EFFECT OF FREEZE-THAW ACTION ON ACOUSTIC EMISSION CHARACTERISTICS OF SELF-COMPACTING LIGHTWEIGHT AGGREGATE CONCRETE
-
摘要: 为研究冻融后自密实轻骨料混凝土单轴压缩下的声发射(AE)特性,对未掺引气剂的自密实轻骨料混凝土试件进行0次、50次、100次快速冻融试验。结果表明:随着冻融次数增加,试件轴压应力-应变曲线趋于完整,峰值应力有明显降低;声发射峰值频率主要位于15 kHz~45 kHz, 85 kHz~105 kHz, 235 kHz~255 kHz和285 kHz~320 kHz 这4个“优势频段”区间,对应于混凝土内部预存裂纹或孔隙压密,骨料/砂浆界面增强层的开裂,粗骨料断裂破坏以及砂浆的开裂。受冻后的试件在轴压作用经历拉伸裂缝与剪切裂缝之间的交替转化,最终形成主裂缝导致破坏。冻融作用以及应力水平变化对AE信号源分布有较大影响,随着应力水平的增加,AE信号源趋于活跃,且在试样断裂面有聚集趋势。Abstract: To study the acoustic emission (AE) characteristics of self-compacting lightweight aggregate concrete (SCLC) under uniaxial compression after freeze-thaw action, 0, 50 and 100 rapid freeze-thaw tests are carried out on self-compacting lightweight aggregate concrete specimens without air entraining agent. The results show that: with the increase of freeze-thaw cycles, the uniaxial compressive stress-strain curves of the specimen tend to be complete, and the peak stress decreases significantly. The peak frequency of AE is mainly located in the four 'dominant frequency bands' of 15 kHz-45 kHz, of 85 kHz-105 kHz, of 235 kHz-255 kHz and of 285 kHz-320 kHz, corresponding to the compression of pre-existing cracks or pore in concrete, the cracking of aggregate/paste interface reinforcement layer, the penetration fracture of coarse aggregate and the cracking of mortar, respectively. Under the action of uniaxial compression, the freeze-thawed specimens undergo the alternating transformation between tensile cracks and shear cracks, and finally form the main crack which leads to failure. Freeze-thaw action and the variation of stress level have a great influence on the distribution of AE signal source. With the increase of stress level, AE signal tends to be active and gathers on the fracture surface of the sample.
-
表 1 自密实轻骨料混凝土配合比
Table 1. Mix proportion of self-compacting lightweight aggregate concrete
/(kg/m3) 水泥 粉煤灰 硅灰 水 砂 粗骨料 减水剂/(wt.%) 358 108 46 179 665 613 0.3 表 2 自密实轻骨料混凝土性能指标
Table 2. Performance index of self-compacting lightweight aggregate concrete
抗压强度/
MPa干表观密度/
(kg/m3)自密实性能 扩展度/
mm扩展时间
T500/sJ环扩展度/
mm离析率/
(%)54.2 1891 700 2.6 700 3.9 表 3 声发射系统参数
Table 3. Parameters of AE system
参数类型 参数值 数据传输速度/(MB/s) 132 触发器处理能力/Mflops 150 最低噪声阈值/dB 18 频率范围/kHz 10.0~2.1×103 高速处理速度/(hits/s) 20 000 PDT/μs 35 HDT/μs 150 HLT/μs 300 表 4 声发射探头位置
Table 4. Location of AE probe
探头编号 X Y Z 5 0 33.3 25 6 0 33.3 −25 11 −25 66.6 0 12 25 66.6 0 -
[1] Shi C, Wu Z, Lv K, et al. A review on mixture design methods for self-compacting concrete [J]. Construction and Building Materials, 2015, 84: 387 − 398. doi: 10.1016/j.conbuildmat.2015.03.079 [2] Mazaheripour H, Ghanbarpour S, Mirmoradi S H, et al. The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete [J]. Construction and Building Materials, 2011, 25(1): 351 − 358. doi: 10.1016/j.conbuildmat.2010.06.018 [3] 金浏, 杨旺贤, 余文轩, 等. 基于细观模拟的轻骨料混凝土动态压缩破坏及尺寸效应分析[J]. 工程力学, 2020, 37(3): 56 − 65. doi: 10.6052/j.issn.1000-4750.2019.01.0012Jin Liu, Yang Wangxian, Yu Wenxuan, et al. Dynamic compressive failure and size effect in lightweight aggregate concrete based on meso-scale simulation [J]. Engineering Mechanics, 2020, 37(3): 56 − 65. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.01.0012 [4] 李京军. 自密实轻骨料混凝土的设计、制备和增韧[D]. 重庆: 重庆大学, 2018.Li Jingjun. Design preparation and toughening of self-compacting lightweight aggregate concrete [D]. Chongqing: Chongqing University, 2018. (in Chinese) [5] Kosmas K, Nikolaos S. Durability of normal strength self-compacting concretes and their impact on service life of reinforced concrete structures [J]. Construction and Building Materials, 2013, 41: 491 − 497. doi: 10.1016/j.conbuildmat.2012.12.042 [6] Bashandy A, Etman Z, Azier H. Durability of lightweight self-compacted concrete [J]. International Journal of Construction Engineering and Management, 2019, 8(5): 127 − 135. [7] 张艺欣, 郑山锁, 裴培, 等. 钢筋混凝土柱冻融损伤模型研究[J]. 工程力学, 2020, 36(2): 78 − 86. doi: 10.6052/j.issn.1000-4750.2017.11.0791Zhang Yixin, Zheng Shansuo, Pei Pei, et al. Research on the modelling method of reinforced concrete column subjected to freeze-thaw damage [J]. Engineering Mechanics, 2020, 36(2): 78 − 86. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.11.0791 [8] 黄彪, 李彪. 基于声发射技术的钢纤维混凝土受压损伤本构关系研究[J]. 水利与建筑工程学报, 2018, 16(4): 201 − 208. doi: 10.3969/j.issn.1672-1144.2018.04.039Huang Biao, Li Biao. Compressive damage constitutive model of steel fiber reinforced concrete based on AE technique [J]. Journal of Water Resources and Architectural Engineering, 2018, 16(4): 201 − 208. (in Chinese) doi: 10.3969/j.issn.1672-1144.2018.04.039 [9] Byounggeon K, Jason W. Using acoustic emission to quantify damage in restrained fiber-reinforced cement mortars [J]. Cement and Concrete Research, 2003, 33(2): 207 − 214. doi: 10.1016/S0008-8846(02)00978-X [10] Zhu C, Niu J, Li J, et al. Effect of aggregate saturation degree on the freeze–thaw resistance of high performance polypropylene fiber lightweight aggregate concrete [J]. Construction and Building Materials, 2017, 145: 367 − 375. [11] Aggelis D. Classification of cracking mode in concrete by acoustic emission parameters [J]. Mechanics Research Communications, 2011, 38(3): 153 − 157. doi: 10.1016/j.mechrescom.2011.03.007 [12] Aslan M. Investigation of damage mechanism of flax fibre LPET commingled composites by acoustic emission [J]. Composites Part B, 2013, 54: 289 − 297. doi: 10.1016/j.compositesb.2013.05.042 [13] Bunnori N, Lark R, Holford K. The use of acoustic emission for the early detection of cracking in concrete structures [J]. Magazine of Concrete Research, 2011, 63(9): 683 − 688. doi: 10.1680/macr.2011.63.9.683 [14] Shiotani T, Shigeishi M, Ohtsu M. Acoustic emission characteristics of concretepiles [J]. Construction and Building Materials, 1999, 13(1): 73 − 85. [15] Provernio E. Evaluation of deterioration in reinforced concrete structures by AE technique [J]. Materials and Corrosion, 2011, 62(2): 161 − 169. doi: 10.1002/maco.201005735 [16] Degala S, Rizzo P, Ramanathan K, et al. Acoustic emission monitoring of CFRP reinforced concrete slabs [J]. Construction and Building Materials, 2008, 23(5): 2016 − 2026. [17] Lovejoy S. Acoustic emission testing of beam to simulate SHM of vintage reinforced concrete deck girder highway bridges [J]. Structural Health Monitoring, 2008, 7(4): 329 − 346. doi: 10.1177/1475921708090567 [18] Elaqra H, Godin N, Peix G, et al. Damage evolution analysis in mortar, during compressive loading using acoustic emission and X-ray tomography: Effects of the sand/cement ratio [J]. Cement and Concrete Research, 2007, 37(5): 703 − 713. doi: 10.1016/j.cemconres.2007.02.008 [19] Aggelis G, Soulioti D, Sapouridis N, et al. Acoustic emission characterization of the fracture process in fibre reinforced concrete [J]. Construction and Building Materials, 2011, 25(11): 4126 − 4131. doi: 10.1016/j.conbuildmat.2011.04.049 [20] Li B, Xu L, Shi C, et al. Effects of fiber type, volume fraction and aspect ratio on the flexural and acoustic emission behaviors of steel fiber reinforced concrete [J]. Construction and Building Materials, 2018, 181: 474 − 486. doi: 10.1016/j.conbuildmat.2018.06.065 [21] 邱继生, 潘杜, 关虓, 等. 冻融后煤矸石混凝土受压损伤声发射特性[J]. 建筑材料学报, 2018, 21(2): 196 − 201. doi: 10.3969/j.issn.1007-9629.2018.02.004Qiu Jisheng, Pan Du, Guan Xiao, et al. Acoustic emission characteristics of compressiong damage of coal gangue concrete after freeze-thaw cycles [J]. Journal of Building Materials, 2018, 21(2): 196 − 201. (in Chinese) doi: 10.3969/j.issn.1007-9629.2018.02.004 [22] 邱继生, 周云仙, 王民煌, 等. 冻融循环作用下煤矸石混凝土的损伤特性及本构关系[J/OL]. 土木与环境工程学报(中英文): 1 − 10 [2021-08-30]. http://kns.cnki.net/kcms/detail/50.1218.TU.20200629.1054.006.html.Qiu Jisheng, Zhou Yunxian, Wang Minhuang, et al. Damage characteristics and constitutive relationship of coal gangue concrete under freeze-thaw cycles [J/OL]. Journal of Civil and Environmental Engineering: 1 − 10 [2021-08-30]. http://kns.cnki.net/kcms/detail/50.1218.TU.20200629.1054.006.html. (in Chinese) [23] 黄超, 彭刚, 肖洋, 等. 冻融混凝土基于声发射技术的单轴动态劈拉损伤特性研究[J]. 水利水电技术, 2018, 49(6): 198 − 203.Huang Chao, Peng Gang, Xiao Yang, et al. AE technique-based study on uniaxial dynamic splitting tensile damage characteristics of freeze-thaw concrete [J]. Water Resources and Hydropower Engineering, 2018, 49(6): 198 − 203. (in Chinese) [24] Li J, Chen Y, Wan C. A mix-design method for lightweight aggrehugate self-compacting concrete based on packing and mortar film thickness theories [J]. Construction and Building Materials, 2017, 157: 621 − 634. [25] GB/T 50082−2009, 普通混凝土长期性能和耐久性能试验方法标准[S]. 北京: 中国建筑工业出版社, 2009.GB/T 50082−2009, Standard for test methods of long-term performance and durability of ordinary concrete [S]. Beijing: China Architecture and Building Press, 2009. (in Chinese) [26] Qiu X, Xu J, Xiao S, et al. Acoustic emission parameters and waveforms characteristics of fracture failure process of asphalt mixtures [J]. Construction and Building Materials, 2019, 215: 135 − 147. doi: 10.1016/j.conbuildmat.2019.04.150 [27] 孔丽娟. 陶粒混合骨料混凝土结构与性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.Kong Lijuan. Research on structure and performance of ceramsite combined aggregate concrete [D]. Harbin: Harbin Institute of Technology, 2008. (in Chinese) [28] 魏慧, 吴涛, 杨雪, 等. 纤维增韧轻骨料混凝土单轴受压应力-应变全曲线试验研究[J]. 工程力学, 2019, 36(7): 126 − 173. doi: 10.6052/j.issn.1000-4750.2018.04.0191Wei Hui, Wu Tao, Yang Xue, et al. Experimental study on stress-strain relationship of fiber reinforced lightweight aggregate concrete [J]. Engineering Mechanics, 2019, 36(7): 126 − 173. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.04.0191 [29] Ohtsu M, Tomoda Y. Phenomenological model of corrosion process in reinforced concrete identified by acoustic emission [J]. ACI Materials Journal, 2007, 105(2): 194 − 200. [30] Zhou X, Yang Y, Li X, et al. Acoustic emission characterization of the fracture process in steel fiber reinforced concrete [J]. Computers and Concrete, 2016, 18(4): 923 − 936. [31] 陶鑫, 谢子令, 郝圣旺, 等. 钢纤维增强粉煤灰地质聚合物单轴受压过程的声发射特性[J]. 复合材料学报, 2014, 31(6): 1467 − 1475.Tao Xin, Xie Ziling, Hao Shengwang, et al. Acoustic emission behavior of steel fiber reinforced fly ash geopolymer under uniaxial compression [J]. Acta Materiae Compositae Sinica, 2014, 31(6): 1467 − 1475. (in Chinese) [32] Li J, Huang J, Niu J, et al. Mesoscopic study on axial compressive damage of steel fiber reinforced lightweight aggregate concrete [J]. Construction and Building Materials, 2019, 196: 14 − 25. doi: 10.1016/j.conbuildmat.2018.11.135 [33] 范宇恒. 基于声发射技术的混凝土试件弯曲损伤研究[D]. 北京: 北京交通大学, 2017.Fan Yuheng. Research on concrete damage of bending members by acoustic emission [D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese) [34] 张力伟. 混凝土损伤检测声发射技术应用研究[D]. 大连: 大连海事大学, 2012.Zhang Liwei. Research on concrete damage detection by using acoustic emission technology [D]. Dalian: Dalian Maritime University, 2012. (in Chinese) -