留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冻融作用对自密实轻骨料混凝土声发射特性影响

李京军 闫珺 牛建刚

李京军, 闫珺, 牛建刚. 冻融作用对自密实轻骨料混凝土声发射特性影响[J]. 工程力学, 2022, 39(9): 133-140, 169. doi: 10.6052/j.issn.1000-4750.2021.05.0373
引用本文: 李京军, 闫珺, 牛建刚. 冻融作用对自密实轻骨料混凝土声发射特性影响[J]. 工程力学, 2022, 39(9): 133-140, 169. doi: 10.6052/j.issn.1000-4750.2021.05.0373
LI Jing-jun, YAN Jun, NIU Jian-gang. EFFECT OF FREEZE-THAW ACTION ON ACOUSTIC EMISSION CHARACTERISTICS OF SELF-COMPACTING LIGHTWEIGHT AGGREGATE CONCRETE[J]. Engineering Mechanics, 2022, 39(9): 133-140, 169. doi: 10.6052/j.issn.1000-4750.2021.05.0373
Citation: LI Jing-jun, YAN Jun, NIU Jian-gang. EFFECT OF FREEZE-THAW ACTION ON ACOUSTIC EMISSION CHARACTERISTICS OF SELF-COMPACTING LIGHTWEIGHT AGGREGATE CONCRETE[J]. Engineering Mechanics, 2022, 39(9): 133-140, 169. doi: 10.6052/j.issn.1000-4750.2021.05.0373

冻融作用对自密实轻骨料混凝土声发射特性影响

doi: 10.6052/j.issn.1000-4750.2021.05.0373
基金项目: 国家自然科学基金项目(51968058);内蒙古自治区自然科学基金项目(2020BS05020,2021MS05058);内蒙古自治区高等学校科学技术研究项目(NJZY20097);内蒙古科技大学创新基金项目(2019QDL-B50);内蒙古科技大学攀登计划项目(XZ-TJ-01);内蒙古科技大学建筑科学研究所开放基金项目(JYSJJ-2021Q04);内蒙古自治区本级事业单位高层次人才引进项目;包头市青年创新人才项目
详细信息
    作者简介:

    李京军(1990−),男,山东人,讲师,博士,硕导,主要从事钢-混凝土组合结构及高性能水泥基材料研究(E-mail: jingjunli@cqu.edu.cn)

    闫 珺(1992−),男,黑龙江人,硕士生,主要从事钢-混凝土组合结构研究(E-mail: 324012209@qq.com)

    通讯作者:

    牛建刚(1976−),男,山西人,教授,博士,院长,主要从事混凝土结构耐久性研究(E-mail: niujiangang@imust.edu.cn)

  • 中图分类号: TU528.2

EFFECT OF FREEZE-THAW ACTION ON ACOUSTIC EMISSION CHARACTERISTICS OF SELF-COMPACTING LIGHTWEIGHT AGGREGATE CONCRETE

  • 摘要: 为研究冻融后自密实轻骨料混凝土单轴压缩下的声发射(AE)特性,对未掺引气剂的自密实轻骨料混凝土试件进行0次、50次、100次快速冻融试验。结果表明:随着冻融次数增加,试件轴压应力-应变曲线趋于完整,峰值应力有明显降低;声发射峰值频率主要位于15 kHz~45 kHz, 85 kHz~105 kHz, 235 kHz~255 kHz和285 kHz~320 kHz 这4个“优势频段”区间,对应于混凝土内部预存裂纹或孔隙压密,骨料/砂浆界面增强层的开裂,粗骨料断裂破坏以及砂浆的开裂。受冻后的试件在轴压作用经历拉伸裂缝与剪切裂缝之间的交替转化,最终形成主裂缝导致破坏。冻融作用以及应力水平变化对AE信号源分布有较大影响,随着应力水平的增加,AE信号源趋于活跃,且在试样断裂面有聚集趋势。
  • 图  1  声发射探头布置示意图

    Figure  1.  Schematic diagram of AE sensor location

    图  2  质量损失率和相对动弹性模量的变化

    Figure  2.  Variation of mass loss rate and relative dynamic modulus of elasticity

    图  3  AE特征参数与加载时间的关系图(左: 振铃计数-时间关系图,右: 能量-时间关系图)

    Figure  3.  Relationship between AE characteristic parameters and loading time (left: the ringing count-time diagram; right: the energy-time diagram)

    图  4  RA和AF随加载时间的变化

    Figure  4.  Variation of RA and AF with loading time

    图  5  能量-幅值关联图

    Figure  5.  Energy- amplitude correlation diagram

    图  6  能量-峰值频率分布关系图

    Figure  6.  Energy and peak frequency distribution diagram

    图  7  轴压破坏形态图

    Figure  7.  Axial compression failure pattern diagram

    图  8  AE源空间定位图

    Figure  8.  AE source spatial location map

    表  1  自密实轻骨料混凝土配合比

    Table  1.   Mix proportion of self-compacting lightweight aggregate concrete /(kg/m3)

    水泥粉煤灰硅灰粗骨料减水剂/(wt.%)
    358108461796656130.3
    下载: 导出CSV

    表  2  自密实轻骨料混凝土性能指标

    Table  2.   Performance index of self-compacting lightweight aggregate concrete

    抗压强度/
    MPa
    干表观密度/
    (kg/m3)
    自密实性能
    扩展度/
    mm
    扩展时间
    T500/s
    J环扩展度/
    mm
    离析率/
    (%)
    54.218917002.67003.9
    下载: 导出CSV

    表  3  声发射系统参数

    Table  3.   Parameters of AE system

    参数类型参数值
    数据传输速度/(MB/s) 132
    触发器处理能力/Mflops 150
    最低噪声阈值/dB 18
    频率范围/kHz 10.0~2.1×103
    高速处理速度/(hits/s) 20 000
    PDT/μs 35
    HDT/μs 150
    HLT/μs 300
    下载: 导出CSV

    表  4  声发射探头位置

    Table  4.   Location of AE probe

    探头编号XYZ
    5033.325
    6033.3−25
    11−2566.60
    122566.60
    下载: 导出CSV
  • [1] Shi C, Wu Z, Lv K, et al. A review on mixture design methods for self-compacting concrete [J]. Construction and Building Materials, 2015, 84: 387 − 398. doi: 10.1016/j.conbuildmat.2015.03.079
    [2] Mazaheripour H, Ghanbarpour S, Mirmoradi S H, et al. The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete [J]. Construction and Building Materials, 2011, 25(1): 351 − 358. doi: 10.1016/j.conbuildmat.2010.06.018
    [3] 金浏, 杨旺贤, 余文轩, 等. 基于细观模拟的轻骨料混凝土动态压缩破坏及尺寸效应分析[J]. 工程力学, 2020, 37(3): 56 − 65. doi: 10.6052/j.issn.1000-4750.2019.01.0012

    Jin Liu, Yang Wangxian, Yu Wenxuan, et al. Dynamic compressive failure and size effect in lightweight aggregate concrete based on meso-scale simulation [J]. Engineering Mechanics, 2020, 37(3): 56 − 65. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.01.0012
    [4] 李京军. 自密实轻骨料混凝土的设计、制备和增韧[D]. 重庆: 重庆大学, 2018.

    Li Jingjun. Design preparation and toughening of self-compacting lightweight aggregate concrete [D]. Chongqing: Chongqing University, 2018. (in Chinese)
    [5] Kosmas K, Nikolaos S. Durability of normal strength self-compacting concretes and their impact on service life of reinforced concrete structures [J]. Construction and Building Materials, 2013, 41: 491 − 497. doi: 10.1016/j.conbuildmat.2012.12.042
    [6] Bashandy A, Etman Z, Azier H. Durability of lightweight self-compacted concrete [J]. International Journal of Construction Engineering and Management, 2019, 8(5): 127 − 135.
    [7] 张艺欣, 郑山锁, 裴培, 等. 钢筋混凝土柱冻融损伤模型研究[J]. 工程力学, 2020, 36(2): 78 − 86. doi: 10.6052/j.issn.1000-4750.2017.11.0791

    Zhang Yixin, Zheng Shansuo, Pei Pei, et al. Research on the modelling method of reinforced concrete column subjected to freeze-thaw damage [J]. Engineering Mechanics, 2020, 36(2): 78 − 86. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.11.0791
    [8] 黄彪, 李彪. 基于声发射技术的钢纤维混凝土受压损伤本构关系研究[J]. 水利与建筑工程学报, 2018, 16(4): 201 − 208. doi: 10.3969/j.issn.1672-1144.2018.04.039

    Huang Biao, Li Biao. Compressive damage constitutive model of steel fiber reinforced concrete based on AE technique [J]. Journal of Water Resources and Architectural Engineering, 2018, 16(4): 201 − 208. (in Chinese) doi: 10.3969/j.issn.1672-1144.2018.04.039
    [9] Byounggeon K, Jason W. Using acoustic emission to quantify damage in restrained fiber-reinforced cement mortars [J]. Cement and Concrete Research, 2003, 33(2): 207 − 214. doi: 10.1016/S0008-8846(02)00978-X
    [10] Zhu C, Niu J, Li J, et al. Effect of aggregate saturation degree on the freeze–thaw resistance of high performance polypropylene fiber lightweight aggregate concrete [J]. Construction and Building Materials, 2017, 145: 367 − 375.
    [11] Aggelis D. Classification of cracking mode in concrete by acoustic emission parameters [J]. Mechanics Research Communications, 2011, 38(3): 153 − 157. doi: 10.1016/j.mechrescom.2011.03.007
    [12] Aslan M. Investigation of damage mechanism of flax fibre LPET commingled composites by acoustic emission [J]. Composites Part B, 2013, 54: 289 − 297. doi: 10.1016/j.compositesb.2013.05.042
    [13] Bunnori N, Lark R, Holford K. The use of acoustic emission for the early detection of cracking in concrete structures [J]. Magazine of Concrete Research, 2011, 63(9): 683 − 688. doi: 10.1680/macr.2011.63.9.683
    [14] Shiotani T, Shigeishi M, Ohtsu M. Acoustic emission characteristics of concretepiles [J]. Construction and Building Materials, 1999, 13(1): 73 − 85.
    [15] Provernio E. Evaluation of deterioration in reinforced concrete structures by AE technique [J]. Materials and Corrosion, 2011, 62(2): 161 − 169. doi: 10.1002/maco.201005735
    [16] Degala S, Rizzo P, Ramanathan K, et al. Acoustic emission monitoring of CFRP reinforced concrete slabs [J]. Construction and Building Materials, 2008, 23(5): 2016 − 2026.
    [17] Lovejoy S. Acoustic emission testing of beam to simulate SHM of vintage reinforced concrete deck girder highway bridges [J]. Structural Health Monitoring, 2008, 7(4): 329 − 346. doi: 10.1177/1475921708090567
    [18] Elaqra H, Godin N, Peix G, et al. Damage evolution analysis in mortar, during compressive loading using acoustic emission and X-ray tomography: Effects of the sand/cement ratio [J]. Cement and Concrete Research, 2007, 37(5): 703 − 713. doi: 10.1016/j.cemconres.2007.02.008
    [19] Aggelis G, Soulioti D, Sapouridis N, et al. Acoustic emission characterization of the fracture process in fibre reinforced concrete [J]. Construction and Building Materials, 2011, 25(11): 4126 − 4131. doi: 10.1016/j.conbuildmat.2011.04.049
    [20] Li B, Xu L, Shi C, et al. Effects of fiber type, volume fraction and aspect ratio on the flexural and acoustic emission behaviors of steel fiber reinforced concrete [J]. Construction and Building Materials, 2018, 181: 474 − 486. doi: 10.1016/j.conbuildmat.2018.06.065
    [21] 邱继生, 潘杜, 关虓, 等. 冻融后煤矸石混凝土受压损伤声发射特性[J]. 建筑材料学报, 2018, 21(2): 196 − 201. doi: 10.3969/j.issn.1007-9629.2018.02.004

    Qiu Jisheng, Pan Du, Guan Xiao, et al. Acoustic emission characteristics of compressiong damage of coal gangue concrete after freeze-thaw cycles [J]. Journal of Building Materials, 2018, 21(2): 196 − 201. (in Chinese) doi: 10.3969/j.issn.1007-9629.2018.02.004
    [22] 邱继生, 周云仙, 王民煌, 等. 冻融循环作用下煤矸石混凝土的损伤特性及本构关系[J/OL]. 土木与环境工程学报(中英文): 1 − 10 [2021-08-30]. http://kns.cnki.net/kcms/detail/50.1218.TU.20200629.1054.006.html.

    Qiu Jisheng, Zhou Yunxian, Wang Minhuang, et al. Damage characteristics and constitutive relationship of coal gangue concrete under freeze-thaw cycles [J/OL]. Journal of Civil and Environmental Engineering: 1 − 10 [2021-08-30]. http://kns.cnki.net/kcms/detail/50.1218.TU.20200629.1054.006.html. (in Chinese)
    [23] 黄超, 彭刚, 肖洋, 等. 冻融混凝土基于声发射技术的单轴动态劈拉损伤特性研究[J]. 水利水电技术, 2018, 49(6): 198 − 203.

    Huang Chao, Peng Gang, Xiao Yang, et al. AE technique-based study on uniaxial dynamic splitting tensile damage characteristics of freeze-thaw concrete [J]. Water Resources and Hydropower Engineering, 2018, 49(6): 198 − 203. (in Chinese)
    [24] Li J, Chen Y, Wan C. A mix-design method for lightweight aggrehugate self-compacting concrete based on packing and mortar film thickness theories [J]. Construction and Building Materials, 2017, 157: 621 − 634.
    [25] GB/T 50082−2009, 普通混凝土长期性能和耐久性能试验方法标准[S]. 北京: 中国建筑工业出版社, 2009.

    GB/T 50082−2009, Standard for test methods of long-term performance and durability of ordinary concrete [S]. Beijing: China Architecture and Building Press, 2009. (in Chinese)
    [26] Qiu X, Xu J, Xiao S, et al. Acoustic emission parameters and waveforms characteristics of fracture failure process of asphalt mixtures [J]. Construction and Building Materials, 2019, 215: 135 − 147. doi: 10.1016/j.conbuildmat.2019.04.150
    [27] 孔丽娟. 陶粒混合骨料混凝土结构与性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.

    Kong Lijuan. Research on structure and performance of ceramsite combined aggregate concrete [D]. Harbin: Harbin Institute of Technology, 2008. (in Chinese)
    [28] 魏慧, 吴涛, 杨雪, 等. 纤维增韧轻骨料混凝土单轴受压应力-应变全曲线试验研究[J]. 工程力学, 2019, 36(7): 126 − 173. doi: 10.6052/j.issn.1000-4750.2018.04.0191

    Wei Hui, Wu Tao, Yang Xue, et al. Experimental study on stress-strain relationship of fiber reinforced lightweight aggregate concrete [J]. Engineering Mechanics, 2019, 36(7): 126 − 173. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.04.0191
    [29] Ohtsu M, Tomoda Y. Phenomenological model of corrosion process in reinforced concrete identified by acoustic emission [J]. ACI Materials Journal, 2007, 105(2): 194 − 200.
    [30] Zhou X, Yang Y, Li X, et al. Acoustic emission characterization of the fracture process in steel fiber reinforced concrete [J]. Computers and Concrete, 2016, 18(4): ‏923 − 936.
    [31] 陶鑫, 谢子令, 郝圣旺, 等. 钢纤维增强粉煤灰地质聚合物单轴受压过程的声发射特性[J]. 复合材料学报, 2014, 31(6): 1467 − 1475.

    Tao Xin, Xie Ziling, Hao Shengwang, et al. Acoustic emission behavior of steel fiber reinforced fly ash geopolymer under uniaxial compression [J]. Acta Materiae Compositae Sinica, 2014, 31(6): 1467 − 1475. (in Chinese)
    [32] Li J, Huang J, Niu J, et al. Mesoscopic study on axial compressive damage of steel fiber reinforced lightweight aggregate concrete [J]. Construction and Building Materials, 2019, 196: 14 − 25. doi: 10.1016/j.conbuildmat.2018.11.135
    [33] 范宇恒. 基于声发射技术的混凝土试件弯曲损伤研究[D]. 北京: 北京交通大学, 2017.

    Fan Yuheng. Research on concrete damage of bending members by acoustic emission [D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese)
    [34] 张力伟. 混凝土损伤检测声发射技术应用研究[D]. 大连: 大连海事大学, 2012.

    Zhang Liwei. Research on concrete damage detection by using acoustic emission technology [D]. Dalian: Dalian Maritime University, 2012. (in Chinese)
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  273
  • HTML全文浏览量:  100
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-19
  • 修回日期:  2021-09-10
  • 网络出版日期:  2021-09-18
  • 刊出日期:  2022-09-01

目录

    /

    返回文章
    返回