留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

防撞击X型阻尼器及新型耗能减撞站房柱力学性能研究

尹曜 朱翔 王蕊

尹曜, 朱翔, 王蕊. 防撞击X型阻尼器及新型耗能减撞站房柱力学性能研究[J]. 工程力学, 2022, 39(9): 95-109. doi: 10.6052/j.issn.1000-4750.2021.05.0358
引用本文: 尹曜, 朱翔, 王蕊. 防撞击X型阻尼器及新型耗能减撞站房柱力学性能研究[J]. 工程力学, 2022, 39(9): 95-109. doi: 10.6052/j.issn.1000-4750.2021.05.0358
YIN Yao, ZHU Xiang, WANG Rui. MECHANICAL PROPERTIES OF ANTI-COLLISION X-TYPE DAMPER AND A NEW STATION COLUMN WITH ENERGY DISSIPATION AND COLLISION REDUCTION FUNCTIONS[J]. Engineering Mechanics, 2022, 39(9): 95-109. doi: 10.6052/j.issn.1000-4750.2021.05.0358
Citation: YIN Yao, ZHU Xiang, WANG Rui. MECHANICAL PROPERTIES OF ANTI-COLLISION X-TYPE DAMPER AND A NEW STATION COLUMN WITH ENERGY DISSIPATION AND COLLISION REDUCTION FUNCTIONS[J]. Engineering Mechanics, 2022, 39(9): 95-109. doi: 10.6052/j.issn.1000-4750.2021.05.0358

防撞击X型阻尼器及新型耗能减撞站房柱力学性能研究

doi: 10.6052/j.issn.1000-4750.2021.05.0358
基金项目: 国家自然科学基金项目(51578274,11802166);山西省高等学校科技创新项目(2020L0052);山西省科技厅重点研发计划项目(社会发展方向)(201903D311007)
详细信息
    作者简介:

    尹曜(1995−),男,山西临汾人,硕士生,主要从事结构抗冲击研究(E-mail: 3293805689@qq.com)

    王蕊(1979−),女,山西太原人,教授,博士,主要从事结构抗冲击研究(E-mail: wangrui@tyut.edu.cn)

    通讯作者:

    朱翔(1987−),男,甘肃兰州人,副教授,博士,主要从事结构抗冲击、抗连续倒塌及抗震研究(E-mail: zhuxiang@sxu.edu.cn)

  • 中图分类号: TB331

MECHANICAL PROPERTIES OF ANTI-COLLISION X-TYPE DAMPER AND A NEW STATION COLUMN WITH ENERGY DISSIPATION AND COLLISION REDUCTION FUNCTIONS

  • 摘要: 针对易遭受撞击的站房结构柱等提出有效的防撞装置对结构安全运行至关重要,该文以此提出了一种新型耗能减撞站房柱,保障结构正常使用的同时达到最优耗能能力。采用LS-DYNA对新型耗能防撞设计的高铁站房结构柱进行防撞性能分析,并对其主要的耗能元件防撞击X型阻尼器和泡沫铝进行了研究。基于已有的经典试验进行数值模拟验证,包括钢板单向准静态加载试验、钢骨混凝土撞击试验和泡沫铝填充薄壁结构撞击试验。分析表明该文所建立的数值模型能够较好的模拟试验的撞击力和变形发展。以此建立防撞击X型阻尼器和新型耗能减撞站房柱的数值模型,从而优化单个防撞击X型阻尼器截面,使其耗能最好,并对比了不同因素下新型耗能减撞站房柱的吸能特性及加入泡沫铝后对新型耗能减撞站房柱的吸能影响。结果表明:在撞击荷载作用下,采用耗能最优防撞击X型阻尼器的新型耗能减撞站房柱中阻尼器将吸收97%的撞击能量,而内部结构柱中只有局部混凝土产生了裂缝;加泡沫铝的新型耗能减撞站房柱的吸能分布更加合理且吸能有较大的提升,但结构柱的塑性应变也会随之增加;整体而言,新型耗能减撞站房柱具有优良的吸能能力,保障了结构柱的安全。
  • 图  1  新型耗能减撞站房柱示意图

    Figure  1.  Schematic diagram of new station structural column with energy dissipation and collision reduction functions

    图  2  X型阻尼器示意图

    Figure  2.  Schematic diagram of the X shaped damper

    图  3  阻尼器有限元示意图

    Figure  3.  Finite element diagram of damper

    图  4  100-2M破坏形态试验与模拟对比

    Figure  4.  Comparison of 100-2M failure mode test and simulation

    图  5  力-位移曲线对比

    Figure  5.  Force-displacement curve comparison

    图  6  不同a值阻尼器破坏形态

    Figure  6.  Damage modes of dampers with different a values

    图  7  不同a值的能量-位移曲线

    Figure  7.  Energy-displacement curves with different a values

    图  8  不同b值的破坏形态

    Figure  8.  Failure modes with different b values

    图  9  不同b值的能量-位移曲线

    Figure  9.  Energy-displacement curves with different b values

    图  10  不同c值的破坏形态

    Figure  10.  Failure modes with different c values

    图  11  不同c值的端部最大塑性应变曲线图

    Figure  11.  Diagram of maximum plastic strain at the end with different c values

    图  12  不同c值的能量-位移曲线图

    Figure  12.  Energy-displacement curves of different c values

    图  13  不同abc值的最大塑性应变曲线图

    Figure  13.  Maximum plastic strain curves with different values of a, b and c

    图  14  钢骨混凝土落锤冲击试验[15]

    Figure  14.  Drop hammer impact test of steel reinforced concrete

    图  15  冲击力时程曲线模拟与试验对比

    Figure  15.  Comparison of impact force time history curve between simulation and test

    图  16  挠度曲线模拟与试验对比

    Figure  16.  Comparison of deflection curve between simulation and test

    图  17  站房柱破坏形态

    Figure  17.  Damage pattern of station column

    图  18  不同排列形式的新型耗能减撞站房柱

    Figure  18.  New columns with energy dissipation and collision reduction functions in different arrangement forms

    图  19  新型耗能减撞站房柱混凝土、阻尼器变形模态

    Figure  19.  Deformation modes of concrete and dampers for new columns with energy dissipation and collision reduction functions

    图  20  新型耗能减撞站房柱能量-位移曲线

    Figure  20.  Energy-displacement curve of new columns with energy dissipation and collision reduction functions

    图  21  单个阻尼器能量-位移曲线

    Figure  21.  Energy-displacement curve of single damper

    图  22  不同排列形式耗能减撞站房柱的能量-位移曲线

    Figure  22.  Energy-displacement curves of new columns with different arrangement forms

    图  23  加泡沫铝耗能防撞击柱有限元模型

    Figure  23.  Finite element model of energy dissipating anti-collision column with foamed aluminum

    图  24  破坏形态对比

    Figure  24.  Comparison of failure modes

    图  25  力-位移对比

    Figure  25.  Force-displacement comparison

    图  26  新型耗能减撞站房柱混凝土、阻尼器变形模态

    Figure  26.  Deformation mode of concrete and damper of the new type columns

    图  27  站房柱侧向荷载对比

    Figure  27.  Lateral load comparison of station house and column

    表  1  试件的几何尺寸

    Table  1.   Geometric dimensions of the specimen

    试件编号长度L/m削弱区长度l0/m高度H/m削弱区高度h/m厚度t/mabc
    a-0.50.50.500.1500.07500.024000.501.00.30
    a-0.450.50.500.1500.06750.024830.451.00.30
    a-0.40.50.500.1500.06000.025710.401.00.30
    a-0.350.50.500.1500.05250.026670.351.00.30
    a-0.30.50.500.1500.04500.027690.301.00.30
    a-0.250.50.500.1500.03750.028800.251.00.30
    a-0.20.50.500.1500.03000.030000.201.00.30
    a-0.150.50.500.1500.02250.031300.151.00.30
    a-0.10.50.500.1500.01500.032730.101.00.30
    b-10.50.500.1000.10000.045000.201.00.20
    b-0.90.50.450.1000.10000.042190.200.90.20
    b-0.80.50.400.1000.10000.039710.200.80.20
    b-0.70.50.350.1000.10000.037500.200.70.20
    c-0.40.50.500.2000.06000.010000.301.00.40
    c-0.350.50.500.1750.05250.011430.301.00.35
    c-0.30.50.500.1500.04500.013330.301.00.30
    c-0.250.50.500.1250.03750.016000.301.00.25
    c-0.20.50.500.1000.03000.020000.301.00.20
    c-0.150.50.500.0750.02250.026670.301.00.15
    c-0.10.50.500.0500.01500.040000.301.00.10
    下载: 导出CSV

    表  2  新型耗能减撞站房柱能量吸收情况

    Table  2.   Energy absorption of the new type columns /kJ

    阻尼器壁厚阻尼器剪切位移/mm翼缘板腹板混凝土纵向受力钢筋箍筋阻尼器泡沫铝
    0 2520.00 2090.00 2170.0 2310.00 1180.00
    20 mm 24.36 6.74 4.23 87.6 4.31 4.99 15323
    30 mm 24.33 7.02 4.14 88.5 4.57 4.97 15328
    40 mm 24.31 7.38 4.25 90.6 5.02 5.00 15323
    20 mm+FF 14.24 17.30 12.40 252.0 13.50 7.21 5878 9133
    30 mm+FF 14.24 18.20 12.10 257.0 14.10 7.74 5890 9118
    40 mm+FF 14.31 17.40 11.90 249.0 14.00 7.54 5952 9067
    30 mm-1 24.32 5.52 3.55 83.7 3.43 10.80 15315
    30 mm-2 24.32 8.11 4.32 90.0 5.54 5.06 15325
    下载: 导出CSV
  • [1] 中华人民共和国国务院新闻办公室. 中国交通的可持续发展白皮书[EB/OL]. 2020-12-22. http://www.scio.gov.cn/zfbps/32832/Document/1695297/1695297.htm

    The State Council Information Office of the People's Republic of China. White Paper on sustainable Development of China's Transportation [EB/OL]. 2020-12-22. http://www.scio.gov.cn/zfbps/32832/Document/1695297/1695297.htm
    [2] Zhu X, Lu X Z, Cheng Q L, et al. Simulation of the running attitude of a train after derailment [J]. International Journal of Crashworthiness, 2020, 25(2): 213 − 219. doi: 10.1080/13588265.2019.1571749
    [3] Xu L J, Lu X Z, Smith S T, et al. Scaled model test for collision between over-height truck and bridge superstructure [J]. International Journal of Impact Engineering, 2012, 49: 31 − 42. doi: 10.1016/j.ijimpeng.2012.05.003
    [4] Fan W, Sun Y, Yang C C, et al. Assessing the response and fragility of concrete bridges under multi-hazard effect of vessel impact and corrosion [J]. Engineering Structures, 2020, 225: 111279. doi: 10.1016/j.engstruct.2020.111279
    [5] Thilakarathna H M I, Thambiratnam D P, Dhanasekar M, et al. Numerical simulation of axially loaded concrete columns under transverse impact and vulnerability assessment [J]. International Journal of Impact Engineering, 2010, 37(11): 1100 − 1112. doi: 10.1016/j.ijimpeng.2010.06.003
    [6] Aghdamy S, Thambiratnam D P, Dhanasekar M, et al. Effects of load-related parameters on the response of concrete-filled double-skin steel tube columns subjected to lateral impact [J]. Journal of Constructional Steel Research, 2017, 138: 642 − 662. doi: 10.1016/j.jcsr.2017.08.015
    [7] 康昌敏, 王蕊, 朱翔. 轴压比对钢管混凝土柱侧向冲击性能影响研究[J]. 工程力学, 2020, 37(增刊): 254 − 260. doi: 10.6052/j.issn.1000-4750.2019.04.S047

    Kang Changmin, Wang Rui, Zhu Xiang. The influence of axial compression ratio on the lateral impact performance of concrete filled steel tube columns [J]. Engineering Mechanics, 2020, 37(Suppl): 254 − 260. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S047
    [8] Bambach M R. Design of hollow and concrete filled steel and stainless steel tubular columns for transverse impact loads [J]. Thin-Walled Structures, 2011, 49(10): 1251 − 1260. doi: 10.1016/j.tws.2011.05.009
    [9] Zhu X, Zhao P, Tian Y, et al. Experimental study of RC columns and composite columns under low-velocity impact [J]. Thin-Walled Structures, 2021, 160: 107374. doi: 10.1016/j.tws.2020.107374
    [10] Xu J J, Demartino C, Shan B, et al. Experimental investigation on performance of cantilever CFRP-wrapped circular RC columns under lateral low-velocity impact [J]. Composite Structures, 2020, 242: 112143. doi: 10.1016/j.compstruct.2020.112143
    [11] Wang B, Zhu H, Wu X, et al. Numerical investigation on low-velocity impact response of CFRP wraps in presence of concrete substrate [J]. Composite Structures, 2020, 231: 111541. doi: 10.1016/j.compstruct.2019.111541
    [12] 纪孙航, 王文达, 鲜威. CFRP加固火灾作用后圆钢管混凝土构件的侧向撞击性能研究[J]. 工程力学, 2021, 38(8): 178 − 191. doi: 10.6052/j.issn.1000-4750.2020.08.0586

    Ji Sunhang, Wang Wenda, Xian Wei. Study on lateral impact performance of CFRP reinforced circular steel tube concrete members after fire [J]. Engineering Mechanics, 2021, 38(8): 178 − 191. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0586
    [13] 朱翔, 陆新征, 杜永峰, 等. 新型复合柱抗冲击试验研究及有限元分析[J]. 工程力学, 2016, 33(8): 158 − 166. doi: 10.6052/j.issn.1000-4750.2015.03.0153

    Zhu Xiang, Lu Xinzheng, Du Yongfeng, et al. Experimental study and finite element analysis of impact resistance of novel composite columns [J]. Engineering Mechanics, 2016, 33(8): 158 − 166. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.03.0153
    [14] 朱翔, 陆新征, 杜永峰, 等. 外包钢管加固RC柱抗冲击试验研究[J]. 工程力学, 2016, 33(6): 23 − 33.

    Zhu Xiang, Lu Xinzheng, Du Yongfeng, et al. Experimental study on impact resistance of RC columns strengthened with steel jacket [J]. Engineering Mechanics, 2016, 33(6): 23 − 33. (in Chinese)
    [15] 朱翔, 刘宏, 陆新征, 等. 钢骨混凝土构件抗冲击性能试验研究[J]. 爆炸与冲击, 2019, 39(11): 98 − 108.

    Zhu Xiang, Liu Hong, Lu Xinzheng, et al. Experimental study on impact behavior of steel reinforced concrete structures [J]. Explosion and Shock Waves, 2019, 39(11): 98 − 108. (in Chinese)
    [16] Han L H, Hou C C, Zhao X L, et al. Behaviour of high-strength concrete filled steel tubes under transverse impact loading [J]. Journal of Constructional Steel Research, 2014, 92: 25 − 39. doi: 10.1016/j.jcsr.2013.09.003
    [17] Hu C M, Han L H, Hou C C. Concrete-encased CFST members with circular sections under laterally low velocity impact: analytical behaviour [J]. Journal of Constructional Steel Research, 2018, 146: 135 − 154. doi: 10.1016/j.jcsr.2018.03.017
    [18] 胡昌明, 韩林海. 圆形钢管混凝土叠合构件抗冲击性能试验研究[J]. 土木工程学报, 2016, 49(10): 11 − 17.

    Hu Changming, Han Linhai. Experimental behaviour of circular concrete-encased concrete-filled steel tubes under lateral impact [J]. China Civil Engineering Journal, 2016, 49(10): 11 − 17. (in Chinese)
    [19] Wang R, Han L H, Zhao X L, et al. Experimental behavior of concrete filled double steel tubular (CFDST) members under low velocity drop weight impact [J]. Thin-Walled Structures, 2015, 97: 279 − 295. doi: 10.1016/j.tws.2015.09.009
    [20] Wang R, Han L H, Zhao X L, et al. Analytical behavior of concrete filled double steel tubular (CFDST) members under lateral impact [J]. Thin-Walled Structures, 2016, 101: 129 − 140. doi: 10.1016/j.tws.2015.12.006
    [21] Svensson H. Protection of bridge piers against ship collision [J]. Steel Construction, 2009, 2(1): 21 − 32. doi: 10.1002/stco.200910004
    [22] 冯鹏, 胡楠, 何水涛, 等. FRP桥梁上部结构的撞击破坏实验研究[J]. 玻璃钢/复合材料, 2011, 5: 24 − 28.

    Feng Peng, Hu Nan, He Shuitao, et al. Experimental study on impact failure of FRP bridge superstructure [J]. FRP/composite Materials, 2011, 5: 24 − 28. (in Chinese)
    [23] 姜华, 耿波, 张锡祥. 桥墩新型防船撞装置防撞性能研究[J]. 振动与冲击, 2014, 33(17): 154 − 160.

    Jiang Hua, Geng Bo, Zhang Xixiang. Research on anti-collision performance of new type anti-ship collision device for bridge piers [J]. Journal of Vibration and Shock, 2014, 33(17): 154 − 160. (in Chinese)
    [24] 张建强, 刘伟庆, 方海, 等. 设置新型复合材料防撞装置的车-桥碰撞数值模拟[J]. 中外公路, 2011, 31(6): 200 − 204.

    Zhang Jianqiang, Liu Weiqing, Fang Hai, Wang Shuguang. Numerical simulation of vehicle-bridge collision with a novel composites anti-collision device [J]. Chinese and Foreign Highway, 2011, 31(6): 200 − 204. (in Chinese)
    [25] 霍连锋. 基于软钢消能器的开缝耗能剪力墙抗震性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    Huo Lianfeng. Research on seismic performance of open-slit energy dissipative shears wall based on mild steel energy dissipator [D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)
    [26] 王蕊, 李珠, 任够平, 等. 钢管混凝土梁在侧向冲击荷载作用下动力响应的试验研究和数值模拟[J]. 土木工程学报, 2007, 49(10): 34 − 40. doi: 10.3321/j.issn:1000-131x.2007.10.006

    Wang Rui, Li Zhu, Ren Goping, Zhang Shanyuan. Experimental study and numerical simulation of dynamic response of concrete-filled steel tube beams under lateral impact loading [J]. China Civil Engineering Journal, 2007, 49(10): 34 − 40. (in Chinese) doi: 10.3321/j.issn:1000-131x.2007.10.006
    [27] Chan R W K, Albermani F, Williams M S. Evaluation of yielding shear panel device for passive energy dissipation [J]. Journal of Constructional Steel Research, 2009, 65: 160 − 168.
    [28] 赵平. 高速铁路站场设计及参数优化研究[D]. 北京: 北京交通大学, 2011.

    Zhao Ping. Study on station yard design and parameter optimization for high-speed railway [D]. Beijing: Beijing Jiaotong University, 2011. (in Chinese)
    [29] 赵世春, 叶列平, 陆新征, 等. 铁路客站整体稳定性能安全评价与研究报告[R]. 北京: 铁道部经济规划研究院, 2014.

    Zhao Shichun, Ye Lieping, Lu Xinzheng, et al. Safety evaluation and research report of overall stability performance of railway passenger station [R]. Beijing: Economic Planning and Research Institute of the Ministry of Railways, 2014. (in Chinese)
    [30] Dirgantara T, Jusuf A, Kurniati E O, et al. Crashworthiness analysis of foam–filled square column considering strain rate effect of the foam [J]. Thin-Walled Structures, 2018, 129: 365 − 380. doi: 10.1016/j.tws.2018.04.004
    [31] 朱翔, 尹曜, 王蕊, 等. 泡沫铝填充薄壁铝合金多胞构件与单胞构件吸能性能研究[J]. 工程力学, 2021, 38(5): 247 − 256. doi: 10.6052/j.issn.1000-4750.2020.06.0428

    Zhu Xiang, Yin Yao, Wang Rui, et al. Energy absorption performance of thin-wall aluminum alloy multi-cell and single-cell components filled with aluminum foam [J]. Engineering Mechanics, 2021, 38(5): 247 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0428
  • 加载中
图(27) / 表(2)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  68
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-13
  • 修回日期:  2021-08-11
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2022-09-01

目录

    /

    返回文章
    返回