留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自攻螺钉双面剪切连接抗剪性能研究

邓露 刘文豪 刘定荣 何钰龙 刘艳芝

邓露, 刘文豪, 刘定荣, 何钰龙, 刘艳芝. 自攻螺钉双面剪切连接抗剪性能研究[J]. 工程力学, 2022, 39(9): 81-94. doi: 10.6052/j.issn.1000-4750.2021.05.0344
引用本文: 邓露, 刘文豪, 刘定荣, 何钰龙, 刘艳芝. 自攻螺钉双面剪切连接抗剪性能研究[J]. 工程力学, 2022, 39(9): 81-94. doi: 10.6052/j.issn.1000-4750.2021.05.0344
DENG Lu, LIU Wen-hao, LIU Ding-rong, HE Yu-long, LIU Yan-zhi. RESEARCH ON THE SHEAR PERFORMANCE OF SELF-DRILLING SCREW DOUBLE-SIDED SHEAR CONNECTIONS[J]. Engineering Mechanics, 2022, 39(9): 81-94. doi: 10.6052/j.issn.1000-4750.2021.05.0344
Citation: DENG Lu, LIU Wen-hao, LIU Ding-rong, HE Yu-long, LIU Yan-zhi. RESEARCH ON THE SHEAR PERFORMANCE OF SELF-DRILLING SCREW DOUBLE-SIDED SHEAR CONNECTIONS[J]. Engineering Mechanics, 2022, 39(9): 81-94. doi: 10.6052/j.issn.1000-4750.2021.05.0344

自攻螺钉双面剪切连接抗剪性能研究

doi: 10.6052/j.issn.1000-4750.2021.05.0344
详细信息
    作者简介:

    邓 露(1984−),男,湖南双峰人,教授,工学博士,土木学院院长,主要从事结构工程方面研究(E-mail: denglu@hnu.edu.cn)

    刘文豪(1996−),男,湖北大冶人,硕士生,主要从事钢结构研究(E-mail: 1141530171@qq.com)

    刘定荣(1980−),男,湖南娄底人,学士,北京定荣家科技有限公司总裁,主要从事钢结构研究(E-mail: 329237126@qq.com)

    何钰龙(1991−),男,湖南邵阳人,博士生,主要从事钢结构研究(E-mail: 852142119@qq.com)

    通讯作者:

    刘艳芝(1982−),女,湖南新化人,副教授,工学博士,主要从事钢结构研究(E-mail: liuyanzhi@hnu.edu.cn)

  • 中图分类号: TU392.5

RESEARCH ON THE SHEAR PERFORMANCE OF SELF-DRILLING SCREW DOUBLE-SIDED SHEAR CONNECTIONS

  • 摘要: 该文通过ABAQUS有限元软件对自攻螺钉双面剪切连接抗剪性能进行了研究,通过已有试验结果验证了有限元模型的准确性,基于此模型讨论了钢材强度等级、钢板厚度、螺钉直径以及不同中间钢板厚度对螺钉双面剪切连接的破坏模式和抗剪承载力的影响。结果表明:螺钉双面剪切连接构件的破坏模式可分成3类,分别为:承压破坏、承压-剪切破坏和剪切破坏。螺钉双面剪切连接抗剪承载力随着钢材强度等级和钢板厚度的增加而提高并趋于稳定;随着螺钉直径的增加,螺钉双面剪切连接抗剪承载力呈线性增加;在一定范围增加中间钢板厚度也可显著提高螺钉双面剪切连接抗剪承载力。将数值模拟结果与中美欧规范计算值进行比较分析得出,当钢板发生承压破坏时,中国、欧洲和AISC规范公式计算值偏于保守,AISI规范计算值较接近有限元值;当螺钉发生剪切破坏时,AISI和中欧规范过于保守。AISC规范公式计算值与有限元值吻合较好,因此,当螺钉发生剪切破坏时,使用AISC规范公式计算具有一定参考价值。
  • 图  1  螺钉双面剪切连接模型

    Figure  1.  Screw double-sided shear connection model

    图  2  破坏模式验证

    Figure  2.  Failure modes verification

    图  3  荷载-位移曲线验证

    Figure  3.  Load-displacement curves verification

    图  4  试验值与有限元值比较

    Figure  4.  Comparison of test values and FE values

    图  5  破坏模式

    Figure  5.  Failure modes

    图  6  荷载-位移曲线

    Figure  6.  Load-displacement curves

    图  7  钢材强度等级对抗剪承载力的影响

    Figure  7.  Effect of steel strength on shear capacity

    图  8  钢板厚度对抗剪承载力的影响

    Figure  8.  Effect of steel thickness on shear capacity

    图  9  螺钉直径对抗剪承载力的影响

    Figure  9.  Effect of screw diameter on shear capacity

    图  10  中间板厚对抗剪承载力的影响

    Figure  10.  Effect of middle steel thickness on shear capacity

    图  11  有限元值与规范值对比

    Figure  11.  Comparison of FE values and standard values

    表  1  钢材材料属性[24-26]

    Table  1.   Material properties of steel

    钢材强度
    等级
    屈服强度
    fy/MPa
    极限强度
    fu/MPa
    弹性模量
    E/GPa
    屈服应变
    εy
    极限应变
    εu
    Q2352353052060.00110.0351
    Q3453454482060.00170.0517
    Q4604605502060.00220.0459
    Q5505506702060.00270.0609
    Q6906907702060.00330.0422
    Q8908909402060.00430.0286
    Q9609609802060.00470.0144
    下载: 导出CSV

    表  2  剪切破坏时抗剪承载力有限元值与规范值比较

    Table  2.   Comparison of the FE values and the standard values of the shear capacity under shear failure

    试件编号钢材强度等级f/MPa螺钉直径d/mm钢板厚度t/mm有限元值Pu/kN规范值Pn/kN
    AISIGBECAISC
    Q235-D3.5-T3.0-3.0-3.02353.538.564.334.334.338.11
    Q235-D4.8-T3.0-3.0-3.02354.8315.218.148.148.1415.26
    Q550-D5.5-T3.0-3.0-3.05505.5319.7810.6910.6910.6920.04
    Q550-D6.3-T3.0-3.0-3.05506.3324.7914.0214.0214.0226.29
    Q960-D4.8-T3.0-3.0-3.09604.8315.258.148.148.1415.26
    Q960-D5.5-T3.0-3.0-3.09605.5319.3110.6910.6910.6920.04
    Q345-D5.5-T6.0-6.0-6.03455.5620.8610.6910.6910.6920.04
    Q345-D6.3-T6.0-6.0-6.03456.3626.4714.0214.0214.0226.29
    Q460-D3.5-T6.0-6.0-6.04603.569.104.334.334.338.11
    Q460-D4.8-T6.0-6.0-6.04604.8615.948.148.148.1415.26
    Q690-D5.5-T6.0-6.0-6.06905.5620.3310.6910.6910.6920.04
    Q690-D6.3-T6.0-6.0-6.06906.3626.3514.0214.0214.0226.29
    Q890-D3.5-T6.0-6.0-6.08903.568.974.334.334.338.11
    Q890-D4.8-T6.0-6.0-6.08904.8615.728.148.148.1415.26
    下载: 导出CSV

    表  3  承压破坏时抗剪承载力有限元值与规范值比较

    Table  3.   Comparison of the FE values and the standard values of the shear capacity under bearing failure

    试件编号钢材强度等级f/MPa螺钉直径d/mm钢板厚度t/mm有限元值Pu/kN规范值Pn/kN
    AISIGBECAISC
    Q235-D3.5-T0.8-0.8-0.82353.50.85.223.433.022.613.07
    Q235-D6.3-T1.2-1.2-1.22356.31.211.148.457.456.448.30
    Q345-D4.8-T1.2-1.2-1.23454.81.211.2010.849.558.269.29
    Q345-D5.5-T0.8-0.8-0.83455.50.88.506.325.564.817.10
    Q460-D3.5-T1.2-1.2-1.24603.51.27.2411.3610.018.668.32
    Q460-D4.8-T0.8-0.8-0.84604.80.88.657.246.385.527.60
    Q550-D5.5-T1.2-1.2-1.25505.51.213.9417.3515.2813.2215.92
    Q550-D6.3-T0.8-0.8-0.85506.30.812.7910.118.907.7012.16
    Q690-D3.5-T0.8-0.8-0.86903.50.86.318.667.636.607.76
    Q690-D6.3-T1.2-1.2-1.26906.31.216.8421.3418.8016.2620.96
    Q890-D4.8-T0.8-0.8-0.88904.80.89.2512.3810.909.4312.99
    Q890-D5.5-T1.2-1.2-1.28905.51.214.0724.3421.4418.5522.33
    Q960-D3.5-T1.2-1.2-1.29603.51.27.4120.2417.8315.4214.82
    Q960-D5.5-T0.8-0.8-0.89605.50.810.7213.8112.1710.5315.52
    下载: 导出CSV

    表  4  有限元值与规范值比值统计

    Table  4.   Statistics of ratio of FE values to Standard values

    破坏模式试件数量Pu/Pn
    AISIGBECAISC
    承压64组平均值1.001.181.361.06
    COV/(%)32525937
    剪切/承压-剪切60组平均值1.901.901.901.02
    COV/(%)5555
    注:螺钉抗剪强度为225 MPa[11]
    下载: 导出CSV
  • [1] 潘景龙. 自攻螺钉连接的抗剪性能研究[J]. 哈尔滨建筑大学学报, 1995, 28(6): 41 − 47.

    Pan Jinglong. A study on the shear behaviour of the self-tapping screw connection [J]. Journal of Harbin University of Architecture and Engineering, 1995, 28(6): 41 − 47. (in Chinese)
    [2] 郝际平, 刘斌, 邵大余, 等. 冷弯薄壁型钢结构体系中自攻螺钉连接的抗剪性能试验研究[J]. 西安建筑科技大学学报(自然科学版), 2014, 46(6): 769 − 773.

    Hao Jiping, Liu Bin, Shao Dayu, et al. Experimental study on shear behavior of screw connections in cold-formed thin-wall steel structures [J]. Journal of Xi’an University of Architecture & Technology (Social Sciences Edition), 2014, 46(6): 769 − 773. (in Chinese)
    [3] 石宇, 王身伟, 刘永健. 冷弯薄壁型钢单颗自攻螺钉抗剪连接性能研究[J]. 建筑科学与工程学报, 2014, 31(2): 57 − 64. doi: 10.3969/j.issn.1673-2049.2014.02.011

    Shi Yu, Wang Shenwei, Liu Yongjian. Research on the shear behavior of single tapping screw connection in cold-formed thin-walled steel structure [J]. Journal of Architecture and Civil Engineering, 2014, 31(2): 57 − 64. (in Chinese) doi: 10.3969/j.issn.1673-2049.2014.02.011
    [4] 李元齐, 潘斯勇. 自攻螺钉连接承载力研究现状[J]. 结构工程师, 2008, 24(6): 154 − 158. doi: 10.3969/j.issn.1005-0159.2008.06.030

    Li Yuanqi, Pan Siyong. Research progress on self-drilling screw connection capacity [J]. Structural Engineers, 2008, 24(6): 154 − 158. (in Chinese) doi: 10.3969/j.issn.1005-0159.2008.06.030
    [5] 卢林枫, 张亚平, 方文琦, 等. 冷弯薄壁型钢自攻螺钉连接抗剪性能试验研究及数值分析Ⅱ: 数值分析[J]. 中南大学学报(自然科学版), 2013, 44(8): 3493 − 3502.

    Lu Linfeng, Zhang Yaping, Fang Wenqi, et al. Experimental investigation and numerical analysis on shear-bearing capacity for self-drilling screw connections of cold-formed thin-walled steel Ⅱ: Numerical analysis [J]. Journal of Central South University (Science and Technology), 2013, 44(8): 3493 − 3502. (in Chinese)
    [6] 王小平, 房玉松. 自攻螺钉连接抗剪承载力的有限元建模方法[J]. 武汉大学学报(工学版), 2012, 45(1): 75 − 79.

    Wang Xiaoping, Fang Yusong. Finite element modeling method of anti-shear capacity of self-drilling screw connection [J]. Engineering Journal of Wuhan University, 2012, 45(1): 75 − 79. (in Chinese)
    [7] Feng R Q, Cai Q, Ma Y, et al. Shear analysis of self-drilling screw connections of CFS walls with steel sheathing [J]. Journal of Constructional Steel Research, 2020, 167(4): 105842.
    [8] Roy K, Lau H H, Ting T C H, et al. Experiments and finite element modelling of screw pattern of self-drilling screw connections for high strength cold-formed steel [J]. Thin Walled Structures, 2019, 145(12): 106393.
    [9] Huynh M T, Pham C H, Hancock G J. Experimental behaviour and modelling of screwed connections of high strength sheet steels in shear [J]. Thin-Walled Structures, 2020, 146(1): 106357.
    [10] Huynh M T, Pham C H, Hancock G J. Design of screwed connections in cold-formed steels in shear [J]. Thin-Walled Structures, 2020, 154(5): 106817.
    [11] 刘楠. 自攻螺钉连接抗剪性能及其设计方法的研究[D]. 黑龙江: 哈尔滨工业大学, 2007.

    Liu Nan. Research on shear behavior and design method of self-tapping screw connecting [D]. Heilongjiang: Harbin Institute of Technology, 2007. (in Chinese)
    [12] Zhou Lina, Chui Yinghei, Ni Chun. Influence of middle member thickness on properties of double-shear nail joints [J]. Journal of Structural Engineering, 2018, 144(8): 04018109. doi: 10.1061/(ASCE)ST.1943-541X.0002126
    [13] Varoglu E, Karacabeyli E, Stiemer S F, et al. Midply wood shear wall system: Concept and performance in static and cyclic testing [J]. Journal of Structural Engineering, 2006, 132(9): 1417 − 1425. doi: 10.1061/(ASCE)0733-9445(2006)132:9(1417)
    [14] Varoglu E, Karacabeyli E, Stiemer S F, et al. Midply wood shear wall system: Performance in dynamic testing [J]. Journal of Structural Engineering, 2007, 133(7): 1035 − 1042. doi: 10.1061/(ASCE)0733-9445(2007)133:7(1035)
    [15] Zheng W, Lu W D, Liu W Q, et al. Lateral loading behavior of glulam frame-midply hybrid lateral systems [J]. Construction and Building Materials, 2019, 220: 53 − 63. doi: 10.1016/j.conbuildmat.2019.05.182
    [16] Zheng W, Lu W D, Liu W Q, et al. Experimental investigation of laterally loaded double-shear-nail connections used in midply wood shear walls [J]. Construction and Building Materials, 2015, 101: 761 − 771. doi: 10.1016/j.conbuildmat.2015.10.100
    [17] 周绪红, 邹昱瑄, 徐磊, 等. 冷弯薄壁型钢-钢板剪力墙抗震性能试验研究[J]. 建筑结构学报, 2020(5): 65 − 75.

    Zhou Xuhong, Zou Yuxuan, Xu Lei, et al. Seismic behavior of cold-formed thin-walled steel plate shear wall [J]. Journal of Building Structures, 2020(5): 65 − 75. (in Chinese)
    [18] Brière V, Santos V, Colin A. Rogers. Cold-formed steel centre-sheathed (mid-ply) shear walls [J]. Soil Dynamics and Earthquake Engineering, 2018, 114(11): 253 − 266.
    [19] 周绪红, 姚欣梅, 石宇, 等. 六层足尺冷弯薄壁型钢钢板剪力墙结构房屋抗震性能振动台试验研究[J]. 土木与环境工程学报(中英文), 2020, 42(4): 203 − 204.

    Zhou Xuhong, Yao Xinmei, Shi Yu, et al. Shake table tests on seismic performance of six-storey full scale cold-formed steel-steel plate shear wall structure buildings [J]. Journal of Civil and Environmental Engineering, 2020, 42(4): 203 − 204. (in Chinese)
    [20] Yanagi N, Yu C. Effective strip method for the design of cold-formed steel framed shear wall with steel sheet sheathing [J]. Journal of Structural Engineering, 2013, 140(4): 04013101.
    [21] 曹春利, 孙志娟, 刘继良, 等. 低剪跨比的榫卯连接装配整体式剪力墙受力性能数值分析[J]. 工程力学, 2021, 38(增刊): 110 − 118. doi: 10.6052/j.issn.1000-4750.2020.05.S020

    Cao Chunli, Sun Zhijuan, Liu Jiliang, et al. Numerical analysis on mechanical behaviors of assembled monolithic concrete shear walls with mortise-tenon joints and low shear span ratio [J]. Engineering Mechanics, 2021, 38(Suppl): 110 − 118. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.S020
    [22] 张颖, 王元清, 张俊光, 等. 铝合金网壳结构箱型-工字型盘式节点单肢受力性能有限元分析[J]. 工程力学, 2020, 37(增刊): 130 − 138. doi: 10.6052/j.issn.1000-4750.2019.04.S021

    Zhang Ying, Wang Yuanqing, Zhang Junguang, et al. Finite element analysis on mechanical performance of single-limbed box-I section member temcor joints in aluminum alloy spatial reticulated shell structures [J]. Engineering Mechanics, 2020, 37(Suppl): 130 − 138. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S021
    [23] 张曼, 韩振林, 孙健, 等. 高温下自攻螺钉搭接连接薄钢板抗剪性能研究[J]. 建筑钢结构进展, 2020(5): 108 − 117.

    Zhang Man, Han Zhenlin, Sun Jian, et al. Research on the behavior of screwed shear lapped connections of thin steel sheet at elevated temperature [J]. Progress in Steel Building Structures, 2020(5): 108 − 117. (in Chinese)
    [24] 石宇, 周绪红, 管宇, 等. 冷弯薄壁型钢屋架受力性能及杆件计算长度研究[J]. 建筑结构学报, 2019, 40(11): 65 − 75.

    Shi Yu, Zhou Xuhong, Guan Yu, et al. Study on mechanical behavior and effective length of cold-formed thin-walled steel roof truss [J]. Journal of Building Structures, 2019, 40(11): 65 − 75. (in Chinese)
    [25] 施刚, 朱希. 高强度结构钢材单调荷载作用下的本构模型研究[J]. 工程力学, 2017, 34(2): 50 − 59. doi: 10.6052/j.issn.1000-4750.2015.09.0799

    Shi Gang, Zhu Xi. Study on constitutive model of high-strength structural steel under monotonic loading [J]. Engineering Mechanics, 2017, 34(2): 50 − 59. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.09.0799
    [26] 邓露, 钟玉婷, 杨远亮, 等. 冷弯薄壁型钢受弯构件承载力与延性优化研究[J]. 工程力学, 2021, 38(4): 93 − 101. doi: 10.6052/j.issn.1000-4750.2020.05.0327

    Deng Lu, Zhong Yuting, Yang Yuanliang, et al. Optimization on bearing capacity and ductility of cold-formed thin-walled steel flexural member [J]. Engineering Mechanics, 2021, 38(4): 93 − 101. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.0327
    [27] 蔡健, 巫博璘, 罗翼锋, 等. 新型双层钢板-混凝土组合剪力墙力学性能研究[J]. 工程力学, 2020, 37(10): 134 − 144. doi: 10.6052/j.issn.1000-4750.2019.10.0680

    Cai Jian, Wu Bolin, Luo Yifeng, et al. Mechanical behavior research of a new type of double-skin steel-concrete shear wall [J]. Engineering Mechanics, 2020, 37(10): 134 − 144. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.10.0680
    [28] Usefi N, Ronagh H, Sharafi P. Numerical modelling and design of hybrid cold-formed steel wall panels [J]. Thin-Walled Structures, 2020, 157(5): 107084.
    [29] AISI S100-2007, North American specification for the design of cold-formed steel structural members [S]. Washington, D. C. : American Iron and Steel Institute, 2007.
    [30] ANSI/AISC 360-16, Specification for structural steel buildings [S]. American Institute of Steel Construction, 2016.
    [31] GB 50018−2002, 冷弯薄壁型钢结构技术规范 [S]. 北京: 中国计划出版社, 2002.

    GB 50018−2002, Technical code of cold-formed thin-walled steel structures [S]. Beijing: China Planning Press, 2002. (in Chinese)
    [32] EN 1993-1-3: 2006, Eurocode 3, Design of steel structures - Part 1-3 General rules – Supplementary rules for cold-formed members and sheeting [S]. Brussels: The European Committee for Standardization, 2006.
    [33] Choung J, Shim C-S, Song H-C. Estimation of failure strain of EH36 high strength marine structural steel using average stress triaxiality [J]. Marine Structures, 2012, 29(1): 1 − 21. doi: 10.1016/j.marstruc.2012.08.001
    [34] 张雪丽, 张耀春. 基于ANSYS的自攻螺钉波峰连接的抗剪性能有限元分析[J]. 建筑钢结构进展, 2010, 12(2): 23 − 29.

    Zhang Xueli, Zhang Yaochun. Finite element analysis for shearing resistance of screw connections in crest-fixed profiled steel sheeting [J]. Progress in Steel Building Structures, 2010, 12(2): 23 − 29. (in Chinese)
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  220
  • HTML全文浏览量:  123
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-08
  • 修回日期:  2021-07-16
  • 网络出版日期:  2021-07-28
  • 刊出日期:  2022-09-01

目录

    /

    返回文章
    返回