留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带开槽耗能板的自复位方钢管混凝土柱-钢梁节点抗震性能试验研究

王先铁 贾子涵 谢川东 郭艺伟

王先铁, 贾子涵, 谢川东, 郭艺伟. 带开槽耗能板的自复位方钢管混凝土柱-钢梁节点抗震性能试验研究[J]. 工程力学, 2022, 39(9): 110-122. doi: 10.6052/j.issn.1000-4750.2021.05.0360
引用本文: 王先铁, 贾子涵, 谢川东, 郭艺伟. 带开槽耗能板的自复位方钢管混凝土柱-钢梁节点抗震性能试验研究[J]. 工程力学, 2022, 39(9): 110-122. doi: 10.6052/j.issn.1000-4750.2021.05.0360
WANG Xian-tie, JIA Zi-han, XIE Chuan-dong, GUO Yi-wei. EXPERIMENTAL STUDY ON SEISMIC BEHAVIOR OF SELF-CENTERING CONCRETE-FILLED SQUARE STEEL TUBULAR COLUMN-STEEL BEAM JOINTS WITH SLOTTED ENERGY DISSIPATION PLATES[J]. Engineering Mechanics, 2022, 39(9): 110-122. doi: 10.6052/j.issn.1000-4750.2021.05.0360
Citation: WANG Xian-tie, JIA Zi-han, XIE Chuan-dong, GUO Yi-wei. EXPERIMENTAL STUDY ON SEISMIC BEHAVIOR OF SELF-CENTERING CONCRETE-FILLED SQUARE STEEL TUBULAR COLUMN-STEEL BEAM JOINTS WITH SLOTTED ENERGY DISSIPATION PLATES[J]. Engineering Mechanics, 2022, 39(9): 110-122. doi: 10.6052/j.issn.1000-4750.2021.05.0360

带开槽耗能板的自复位方钢管混凝土柱-钢梁节点抗震性能试验研究

doi: 10.6052/j.issn.1000-4750.2021.05.0360
基金项目: 国家自然科学基金项目(51678474);陕西省自然科学基金项目(2022JM-189)
详细信息
    作者简介:

    贾子涵(1996−),女,河南郑州人,硕士生,主要从事自复位结构研究(E-mail: 2459096159@qq.com)

    谢川东(1995−),男,广东揭阳人,博士生,主要从事自复位结构研究(E-mail: chuandongxie@163.com)

    郭艺伟(1996−),男,甘肃敦煌人,硕士生,主要从事自复位结构研究(E-mail: 11934936@qq.com)

    通讯作者:

    王先铁(1979−),男,湖南常德人,教授,博士,主要从事钢结构与钢管混凝土结构研究(E-mail: wangxiantie@163.com)

  • 中图分类号: TU352.1

EXPERIMENTAL STUDY ON SEISMIC BEHAVIOR OF SELF-CENTERING CONCRETE-FILLED SQUARE STEEL TUBULAR COLUMN-STEEL BEAM JOINTS WITH SLOTTED ENERGY DISSIPATION PLATES

  • 摘要: 针对自复位节点复位阶段抗力大的问题,提出了带开槽耗能板的自复位方钢管混凝土柱-钢梁节点。为研究节点的抗震性能和自复位性能,对5个足尺梁柱节点试件进行低周往复荷载试验,对其受力性能进行理论分析,建立节点的恢复力模型。结果表明:带开槽耗能板的自复位节点具有良好的耗能能力、承载能力和自复位性能,滞回曲线呈典型的“双旗帜”形。4.00%位移角时节点残余变形较小,除耗能板外其余部件均保持弹性,震后更换耗能板即可快速修复。节点的自复位性能随耗能板单个板条宽度的增大而降低,耗能能力随单个板条宽度的增大而提高;耗能板厚度和宽度越大,节点的耗能能力和承载力越强,自复位能力越弱;钢绞线初始预应力对节点的承载力、初始刚度和自复位能力均有显著影响,但对节点耗能能力影响很小。恢复力模型与试验结果吻合较好。
  • 图  1  带开槽耗能板的自复位方钢管混凝土柱-钢梁节点

    Figure  1.  SC connection with slotted energy dissipation plates

    图  2  试件几何尺寸

    Figure  2.  Dimensions of specimens

    图  3  试验装置

    Figure  3.  Test setup

    图  4  加载受力简图

    Figure  4.  Schematic diagram of loading

    图  5  加载制度

    Figure  5.  Loading history

    图  6  位移和转角测点布置

    Figure  6.  Arrangement of displacement and angle measuring points

    图  7  应变测点布置

    Figure  7.  Arrangement of strain gauges

    图  8  耗能板破坏形态

    Figure  8.  Failure patterns of energy dissipation plates

    图  9  试件SCJ-1滞回曲线

    Figure  9.  Hysteretic curves of specimen SCJ-1

    图  10  各试件弯矩-转角滞回曲线对比

    Figure  10.  Comparison of moment-rotation hysteretic curves

    图  11  各试件的残余转角

    Figure  11.  Residual rotation angle of specimens

    图  12  梁端相对转角

    Figure  12.  Relative rotation angles of beam ends

    图  13  各试件的耗能能力

    Figure  13.  Energy dissipating capacity of specimens

    图  14  不同状态下节点相对能量耗散系数示意

    Figure  14.  Relative energy dissipation coefficient at various states

    图  15  试件SCJ-1钢绞线应力

    Figure  15.  Stress of PT strands of specimen SCJ-1

    图  16  耗能板应变

    Figure  16.  Strain of energy dissipating plates

    图  17  试件各部位应变

    Figure  17.  Strain of specimens

    图  18  试件SCJ-4变形情况(推向6.00%)

    Figure  18.  Deformation pattern of specimen SCJ-4 (push to 6.00%)

    图  19  试件SCJ-4荷载-位移关系(推向6.00%)

    Figure  19.  Load-displacement relationship of specimen SCJ-4 (push to 6.00%)

    图  20  自复位节点理想弯矩-转角关系

    Figure  20.  Idealized moment-rotation relation of SC joint

    图  21  节点转动时的受力简图

    Figure  21.  Free body diagram of the SC joint

    图  22  理论与试验弯矩-转角曲线对比

    Figure  22.  Comparison of theoretical and test moment-rotation curves

    表  1  主要研究参数

    Table  1.   Main parameters of test specimens

    试件编号耗能板单个板条
    宽度/mm
    耗能段
    总宽度/mm
    耗能板
    厚度/mm
    钢绞线
    预拉力/kN
    SCJ-12060890
    SCJ-21560890
    SCJ-31648890
    SCJ-42060690
    SCJ-52060670
    下载: 导出CSV

    表  2  钢材力学性能

    Table  2.   Mechanical properties of steel

    取样
    位置
    实测
    厚度/mm
    屈服
    强度/MPa
    抗拉
    强度/MPa
    弹性
    模量/GPa
    伸长率/(%)
    6 mm耗能板5.4431346021537.43
    8 mm耗能板7.5029843820833.18
    梁腹板9.4439250021131.26
    梁翼缘和
    方钢管
    14.0438854020031.17
    下载: 导出CSV

    表  3  试件SCJ-1试验现象

    Table  3.   Experimental phenomenon of specimen SCJ-1

    层间位移角θ′/rad梁端转动情况试验现象
    0.25% 梁端未开口,节点未转动,初始刚度较大。
    0.50% 梁端与锚固板脱开并开始绕受压侧翼缘转动,随后耗能板受拉屈服。
    1.00% H型钢梁翼缘与侧向支撑因摩擦发出声响。耗能板受压屈服。
    2.00% 从耗能板侧面观察到耗能段发生明显的平面内屈曲。随着加载位移增大,耗能板面内屈曲程度加剧。
    4.00% 梁端抬升量达到最大,此时抬升距离为13.08 mm。
    卸载后 当卸载至零时,梁端开口闭合,除耗能板外其余各部件均恢复至加载前状态。
    下载: 导出CSV

    表  4  试验结果

    Table  4.   Experimental results

    试件编号K0/(kN·m−1)Md/(kN·m)Fmax/kNMmax/(kN·m)Δres/mm
    SCJ-15703.69103.77106.01254.424.08
    SCJ-25842.15106.65107.65258.360.96
    SCJ-35826.29108.57100.54241.291.05
    SCJ-45787.78119.05104.73251.361.13
    SCJ-55416.9982.7792.29221.4910.56
    注:K0为试件的初始刚度;Md为试件的脱开弯矩;Fmax为试件承载力;Mmax为试件最大弯矩;Δres为试件的残余变形。
    下载: 导出CSV

    表  5  钢绞线特征应力

    Table  5.   Stress of PT strands

    试件
    编号
    ${ { { {\overline{\sigma} _{\rm{0} } } } } \mathord{\left/{\vphantom { {\overline { {\sigma _{\rm{0} } } } } { {\sigma _{\rm{u} } } } } } \right.} { {\sigma _{\rm{u} } } } }{\rm{/} }$
    (%)
    ${ { {\sigma _{ {\rm{max} } } }} \mathord{\left/{\vphantom { { {\sigma _{ {\rm{max} } } }} { {\sigma _{\rm{u} } } } } } \right.} { {\sigma _{\rm{u} } } }}{\rm{/} }$
    (%)
    ${ { { {\overline{\sigma} _{ {\rm{max} } } } } } / { {\sigma _{\rm{u} } } } }{\rm{/} }$
    (%)
    ${ { { {\overline{\sigma} _{\rm{r} } } } } \mathord{\left/{\vphantom { {\overline { {\sigma _{\rm{r} } } } } { {\sigma _{\rm{u} } } } } } \right.} { {\sigma _{\rm{u} } } }}{\rm{/} }$
    (%)
    $({ {\overline{\sigma} }_{\rm{0} } }-{ {\overline{\sigma }}_{\rm{r} } })/\overline{ {\sigma }_{\rm{0} } }\rm{/}$
    (%)
    SCJ-135.4769.3953.8829.3617.23
    SCJ-235.5566.8053.5030.7413.53
    SCJ-333.3969.6354.6231.844.64
    SCJ-436.3270.0755.5833.786.99
    SCJ-529.0461.7447.3022.7821.56
    注:σu为钢绞线抗拉强度;σmax为钢绞线最大应力;${ {\overline{\sigma} _{ {\rm{max} } } }}$为加载至最大位移角时钢绞线的平均应力;${ {\overline{\sigma} _{\rm{0} } } }$为平均初始应力;${ {\overline{\sigma} _{\rm{r} } } }$为试验后钢绞线的平均应力。
    下载: 导出CSV

    表  6  特征点弯矩理论值与试验值

    Table  6.   Theoretical and test moments

    试件编号项目特征点弯矩/(kN·m)
    MAMBMCMDME
    SCJ-1理论值107.80165.02270.10159.0752.28
    试验值103.77138.45254.42136.6140.63
    误差/(%)3.8819.196.1616.4428.67
    SCJ-2理论值112.20169.42273.26162.2356.68
    试验值106.65168.38258.36139.0455.11
    误差/(%)5.200.625.7716.682.85
    SCJ-3理论值111.52157.63257.08168.2567.11
    试验值108.57149.15241.29144.9763.68
    误差/(%)2.725.696.5416.065.39
    SCJ-4理论值113.09157.58255.94170.4270.33
    试验值109.05150.23251.36153.9858.56
    误差/(%)3.754.891.8210.6820.10
    SCJ-5理论值89.55134.04233.39147.8746.79
    试验值82.77119.93221.49128.29
    误差/(%)8.1911.775.3715.26
    注:误差=(理论值−试验值)/试验值;试件SCJ-5由于盖板螺栓松动,导致卸载时节点闭合弯矩偏小,ME试验值失效。
    下载: 导出CSV
  • [1] 吕西林, 陈云, 毛苑君. 结构抗震设计的新概念: 可恢复功能结构[J]. 同济大学学报(自然科学版), 2011, 39(7): 941 − 948. doi: 10.3969/j.issn.0253-374x.2011.07.001

    Lü Xilin, Chen Yun, Mao Yuanjun. New concept of structural seismic design: earthquake resilient structures [J]. Journal of Tongji University Science (Natural Science), 2011, 39(7): 941 − 948. (in Chinese) doi: 10.3969/j.issn.0253-374x.2011.07.001
    [2] 吕西林, 武大洋, 周颖. 可恢复功能防震结构研究进展[J]. 建筑结构学报, 2019, 40(2): 1 − 15.

    Lü Xilin, Wu Dayang, Zhou Ying. State-of-the-art of earthquake resilient structures [J]. Journal of Building Structures, 2019, 40(2): 1 − 15. (in Chinese)
    [3] 周颖, 吴浩, 顾安琪. 地震工程: 从抗震、减隔震到可恢复性[J]. 工程力学, 2019, 36(6): 1 − 12. doi: 10.6052/j.issn.1000-4750.2018.07.ST09

    Zhou Ying, Wu Hao, Gu Anqi. Earthquake engineering: from earthquake resistance, energy dissipation, and isolation, to resilience [J]. Engineering Mechanics, 2019, 36(6): 1 − 12. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.ST09
    [4] Herning G, Garlock M M, Ricles J M, et al. An overview of self-centering steel moment frames [C]. Proceedings 2009 Structures Congress —Don’t Mess with Structural Engineers: Expanding Our Role, ASCE, Reston, VA, Austin, TX, United States, 2009: 1412 − 1420.
    [5] Ricles J M, Sause R, Garlock M M, et al. Posttensioned seismic-resistant connections for steel frames [J]. Journal of Structural Engineering, 2001, 127(2): 113 − 121. doi: 10.1061/(ASCE)0733-9445(2001)127:2(113)
    [6] Ricles J M, Sause R, Peng S W, et al. Experimental evaluation of earthquake resistant posttensioned steel connections [J]. Journal of Structural Engineering, 2002, 128(7): 850 − 859. doi: 10.1061/(ASCE)0733-9445(2002)128:7(850)
    [7] Christopoulos C, Filiatrault A, Uang C M, et al. Posttensioned energy dissipating connections for moment-resisting steel frames [J]. Journal of Structural Engineering, 2002, 128(9): 1111 − 1120. doi: 10.1061/(ASCE)0733-9445(2002)128:9(1111)
    [8] Hoseok C, Judy L. Seismic behavior of post-tensioned column base for steel self-centering moment resisting frame [J]. Journal of Constructional Steel Research, 2012, 78(11): 117 − 130.
    [9] Ying Q, Gan P S, Wei W. Seismic behavior of self-centering steel connections with friction T-stubs [J]. Journal of Constructional Steel Research, 2020, 173: 106263. doi: 10.1016/j.jcsr.2020.106263
    [10] 王先铁, 谢川东, 林麟珲, 等. 外张拉式自复位方钢管混凝土柱脚抗震性能试验研究[J]. 建筑结构学报, 2020, 41(10): 67 − 77.

    Wang Xiantie, Xie Chuandong, Lin Linhui, et al. Experimental study on seismic behavior of self-centering concrete-filled square steel tubular column base with external prestressing [J]. Journal of Building Structures, 2020, 41(10): 67 − 77. (in Chinese)
    [11] Kim E C, 樊奎, 贾良玖. 对称和非对称型摩擦耗能连接的抗震性能与设计方法研究现状[J]. 工程力学, 2021, 38(5): 22 − 37. doi: 10.6052/j.issn.1000-4750.2020.06.0412

    Kim E C, Fan Kui, Jia Liangjiu. State-of-the-art review of symmetric and asymmetric friction connections: seismic behavior and design methods [J]. Engineering Mechanics, 2021, 38(5): 22 − 37. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0412
    [12] Kim H J, Christopoulos C. Friction damped posttensioned self-centering steel moment-resisting frames [J]. Journal of Structural Engineering, 2008, 134(11): 1768 − 1779. doi: 10.1061/(ASCE)0733-9445(2008)134:11(1768)
    [13] Zhang A L, Zhang Y X, Li R, et al. Cyclic behavior of a prefabricated self-centering beam-column connection with a bolted web friction device [J]. Engineering Structures, 2016, 111(2): 185 − 198.
    [14] 方有珍, 赵凯, 陈赟, 等. 新型PEC柱-钢梁中节点摩擦耗能型部分自复位连接抗震性能试验研究[J]. 土木工程学报, 2016, 49(4): 22 − 30.

    Fang Youzhen, Zhao Kai, Chen Yun, et al. Experimental study on seismic performance of new crimping PEC column- steel beam interior joint with post-tensioned friction damped connection [J]. China Civil Engineering Journal, 2016, 49(4): 22 − 30. (in Chinese)
    [15] Xu L H, Fan X W, Li Z X. Experimental behavior and analysis of self-centering steel brace with pre-pressed disc springs [J]. Journal of Constructional Steel Research, 2017, 139: 363 − 373. doi: 10.1016/j.jcsr.2017.09.021
    [16] 徐龙河, 杨雪飞. 侧移曲线对基于位移设计的多层自复位摩擦耗能支撑钢框架抗震性能影响研究[J]. 工程力学, 2019, 36(12): 198 − 205. doi: 10.6052/j.issn.1000-4750.2019.01.0014

    Xu Longhe, Yang Xuefei. Influence of lateral displacement curve on the seismic performance of multi-story self-centering friction energy dissipation braced steel frames based on displacement design [J]. Engineering Mechanics, 2019, 36(12): 198 − 205. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.01.0014
    [17] 张艳霞, 庞占洋, 武丙龙, 等. 装配式自复位钢框架-开缝钢板剪力墙结构试验研究[J]. 工程力学, 2020, 37(10): 168 − 178. doi: 10.6052/j.issn.1000-4750.2019.11.0701

    Zhang Yanxia, Pang Zhanyang, Wu Binglong, et al. Experimental study on prefabricated self-centering steel frames with slit steel plate shear wall [J]. Engineering Mechanics, 2020, 37(10): 168 − 178. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.11.0701
    [18] Elena E, Fabio F, Massimo L, et al. Design and analysis of a seismic resilient steel moment resisting frame equipped with damage-free self-centering column bases [J]. Journal of Constructional Steel Research, 2021, 179: 106543. doi: 10.1016/j.jcsr.2021.106543
    [19] 王先铁, 谢川东, 丁艳, 等. 一种带栅式耗能板的柱外预应力自复位梁柱节点[P]. 中国: 201820973242.2, 2019-04-05

    Wang Xiantie, Xie Chuandong, Ding Yan, et al. A kind of external prestressed self-centering beam-column joint with grid type energy dissipating plates [P]. China: 201820973242.2, 2019-04-05. (in Chinese)
    [20] ANSI/AISC 341-16. Seismic provisions for structure steel buildings [S]. Chicago: AISC, 2010.
    [21] FEMA P-58-1, Seismic performance assessment of buildings: Volume 1-methodology [S]. Washington, D. C.: Federal Emergency Management Agency, 2012.
    [22] Seo C Y, Sause R. Ductility demands on self-centering systems under earthquake loading [J]. ACI Structural Journal, 2005, 102(2): 275 − 285.
    [23] ACI Innovation Task Group 1 and Collaborators. Acceptance criteria for moment frames based on structural testing (T1.1-01) and commentary on acceptance criteria for moment frames based on structural testing (T1.1R-01) [R]. Farmington Hills, Mich. : American Concrete Institute, 2001: 10.
    [24] Garlock M M, Ricles J M, Sause R. Experimental study of full-scale posttensioned steel connections [J]. Journal of Structural Engineering, 2005, 131(3): 438 − 449. doi: 10.1061/(ASCE)0733-9445(2005)131:3(438)
  • 加载中
图(22) / 表(6)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  56
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-13
  • 修回日期:  2021-08-16
  • 网络出版日期:  2021-09-10
  • 刊出日期:  2022-09-01

目录

    /

    返回文章
    返回