留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CRTS Ⅱ型轨道板/CA砂浆界面内聚力模型研究

王军 卢朝辉 张玄一 赵衍刚

王军, 卢朝辉, 张玄一, 赵衍刚. CRTS Ⅱ型轨道板/CA砂浆界面内聚力模型研究[J]. 工程力学, 2022, 39(9): 72-80, 109. doi: 10.6052/j.issn.1000-4750.2021.05.0336
引用本文: 王军, 卢朝辉, 张玄一, 赵衍刚. CRTS Ⅱ型轨道板/CA砂浆界面内聚力模型研究[J]. 工程力学, 2022, 39(9): 72-80, 109. doi: 10.6052/j.issn.1000-4750.2021.05.0336
WANG Jun, LU Zhao-hui, ZHANG Xuan-yi, ZHAO Yan-gang. RESEARCH ON COHESIVE ZONE MODEL OF THE INTERFACE BETWEEN CRTS Ⅱ TRACK SLAB AND CA MORTAR[J]. Engineering Mechanics, 2022, 39(9): 72-80, 109. doi: 10.6052/j.issn.1000-4750.2021.05.0336
Citation: WANG Jun, LU Zhao-hui, ZHANG Xuan-yi, ZHAO Yan-gang. RESEARCH ON COHESIVE ZONE MODEL OF THE INTERFACE BETWEEN CRTS Ⅱ TRACK SLAB AND CA MORTAR[J]. Engineering Mechanics, 2022, 39(9): 72-80, 109. doi: 10.6052/j.issn.1000-4750.2021.05.0336

CRTS Ⅱ型轨道板/CA砂浆界面内聚力模型研究

doi: 10.6052/j.issn.1000-4750.2021.05.0336
基金项目: 国家自然科学基金项目(51820105014, 52108104)
详细信息
    作者简介:

    王 军(1992−),男,山东德州人,博士生,主要从事高速铁路无砟轨道结构服役性能演化机理研究(E-mail: wangjunturbo@163.com)

    张玄一(1991−),女,辽宁抚顺人,讲师,博士,主要从事结构可靠度及高铁结构服役安全研究(E-mail: zhangxuanyi@bjut.edu.cn)

    赵衍刚(1963−),男,山东淄博人,教授,博士,博导,主要从事结构可靠度与结构抗震研究(E-mail: zhao@kanagaw-u.ac.jp)

    通讯作者:

    卢朝辉(1976−),男,湖南永州人,教授,博士,博导,主要从事高速铁路工程结构服役可靠性研究(E-mail:luzhaohui@bjut.edu.cn)

  • 中图分类号: U213.2

RESEARCH ON COHESIVE ZONE MODEL OF THE INTERFACE BETWEEN CRTS Ⅱ TRACK SLAB AND CA MORTAR

  • 摘要: 轨道板与CA砂浆层间离缝是CRTS Ⅱ型板式无砟轨道结构的主要病害之一。为描述轨道板-CA砂浆层间界面本构行为、揭示层间离缝机理,该文提出了一种改进指数型界面内聚力模型,并基于理论分析和试验数据确定了改进模型的参数取值。该模型为含有指数系数的分段函数,可以表征层间界面拉力-位移关系的非线性特征。研究结果表明:改进指数型内聚力模型可以高效计算轨道板-CA砂浆界面内聚强度、损伤萌生时界面相对位移和界面临界断裂能,结果与试验值基本一致;改进指数型模型可以较为准确地模拟轨道板-CA砂浆界面的法向和切向开裂行为。
  • 图  1  桥上CRTS II板式无砟轨道结构

    Figure  1.  CRTS II slab ballastless track structure on bridge

    图  2  轨道板与CA砂浆层离缝

    Figure  2.  Gap between track slab and CA mortar layer

    图  3  双线性内聚力模型

    Figure  3.  Bilinear cohesive zone model (CZM)

    图  4  指数型内聚力模型

    Figure  4.  Exponential CZM

    图  5  双线性和指数型内聚力模型对比

    Figure  5.  Comparison of bilinear and exponential CZMs

    图  6  改进指数型内聚力模型

    Figure  6.  Improved exponential cohesive zone model

    图  7  本文所提模型拟合结果

    Figure  7.  Fitting results of the proposed model in this paper

    图  8  法向预测结果和试验数据对比

    Figure  8.  Comparison between normal prediction results and experimental data

    9  切向预测结果和试验数据对比

    9.  Comparison between tangential prediction results and experimental data

    表  1  几种内聚力模型拟合结果

    Table  1.   Fitting results of several cohesive zone models

    内聚力模型界面法向界面切向
    内聚强度
    $t_{\rm{n}}^0 $/MPa
    损伤萌生时界面
    相对位移$\delta _{\rm{n}}^0 $/μm
    刚度kn/
    (MPa/mm)
    临界断裂能
    $\phi_{\rm{n}} $/(J·m−2)
    内聚强度
    $t_{{\rm{s,t}}}^0 $/MPa
    损伤萌生时界面
    相对位移$\delta _{\rm{s,t}}^0 $/μm
    刚度ks,t/
    (MPa/mm)
    临界断裂能
    $\phi_{\rm{s,t}} $/(J·m−2)
    双线性[13]1.7922.5716.825.240.95615.262.917.96
    指数型[16]1.7922.512.200.95615.216.40
    文献[23]1.7922.5716.825.200.95615.262.918.00
    本文所提模型1.7922.5716.822.540.95615.218.70
    下载: 导出CSV
  • [1] Gautier P E. Slab track: Review of existing systems and optimization potentials including very high speed [J]. Construction and Building Materials, 2015, 92: 9 − 15. doi: 10.1016/j.conbuildmat.2015.03.102
    [2] Sadeghi J, Esmaeili M H. Effectiveness of track stiffness reduction in attenuation of metro induced vibrations received by historical buildings [J]. Latin American Journal of Solids and Structures, 2018, 15(11): 1 − 11.
    [3] 赵国堂, 高亮, 赵磊, 等. CRTS Ⅱ 型板式无砟轨道板下离缝动力影响分析及运营评估[J]. 铁道学报, 2017, 39(1): 1 − 10.

    Zhao Guotang, Gao Liang, Zhao Lei, et al. Analysis of dynamic effect of gap under CRTS Ⅱ track slab and operation evaluation [J]. Journal of the China Railway Society, 2017, 39(1): 1 − 10. (in Chinese)
    [4] 何川. CRTS Ⅱ 型板式无砟轨道砂浆离缝的影响及维修指标研究[D]. 成都: 西南交通大学, 2013.

    He Chuan. Study on influence of interface connections damage and maintenance index of the CRTS Ⅱ slab track [D]. Chendu: Southwest Jiaotong University, 2013. (in Chinese)
    [5] 戴公连, 粟淼. 剪切荷载下板式无砟轨道界面黏结破坏机理[J]. 华中科技大学学报(自然科学版), 2016, 44(1): 16 − 21.

    Dai Gonglian, Su Miao. Mechanism of interfacial bond failure for slab ballastless track under shear loading [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2016, 44(1): 16 − 21. (in Chinese)
    [6] 黄丹, 章青, 乔丕忠, 等. 近场动力学方法及其应用[J]. 力学进展, 2010, 40(4): 448 − 459. doi: 10.6052/1000-0992-2010-4-J2010-002

    Huang Dan, Zhang Qing, Qiao Pizhong, et al. A review on peridynamics (PD) method and its applications [J]. Advances in Mechanics, 2010, 40(4): 448 − 459. (in Chinese) doi: 10.6052/1000-0992-2010-4-J2010-002
    [7] 李录贤, 王铁军. 扩展有限元法(XFEM)及其应用[J]. 力学进展, 2005, 35(1): 5 − 20. doi: 10.3321/j.issn:1000-0992.2005.01.002

    Li Luxian, Wang Tiejun. The extended finite element method and its applications-a review [J]. Advances in Mechanics, 2005, 35(1): 5 − 20. (in Chinese) doi: 10.3321/j.issn:1000-0992.2005.01.002
    [8] 卢子兴. 复合材料界面的内聚力模型及其应用[J]. 固体力学学报, 2015, 36(增刊 1): 85 − 94.

    Lu Zixing. A simple review for cohesive zone models of composite interface and their applications [J]. Chinese Journal of Solid Mechanics, 2015, 36(Suppl 1): 85 − 94. (in Chinese)
    [9] 张豪, 于继东, 裴晓阳, 等. 相场断裂方法发展概况[J]. 高压物理学报, 2019, 33(3): 1 − 12.

    Zhang Hao, Yu Jidong, Pei Xiaoyang, et al. An overview of phase field approach to fracture [J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 1 − 12. (in Chinese)
    [10] Barenblatt G I. The formation of equilibrium cracks during brittle fracture: general ideas and hypotheses, axially symmetric cracks [J]. Advances in Applied Mechanics, 1959, 23(3): 622 − 636.
    [11] Dugdale D S. Yielding of steel sheets containing slits [J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100 − 104. doi: 10.1016/0022-5096(60)90013-2
    [12] Mi Y, Crisfield M A, Davies G A O, et al. Progressive delamination using interface elements [J]. Journal of Composite Materials, 1998, 32(14): 1246 − 1272. doi: 10.1177/002199839803201401
    [13] Camanho P P, Davila C G, De Moura M F. Numerical simulation of mixed-mode progressive delamination in composite materials [J]. Journal of Composite Materials, 2003, 37(16): 1415 − 1438. doi: 10.1177/0021998303034505
    [14] Rose J H, Ferrante J, Smith J R. Universal binding energy curves for metals and bimetallic interfaces [J]. Physics Review Letters, 1981, 47(9): 675 − 678. doi: 10.1103/PhysRevLett.47.675
    [15] Rice J R. Dislocation nucleation from a crack tip: an analysis based on the peierls concept [J]. Journal of the Mechanics and Physics of Solids, 1992, 40(2): 239 − 271. doi: 10.1016/S0022-5096(05)80012-2
    [16] Xu X P, Needleman A. Numerical simulations of fast crack growth in brittle solids [J]. Journal of the Mechanics and Physics of Solids, 1994, 42(9): 1397 − 1434. doi: 10.1016/0022-5096(94)90003-5
    [17] Bosch M J V D, Schreurs P J G, Geers M G D. An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion [J]. Engineering Fracture Mechanics, 2006, 73(9): 1220 − 1234. doi: 10.1016/j.engfracmech.2005.12.006
    [18] Tvergaard V, Hutchinson J W. The influence of plasticity on mixed mode interface toughness [J]. Journal of the Mechanics and Physics of Solids, 1993, 41(6): 1119 − 1135. doi: 10.1016/0022-5096(93)90057-M
    [19] 吴业飞, 陈伟球. 基于内聚力模型的FRP-混凝土粘结强度分析[J]. 工程力学, 2010, 27(7): 113 − 119.

    Wu Yefei, Chen Weiqiu. Cohesive zone model based analysis of bond strength between FRP and concrete [J]. Engineering Mechanics, 2010, 27(7): 113 − 119. (in Chinese)
    [20] Park K, Paulino G H, Roesler J R. A unified potential-based cohesive model of mixed-mode fracture [J]. Journal of the Mechanics and Physics of Solids, 2009, 57(6): 891 − 908. doi: 10.1016/j.jmps.2008.10.003
    [21] 张振宇, 万璐, 冯吉利. 带有橡胶垫层的混凝土接触特性试验及其内聚力模型[J]. 工程力学, 2018, 35(8): 55 − 66. doi: 10.6052/j.issn.1000-4750.2017.03.0239

    Zhang Zhenyu, Wan Lu, Feng Jili. Characteristics of direct shear test for plain concrete joint with rubber and its cohesive zone model [J]. Engineering Mechanics, 2018, 35(8): 55 − 66. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.03.0239
    [22] 王明昃. 高速铁路列车荷载-环境复合作用下双块式无砟轨道层间粘结失效行为分析[D]. 成都: 西南交通大学, 2018.

    Wang Mingze. Interface failure analysis of double-block ballastless track in high-speed railway under joint actions of train and environment loads [D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
    [23] 刘学毅, 苏成光, 刘丹, 等. 轨道板与砂浆粘结试验及内聚力模型参数研究[J]. 铁道工程学报, 2017, 34(3): 22 − 28. doi: 10.3969/j.issn.1006-2106.2017.03.005

    Liu Xueyi, Su Chengguang, Liu Dan, et al. Research on the bond properties between slab and CA mortar and the parameters study of cohesive model [J]. Journal of Railway Engineering Society, 2017, 34(3): 22 − 28. (in Chinese) doi: 10.3969/j.issn.1006-2106.2017.03.005
    [24] Dai G L, Su M. Full-scale field experimental investigation on the interfacial shear capacity of continuous slab track structure [J]. Archives of Civil and Mechanical Engineering, 2016, 16(3): 485 − 493. doi: 10.1016/j.acme.2016.03.005
    [25] 赵春发, 刘建超, 毛海和, 等. 温度梯度荷载作用下CRTS Ⅱ 型板式无砟轨道砂浆层界面损伤分析[J]. 中国科学: 技术科学, 2018, 48(1): 79 − 86. doi: 10.1360/N092017-00254

    Zhao Chunfa, Liu Jianchao, Mao Haihe, et al. Interface damage analysis of CA mortar layer of the CRTS Ⅱ ballastless slab track under temperature gradient loads [J]. Scintia Sinica Technologica, 2018, 48(1): 79 − 86. (in Chinese) doi: 10.1360/N092017-00254
    [26] Zhang Y R, Wu K, Gao L, et al. Study on the interlayer debonding and its effects on the mechanical properties of CRTS Ⅱ slab track based on viscoelastic theory [J]. Construction and Building Materials, 2019, 224(10): 387 − 407.
    [27] 钟阳龙, 高亮, 王璞, 等. 温度荷载下CRTS II 型轨道板与CA砂浆界面剪切破坏机理[J]. 工程力学, 2018, 35(2): 230 − 238. doi: 10.6052/j.issn.1000-4750.2016.09.0753

    Zhong Yanglong, Gao Liang, Wang Pu, et al. Mechanism of interfacial shear failure between CRTS II slab and CA mortar under temperature loading [J]. Engineering Mechanics, 2018, 35(2): 230 − 238. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.09.0753
    [28] 陈龙, 陈进杰, 王建西. CRTS Ⅱ 型板式无砟轨道层间传力规律及离缝破坏研究[J]. 铁道学报, 2018, 40(8): 130 − 138. doi: 10.3969/j.issn.1001-8360.2018.08.017

    Chen Long, Chen Jinjie, Wang Jianxi. Study on stress transfer and interface damage of CRTS Ⅱ slab ballastless track [J]. Journal of the China Railway Society, 2018, 40(8): 130 − 138. (in Chinese) doi: 10.3969/j.issn.1001-8360.2018.08.017
    [29] Zhu S Y, Cai C B. Interface damage and its effect on vibrations of slab track under temperature and vehicle dynamic loads [J]. International Journal of Non-Linear Mechanics, 2014, 58: 222 − 232. doi: 10.1016/j.ijnonlinmec.2013.10.004
    [30] 钟阳龙. CRTS Ⅱ 型无砟轨道板-砂浆层层间开裂机理及控制研究[D]. 北京: 北京交通大学, 2018.

    Zhong Yanglong. Research on the interface cracking of CRTS Ⅱ ballastless track slab-mortar layer and its control [D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese)
    [31] Hillerborg A, Modeer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements [J]. Cement and Concrete Research, 1976, 6(6): 773 − 781. doi: 10.1016/0008-8846(76)90007-7
    [32] Yamakov V, Saether E, Phillips D R, et al. Molecular-dynamics simulation-based cohesive zone representation of intergranular fracture processes in aluminum [J]. Journal of the Mechanics and Physics of Solids, 2006, 54(9): 1899 − 1928. doi: 10.1016/j.jmps.2006.03.004
    [33] Liu P F, Islam M M. A nonlinear cohesive model for mixed-mode delamination of composite laminates [J]. Composite Structures, 2013, 106: 47 − 56. doi: 10.1016/j.compstruct.2013.05.049
    [34] Elices M, Guinea G V, Gomez J, et al. The cohesive zone model: Advantages, limitations and challenges [J]. Engineering Fracture Mechanics, 2002, 69(2): 137 − 163. doi: 10.1016/S0013-7944(01)00083-2
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  82
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-07
  • 录用日期:  2022-02-28
  • 修回日期:  2022-01-22
  • 网络出版日期:  2022-02-28
  • 刊出日期:  2022-09-01

目录

    /

    返回文章
    返回