 168 − 171. doi: 10.6052/j.issn.1000-4750.2019.05.S031Xu Dan, Du Chunbo, Wang Tao, et al. Shaking table test on elevated pile bridges in liquefiable ground [J]. Engineering Mechanics, 2020, 37(Suppl): 168 − 171. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.05.S031 [26] 谷音, 戴向东, 李攀. 考虑不均匀腐蚀影响的钢筋混凝土桥墩抗震性能研究[J]. 工程力学, 2022, 39(4): 113 − 122. doi: 10.6052/j.issn.1000-4750.2021.02.0153Gu Yin, Dai Xiangdong, Li Pan. Research on seismic performance of reinforced concrete bridge piers considering influence of nonuniform corrosion [J]. Engineering Mechanics, 2022, 39(4): 113 − 122. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.02.0153 [27] 程绍革, 朱毅秀, 杨欣, 等. 既有框架性能化抗震鉴定方法研究及工程应用[J]. 工程力学, 2021, 38(8): 154 − 165. doi: 10.6052/j.issn.1000-4750.2020.08.0559Cheng Shaoge, Zhu Yixiu, Yang Xin, et al. Seismic evaluation method based on seismic performance and its application for existing rc frames [J]. Engineering Mechanics, 2021, 38(8): 154 − 165. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0559 [28] Tsukamoto Y, Ishihara K, Sawada S, et al. Settlement of rigid circular foundations during seismic shaking in shaking table tests [J]. International Journal of Geomechanics, 2012, 12(4): 462 − 470. doi: 10.1061/(ASCE)GM.1943-5622.0000153 [29] 宋二祥, 武思宇, 王宗纲. 地基–结构系统振动台模型试验中相似比的实现问题探讨[J]. 土木工程学报, 2008, 41(10): 87 − 92. doi: 10.3321/j.issn:1000-131X.2008.10.013Song Erxiang, Wu Siyu, Wang Zonggang. A tentative solution for similitude realization in shaking table test of SSI systems [J]. China Civil Enginerring Journal, 2008, 41(10): 87 − 92. (in Chinese) doi: 10.3321/j.issn:1000-131X.2008.10.013 [30] 丁选明, 吴琪, 刘汉龙, 等. 建筑物下珊瑚砂地基动力响应振动台模型试验研究[J]. 岩土工程学报, 2019, 41(8): 1408 − 1417.Ding Xuanming, Wu Qi, Liu Hanlong, et al. Shaking table tests on dynamic response of coral sand foundation under buildings [J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1408 − 1417. (in Chinese) [31] Su L, Wan H P, Abtahi S, et al. Dynamic response of soil–pile–structure system subjected to lateral spreading: shaking table test and parallel finite element simulation [J]. Canadian Geotechnical Journal, 2020, 57(4): 497 − 517. doi: 10.1139/cgj-2018-0485 [32] 邵一凡, 赖正聪, 潘文, 等. 考虑三维地震动作用下振动台试验隔震层简化[J]. 土木建筑与环境工程, 2017, 39(2): 65 − 74.Shao Yifan, Lai Zhengcong, Pan Wen, et al. Simplified method of isolation layer in shaking table test considered three-dimensional seismic effect [J]. Journal of Civil Architectural & Environmental Engineering, 2017, 39(2): 65 − 74. (in Chinese) [33] 陈跃庆, 吕西林, 黄炜. 结构—地基相互作用振动台试验中土体边界条件的模拟方法[J]. 结构工程师, 2000(3): 25 − 30. doi: 10.15935/j.cnki.jggcs.2000.03.007Chen Yueqing, Lü Xilin, Huang Wei. Simulation method of soil boundary condition in shaking table tests of soil-structure interaction [J]. Structural Engineers, 2000(3): 25 − 30. (in Chinese) doi: 10.15935/j.cnki.jggcs.2000.03.007 [34] Dashti S, Bray J D, Pestana J M, et al. Centrifuge testing to evaluate and mitigate liquefaction-induced building settlement mechanisms [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(7): 918 − 929. doi: 10.1061/(ASCE)GT.1943-5606.0000306 [35] 吴琪, 丁选明, 陈志雄, 等. 不同地震动强度下珊瑚礁砂地基中桩-土-结构地震响应试验研究[J]. 岩土力学, 2020, 41(2): 571 − 580. doi: 10.16285/j.rsm.2019.0122Wu Qi, Ding Xuanming, Chen Zhixiong, et al. Experimental study on seismic response of pile-soil-structure in coral sand under different earthquake intensity [J]. Rock and Soil Mechanics, 2020, 41(2): 571 − 580. (in Chinese) doi: 10.16285/j.rsm.2019.0122 [36] 马险峰, 孔令刚, 方薇, 等. 砂雨法试样制备平行试验研究[J]. 岩土工程学报, 2014, 36(10): 1791 − 1801. doi: 10.11779/CJGE201410005Ma Xianfeng, Kong Linggang, Fang Wei, et al. Parallel tests on preparation of samples with sand pourer [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1791 − 1801. (in Chinese) doi: 10.11779/CJGE201410005 -