留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于概率的高层建筑地震需求模型与风险评估

郑晓伟 李宏男 张营营 尹世平

郑晓伟, 李宏男, 张营营, 尹世平. 基于概率的高层建筑地震需求模型与风险评估[J]. 工程力学, 2022, 39(9): 31-39. doi: 10.6052/j.issn.1000-4750.2021.05.0329
引用本文: 郑晓伟, 李宏男, 张营营, 尹世平. 基于概率的高层建筑地震需求模型与风险评估[J]. 工程力学, 2022, 39(9): 31-39. doi: 10.6052/j.issn.1000-4750.2021.05.0329
ZHENG Xiao-wei, LI Hong-nan, ZHANG Ying-ying, YIN Shi-ping. PROBABILISTIC SEISMIC DEMAND MODELS AND RISK ASSESSMENT FOR HIGH-RISE BUILDINGS[J]. Engineering Mechanics, 2022, 39(9): 31-39. doi: 10.6052/j.issn.1000-4750.2021.05.0329
Citation: ZHENG Xiao-wei, LI Hong-nan, ZHANG Ying-ying, YIN Shi-ping. PROBABILISTIC SEISMIC DEMAND MODELS AND RISK ASSESSMENT FOR HIGH-RISE BUILDINGS[J]. Engineering Mechanics, 2022, 39(9): 31-39. doi: 10.6052/j.issn.1000-4750.2021.05.0329

基于概率的高层建筑地震需求模型与风险评估

doi: 10.6052/j.issn.1000-4750.2021.05.0329
基金项目: 中央高校基本科研业务费专项资金项目(2021-11044)
详细信息
    作者简介:

    李宏男(1957−),男,辽宁沈阳人,教授,博士,主要从事工程结构振动及防灾减灾研究(E-mail: hnli@dlut.edu.cn)

    张营营(1985−),男,山东潍坊人,教授,博士,主要从事膜结构性能研究(E-mail: zhangyingying85@163.com)

    尹世平(1978−),男,山东高密人,教授,博士,从事纤维编织网增强混凝土及其工程应用研究(E-mail: yinshiping2821@163.com)

    通讯作者:

    郑晓伟(1990−),男,山东青岛人,讲师,博士,主要从事工程结构多灾害效应与韧性评估研究(E-mail: xwz217@163.com)

  • 中图分类号: TU312

PROBABILISTIC SEISMIC DEMAND MODELS AND RISK ASSESSMENT FOR HIGH-RISE BUILDINGS

  • 摘要: 提出了基于贝叶斯理论的地震风险评估方法,综合考虑了地震危险性模型、输入地震动记录、结构参数和需求模型的不确定性,并以云南大理地区1970年−2017年间的地震数据为研究基础进行了详细讨论。在传统基于概率地震危险性分析方法的基础上,提出了基于贝叶斯理论的地震危险性分析方法,通过贝叶斯更新准则,确定了地震概率模型中未知参数的后验概率分布;通过贝叶斯理论建立了基于概率的地震需求模型,并在易损性中考虑了需求模型认知不确定性的影响;以42层钢框架-RC核心筒建筑为例,开展了地震作用下的风险评估。研究表明:基于贝叶斯理论的地震危险性分析方法,能够获得更为合理的危险性模型;忽略需求模型中参数不确定性的影响,将错误估计结构的地震易损性;不同加载工况将对高层建筑的地震风险产生显著影响。提出的概率风险评估方法,提供了可以考虑固有不确定性和认知不确定性的有效途径,有助于推动高性能结构地震韧性评价和设计理论的发展。
  • 图  1  震中距-震级分布图

    Figure  1.  The distribution of epicentral distance-magnitude

    图  2  关于峰值加速度的地震危险性曲线

    Figure  2.  Seismic hazard curve of PGA

    图  3  高层钢框架-RC核心筒建筑的布置图

    Figure  3.  The layout of the high-rise steel frame-RC core tube building

    图  4  地震动记录响应谱与目标谱对比

    Figure  4.  Comparison of the response and target spectra

    图  5  地震需求模型

    Figure  5.  Seismic demand model

    图  6  考虑需求模型不确定性与否的地震易损性

    Figure  6.  Fragility curves with and without uncertainty in demand models

    图  7  地震易损性曲线

    Figure  7.  Seismic fragility curves

    图  8  地震作用下的年破坏概率

    Figure  8.  Seismic-induced annual damage probability

    图  9  地震作用下的总破坏概率

    Figure  9.  Seismic-induced total annual damage probability

    表  1  PGA概率模型未知参数的后验估计值

    Table  1.   Posterior statistics of unknown parameters in the probability distribution of PGA

    参数平均值标准差相关系数矩阵
    θm1θm2σm
    样本Iθ111.1980.0201.00
    θ120.7990.0130.681.00
    σ10.0051.5×10−40.010.021.00
    样本IIθ211.2130.0161.00
    θ220.7590.0100.631.00
    σ20.0051.3×10−40.010.011.00
    下载: 导出CSV

    表  2  极限状态及其量化

    Table  2.   Damage levels and limit states

    破坏水平极限状态侧移角/(%)
    轻微破坏DS-1>0.2
    轻度破坏DS-2>0.5
    中度破坏DS-3>0.7
    重度破坏DS-4>1.5
    严重破坏DS-5>2.5
    倒塌破坏DS-6>5.0
    下载: 导出CSV

    表  3  需求模型中参数的后验估计值

    Table  3.   Posterior statistics of the parameters in the demand model

    参数平均值标准差相关系数矩阵
    θk1θk2σk
    沿X轴加载θX1−4.5720.1171.00
    θX20.7330.0620.791.00
    σX0.7360.0520.010.021.00
    沿Y轴加载θY1−4.7480.1121.00
    θY20.7110.0610.791.00
    σY0.6810.0480.030.021.00
    下载: 导出CSV
  • [1] 郑晓伟. 高层建筑在地震和强风耦合作用下的风险分析与荷载系数修正[D]. 大连: 大连理工大学, 2020.

    Zheng Xiaowei. Risk assessment and load modification factor of high-rise buildings subject to earthquakes and strong winds [D]. Dalian: Dalian University of Technology, 2020. (in Chinese)
    [2] 任重翠, 李建辉, 唐意, 等. 风震联合作用下高层建筑主体结构和玻璃幕墙的性能研究[J]. 工程力学, 2022, 39(7): 58 − 69. doi: 10.6052/j.issn.1000-4750.2021.03.0223

    Ren Chongcui, Li Jianhui, Tang Yi, et al. Performance study of main structure and of glass curtain wall on high-rise building under the coupling action of wind and earthquake [J]. Engineering Mechanics, 2022, 39(7): 58 − 69. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.03.0223
    [3] 方小丹, 韦宏, 刘庆辉. 钢管高强混凝土剪力墙抗震性能试验研究[J]. 建筑结构学报, 2015, 36(9): 1 − 8.

    Fang Xiaodan, Wei Hong, Liu Qinghui. Expermental study on seismic behavior of shear walls with steel tube-confined high strength concrete [J]. Journal of Building Structures, 2015, 36(9): 1 − 8. (in Chinese)
    [4] 刘良坤, 谭平, 潘兆东, 等. 新型连体结构控制体系的减震性能研究[J]. 土木工程学报, 2020, 53(增刊 2): 204 − 210.

    Liu Liangkun, Tan Ping, Pan Zhaodong, et al. Research on the damping performance of a novel control system of the connected structure [J]. China Civil Engineering Journal, 2020, 53(Suppl 2): 204 − 210. (in Chinese)
    [5] Zheng Xiaowei, Li Hongnan, Gardoni Paolo. Life-cycle probabilistic seismic risk assessment of high-rise buildings considering carbonation induced deterioration [J]. Engineering Structures, 2021, 231: 111752. doi: 10.1016/j.engstruct.2020.111752
    [6] Cornell C A. Engineering seismic risk analysis [J]. Bulletin of the Seismological Society of America, 1968, 58(11): 183 − 188.
    [7] 高小旺, 鲍霭斌. 地震作用的概率模型及其统计参数[J]. 地震工程与工程振动, 1985, 5(1): 13 − 22.

    Gao Xiaowang, Bao Aibin. Probabilistic model and its statictical parameters for seismic load [J]. Earthquake Engineeing and Engineering Vibration, 1985, 5(1): 13 − 22. (in Chinese)
    [8] Ludwig K A, Ramsey D W, Wood N J, et al. Science for a risky world—A U.S. geological survey plan for risk research and applications [R]. Reston, VA: U.S. Geological Survey Circular 1444, 2018. https://doi.org/10.3133/cir1444
    [9] GB 50011−2016, 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2016.

    GB 50011−2016, Code for seismic design of buildings [S]. Beijing: China Architecture and Building Press, 2016. (in Chinese)
    [10] Zheng Xiaowei, Li Hongnan, Yang Yongbin, et al. Damage risk assessment of a high-rise building against multihazard of earthquake and strong wind with recorded data [J]. Engineering Structures, 2019, 200: 109697. doi: 10.1016/j.engstruct.2019.109697
    [11] Li Hongnan, Zheng Xiaowei, Li Chao. Copula-based approach to construct a joint probabilistic model of earthquake and strong winds [J]. International Journal of Structural Stability and Dynamics, 2019, 19(4): 1950046. doi: 10.1142/S0219455419500469
    [12] 周爽爽, 印兴耀, 裴松, 等. 地震波形约束的蒙特卡洛—马尔科夫链随机反演方法[J]. 石油地球物理勘探, 2021, 56(3): 543 − 554, 592.

    Zhou Shuangshuang, Yin Xingyao, Pei Song, et al. Monte Carlo-Markov Chain stochastic inversion constrained by seismic waveform [J]. Oil Geophysical Prospecting, 2021, 56(3): 543 − 554, 592. (in Chinese)
    [13] Wang J P, Chang S C, Wu Y M, et al. Bayesian analysis on earthquake magnitude related to an active fault in Taiwan [J]. Soil Dynamics & Earthquake Engineering, 2015, 75: 18 − 26.
    [14] Baker J W, Gupta A. Bayesian treatment of induced seismicity in probabilistic seismic-hazard analysis [J]. Bulletin of the Seismological Society of America, 2016, 106: 860 − 870.
    [15] 温卫平, 籍多发, 刘惠华, 等. 考虑倒塌储备的近断层区域RC框架结构抗震设计方法[J]. 建筑结构学报, 2022, 43(4): 1 − 7. doi: 10.14006/j.jzjgxb.2020.0304

    Wen Weiping, Ji Duofa, Liu Huihua, et al. Seismic design method of RC frame structures at near-fault region considering the collapse margin [J]. Journal of Building Structures, 2022, 43(4): 1 − 7. (in Chinese) doi: 10.14006/j.jzjgxb.2020.0304
    [16] Mosallam A, Zirakian T, Abdelaal A. Performance assessment of steel moment-resisting frame structures using fragility methodology [J]. Journal of Earthquake Engineering, 2017, 144(3): 04017220.
    [17] 周颖, 单慧伟, 邢丽丽, 等. 地震和风耦合作用下上海中心大厦结构易损性研究[J]. 世界地震工程, 2020, 36(2): 1 − 11.

    Zhou Ying, Shan Huiwei, Xing Lili, et al. Study on vulnerability of Shanghai tower under combined actions of wind and earthquake [J]. World Earthquake Engineering, 2020, 36(2): 1 − 11. (in Chinese)
    [18] 孔思华, 石菲, 周云. 不同极限位移BRB的RC框架结构抗地震倒塌性能研究[J]. 土木工程学报, 2020, 53(增刊 2): 61 − 67.

    Kong Sihua, Shi Fei, Zhou Yun. Study on seismic collapse performance of RC frame structures with different ultimate displacement BRB [J]. China Civil Engineering Journal, 2020, 53(Suppl 2): 61 − 67. (in Chinese)
    [19] 李应斌, 刘伯权, 史庆轩. 结构的性能水准与评价指标[J]. 世界地震工程, 2003, 19(2): 132 − 137. doi: 10.3969/j.issn.1007-6069.2003.02.024

    Li Yingbin, Liu Boquan, Shi Qingxuan. Performance levels and estimation indices of structures [J]. World Earthquake Engineering, 2003, 19(2): 132 − 137. (in Chinese) doi: 10.3969/j.issn.1007-6069.2003.02.024
    [20] 李宏男, 成虎, 王东升. 桥梁结构地震易损性研究进展述评[J]. 工程力学, 2018, 35(9): 1 − 16. doi: 10.6052/j.issn.1000-4750.2017.04.0280

    Li Hongnan, Cheng Hu, Wang Dongsheng. A review of advances in seismic fragility research on bridge structures [J]. Engineering Mechanics, 2018, 35(9): 1 − 16. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.04.0280
    [21] Ang A H, Tang W H. Probability concepts in engineering planning: Emphasis on applications to civil and environmental engineering [M]. 2nd ed. New York: John Wiley and Sons, 2006.
    [22] 叶继红, 江力强. 考虑多重不确定性的我国多层冷成型钢结构地震风险评估[J]. 土木工程学报, 2021, 54(2): 74 − 83, 126.

    Ye Jihong, Jiang Liqiang. Seismic risk assessment of mid-rise cold-formed steel structures in China considering various uncertainties [J]. China Civil Engineering Journal, 2021, 54(2): 74 − 83, 126. (in Chinese)
    [23] 于晓辉. 钢筋混凝土框架结构的概率地震易损性与风险分析[D]. 哈尔滨: 哈尔滨工业大学, 2012.

    Yu Xiaohui. Probabilistic seismic fragility and risk analysis of reinforced concrete frame structures [D]. Harbin: Harbin Institute of Technology, 2012. (in Chinese)
    [24] Kwon O S, Elnashai A. The effect of material and ground motion uncertainty on the seismic vulnerability curves of RC structure [J]. Engineering Structures, 2006, 28(2): 289 − 303. doi: 10.1016/j.engstruct.2005.07.010
    [25] Choudhury T, Kaushik H B. Seismic response sensitivity to uncertain variables in RC frames with infill walls [J]. Journal of Structural Engineering, 2018, 144(100): 04018184-1 − 04018184-16.
    [26] O'reilly G J, Sullivan T J. Quantification of modelling uncertainty in existing Italian RC frames [J]. Earthquake Engineering & Structural Dynamics, 2018, 47(4): 1054 − 1074.
    [27] 蒋亦庞, 苏亮, 黄鑫. 考虑参数不确定性的无筋砌体结构地震易损性分析[J]. 工程力学, 2020, 37(1): 159 − 167. doi: 10.6052/j.issn.1000-4750.2019.01.0068

    Jiang Yipang, Su Liang, Huang Xin. Seismic fragility analysis of unreinforced masonry structures considering parameter uncertainties [J]. Engineering Mechanics, 2020, 37(1): 159 − 167. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.01.0068
    [28] Gardoni P, Der Kiureghian A, Mosalam K M. Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations [J]. Journal of Engineering Mechanics, 2002, 128(10): 1024 − 1038. doi: 10.1061/(ASCE)0733-9399(2002)128:10(1024)
    [29] Gardoni P, Mosalam K M, Der Kiureghian A. Probabilistic seismic demand models and fragility estimates for RC bridges [J]. Journal of Earthquake Engineering, 2003, 7(Suppl 1): 79 − 106.
    [30] 张进国, 王洋, 徐龙军. 基于性态设计的钢筋混凝土结构地震易损性分析[J]. 哈尔滨工程大学学报, 2018, 39(10): 1598 − 1604.

    Zhang Jinguo, Wang Yang, Xu Longjun. Seismic fragility analysis of RC frame structure based on performance design [J]. Journal of Harbin Engineering University, 2018, 39(10): 1598 − 1604. (in Chinese)
    [31] Box G E, Tiao G C. Bayesian inference in statistical analysis [M]. New Jersey, USA: John Wiley & Sons, 1992.
    [32] Gelman A, Carlin J B, Stern H S, et al. Bayesian data analysis [M]. 3rd ed. New York: Chapman & Hall, 2020.
    [33] Cornell C A, Banon H, Shakal A F. Seismic motion and response prediction alternatives [J]. Earthquake Engineering & Structural Dynamics, 1979, 7(4): 295 − 315.
    [34] Xu Y, Tang X S, Wang J P, et al. Copula-based joint probability function for PGA and CAV: A case study from Taiwan [J]. Earthquake Engineering & Structural Dynamics, 2016, 45(13): 2123 − 2136.
    [35] Baker J. Probabilistic seismic hazard analysis [R]. White Paper Version 2.0, 2013: 79.
    [36] Gutenberg B, Richter C F. Frequency of earthquakes in California [J]. Bulletin of the Seismological Society of America, 1944, 34(4): 185 − 188. doi: 10.1785/BSSA0340040185
    [37] Roshan A D, Basu P C. Application of PSHA in low seismic region: A case study on NPP site in peninsular India [J]. Nuclear Engineering & Design, 2010, 240(10): 3443 − 3454.
    [38] 程诗焱, 韩建平, 于晓辉, 等. 基于BP神经网络的RC框架结构地震易损性曲面分析: 考虑地震动强度和持时的影响[J]. 工程力学, 2021, 38(12): 107 − 117. doi: 10.6052/j.issn.1000-4750.2020.11.0837

    Cheng Shiyan, Han Jianping, Yu Xiaohui, et al. Seismic fragility surface analysis of RC frame structures based on BP neural networks: Accounting for the effects of ground motion intensity and duration [J]. Engineering Mechanics, 2021, 38(12): 107 − 117. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0837
    [39] Cornell C A, Jalayer F, Hamburger R O, et al. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines [J]. Journal of Structural Engineering, 2002, 128(4): 526 − 533. doi: 10.1061/(ASCE)0733-9445(2002)128:4(526)
    [40] GB 50009−2012, 建筑结构荷载规范[S]. 北京: 中国建筑工业出版社, 2012.

    GB 50009−2012, Load code for the design of building structures [S]. Beijing: China Architecture and Building Press, 2012. (in Chinese)
    [41] Olsson A, Sandberg G, Dahlblom O. On Latin hypercube sampling for structural reliability analysis [J]. Structural Safety, 2003, 25(1): 47 − 68. doi: 10.1016/S0167-4730(02)00039-5
    [42] 陈笑宇, 王东升, 付建宇, 等. 近断层地震动脉冲特性研究综述[J]. 工程力学, 2021, 38(8): 1 − 14, 54. doi: 10.6052/j.issn.1000-4750.2020.08.0582

    Chen Xiaoyu, Wang Dongsheng, Fu Jianyu, et al. State-of-the-art review on pulse characteristics of near-fault ground motions [J]. Engineering Mechanics, 2021, 38(8): 1 − 14, 54. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0582
    [43] Der Kiureghian A. Non‐ergodicity and PEER's framework formula [J]. Earthquake Engineering & Structural Dynamics, 2005, 34(13): 1643 − 1652.
    [44] Eads L, Miranda E, Krawinkler H, et al. An efficient method for estimating the collapse risk of structures in seismic regions [J]. Earthquake Engineering & Structural Dynamics, 2013, 42(1): 25 − 41.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  231
  • HTML全文浏览量:  74
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-04
  • 修回日期:  2021-08-04
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2022-09-01

目录

    /

    返回文章
    返回