留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型激励下调谐质量惯容系统TMIS的轻量化结构控制

张瑞甫 曹嫣如 潘超 胡岫岩

张瑞甫, 曹嫣如, 潘超, 胡岫岩. 典型激励下调谐质量惯容系统TMIS的轻量化结构控制[J]. 工程力学, 2022, 39(9): 58-71. doi: 10.6052/j.issn.1000-4750.2021.05.0328
引用本文: 张瑞甫, 曹嫣如, 潘超, 胡岫岩. 典型激励下调谐质量惯容系统TMIS的轻量化结构控制[J]. 工程力学, 2022, 39(9): 58-71. doi: 10.6052/j.issn.1000-4750.2021.05.0328
ZHANG Rui-fu, CAO Yan-ru, PAN Chao, HU Xiu-yan. LIGHTWEIGHT STRUCTURAL CONTROL BASED ON TUNED MASS INERTER SYSTEM (TMIS) UNDER TYPICAL EXCITATION[J]. Engineering Mechanics, 2022, 39(9): 58-71. doi: 10.6052/j.issn.1000-4750.2021.05.0328
Citation: ZHANG Rui-fu, CAO Yan-ru, PAN Chao, HU Xiu-yan. LIGHTWEIGHT STRUCTURAL CONTROL BASED ON TUNED MASS INERTER SYSTEM (TMIS) UNDER TYPICAL EXCITATION[J]. Engineering Mechanics, 2022, 39(9): 58-71. doi: 10.6052/j.issn.1000-4750.2021.05.0328

典型激励下调谐质量惯容系统TMIS的轻量化结构控制

doi: 10.6052/j.issn.1000-4750.2021.05.0328
基金项目: 国家自然科学基金项目(51978525);政府间国际科技创新合作项目(2021YFE0112200)
详细信息
    作者简介:

    曹嫣如(1996−),女,江苏人,硕士生,主要从事工程结构振动控制研究(E-mail: 1832596@tongji.edu.cn)

    潘 超(1985−),男,山东人,副教授,博士,硕导,主要从事工程结构振动控制研究(E-mail: panchao@ytu.edu.cn)

    胡岫岩(1987−),男,上海人,讲师,博士,主要从事建筑结构抗震研究(E-mail: hxy@sit.edu.cn)

    通讯作者:

    张瑞甫(1980−),男,陕西人,副教授,博士,博导,主要从事工程结构振动控制研究(E-mail: zhangruifu@tongji.edu.cn)

  • 中图分类号: TU318

LIGHTWEIGHT STRUCTURAL CONTROL BASED ON TUNED MASS INERTER SYSTEM (TMIS) UNDER TYPICAL EXCITATION

  • 摘要: 经典调谐质量减振系统往往需要较大的附加质量和相应的额外安装空间,为其实际使用带来不便。惯容系统是一种新型的高效振动控制装置,具有两端点惯性、表观质量增效和耗能增效等特性,其中表观质量增效特性可以实现轻量化结构振动控制。该文聚焦具有轻量化控制特征的广义调谐质量惯容减振系统(Tuned mass inerter system, TMIS),陈述其基本原理与典型拓扑形式。考虑地震作用、风荷载与人致激励三种典型动力激励,提出适用于广义TMIS的基于性能需求的优化设计方法获得惯容系统的参数,在使结构满足性能目标的同时降低所需调谐质量的大小。通过与经典调谐质量减振系统进行对比,说明调谐质量惯容系统的轻量化减振控制优势,并通过典型案例及其动力响应分析加以验证。研究表明:TMIS是一种高效的结构振动控制装置,在多种典型灾害下均能有效实现结构减振控制的性能目标与减小调谐质量需求的轻量化目标,为结构振动控制问题的解决提供了便利的新选择。
  • 图  1  两端点加速度相关型结构控制元件——惯容

    Figure  1.  Two-terminal acceleration related structural control element -- inerter

    图  2  附加旋转惯性双调谐质量阻尼器(RIDTMD)的单自由度体系示意图

    Figure  2.  SDOF system with RIDTMD

    图  3  附加调谐质量阻尼惯容系统(TMDI)的单自由度体系示意图

    Figure  3.  SDOF system with TMDI

    图  4  广义调谐质量惯容系统(TMIS)

    Figure  4.  Generalized tuned mass inerter system (TMIS)

    图  5  附加TMD单自由度体系的力学模型

    Figure  5.  SDOF systems with TMD

    图  6  本文所示例的两类TMIS的力学模型

    Figure  6.  Mechanical models of two types of TMIS applicated in this research

    图  7  附加TMIS单自由度体系力学模型

    Figure  7.  Mechanical model of TMIS based SDOF system

    图  8  风荷载功率谱

    Figure  8.  PSD of wind load

    图  9  人致激励时程曲线

    Figure  9.  Time history curve of human-induced excitation

    图  10  TMIS参数设计流程图

    Figure  10.  Flow chart for parameter design of TMIS

    图  11  地震作用下附加质量比一定时附加TMD和TMIS单自由度结构的最优减震比

    Figure  11.  Vibration mitigation ratio of SDOF systems with TMD and TMIS under seismic excitation

    图  12  地震作用下附加质量比一定时TMIS的性能优化参数

    Figure  12.  Optimal parameters of TMIS with different additional mass ratio under seismic excitation

    图  13  地震作用下附加TMD与TMIS的单自由度结构的位移传递函数

    Figure  13.  Displacement transfer function of SDOF systems with TMD and TMIS under seismic excitation

    图  14  白噪声激励下附加TMIS单自由度结构的位移响应

    Figure  14.  Displacement response of SDOF system with TMIS under white noise

    图  15  地震作用下附加TMIS单自由度结构的位移响应

    Figure  15.  Displacement response of SDOF system with TMIS under seismic excitation

    图  16  风荷载作用下附加TMD和TMIS单自由度结构的减振比

    Figure  16.  Vibration mitigation ratio of SDOF systems with TMD and TMIS under wind load

    图  17  风荷载作用下各附加质量比时的TMIS优化参数

    Figure  17.  Optimal parameters of TMIS with different additional mass ratio under wind load

    图  18  风荷载作用下附加TMD与TMIS单自由度结构的加速度传递函数

    Figure  18.  Acceleration transfer function of SDOF systems with TMD and TMIS under wind load

    图  19  多自由度建筑结构附加减振装置示意图

    Figure  19.  MDOF structures with different vibration control devices

    图  20  附加TMIS的楼板结构示意图

    Figure  20.  Floor structure with TMIS

    图  21  人致激励下附加TMIS的楼板结构的加速度响应

    Figure  21.  Acceleration response of floor structure with TMIS under human-induced excitation

    表  1  地震作用下附加TMD单自由度体系减震比

    Table  1.   Vibration mitigation ratio of SDOF system with TMD under seismic excitation

    工况调谐质量比
    ${\mu _{{\rm{t,TMD}}} }$
    减震比
    ${\gamma _{{\rm{U,TMD}}} }$
    工况调谐质量比
    ${\mu _{{\rm{t,TMD}}} }$
    减震比
    ${\gamma _{{\rm{U,TMD}}} }$
    10.010.557110.110.357
    20.020.489120.120.352
    30.030.452130.130.348
    40.040.428140.140.344
    50.050.410150.150.341
    60.060.397160.160.337
    70.070.386170.170.335
    80.080.377180.180.332
    90.090.369190.190.330
    100.100.363200.200.328
    下载: 导出CSV

    表  2  地震作用下TMIS的轻量化效果

    Table  2.   Lightweight effect of TMIS under seismic excitation

    工况TMD 调谐
    质量比${\mu _{{\rm{t,TMD}}} }$
    TMIS 调谐
    质量比${\mu _{{\rm{t,TMIS}}} }$
    附加质量变化
    程度$\delta $/(%)
    1 0.01 0.0076 −24.0
    2 0.02 0.0149 −25.5
    3 0.03 0.0221 −26.3
    4 0.04 0.0290 −27.5
    5 0.05 0.0358 −28.4
    6 0.06 0.0424 −29.3
    7 0.07 0.0489 −30.1
    8 0.08 0.0552 −31.0
    9 0.09 0.0617 −31.4
    10 0.10 0.0673 −32.7
    11 0.11 0.0735 −33.2
    12 0.12 0.0793 −33.9
    13 0.13 0.0848 −34.8
    14 0.14 0.0902 −35.6
    15 0.15 0.0954 −36.4
    16 0.16 0.1004 −37.3
    17 0.17 0.1046 −38.5
    18 0.18 0.1102 −38.8
    19 0.19 0.1142 −39.9
    20 0.20 0.1184 −40.8
    下载: 导出CSV

    表  3  白噪声激励下TMIS的轻量化控制效果

    Table  3.   Lightweight effect of TMIS under white noise

    工况TMDTMIS附加质量
    变化程度$\delta $/(%)
    TMD 调谐
    质量比${\mu _{{\rm{t,TMD}}} }$
    减震比
    ${\gamma _{{\rm{U,RMS}}} }$
    TMIS 调谐
    质量比${\mu _{{\rm{t,TMIS}}} }$
    减震比
    ${\gamma _{{\rm{U,RMS}}} }$
    10.020.6360.01140.636−43.0
    20.050.5330.02410.533−51.8
    下载: 导出CSV

    表  4  地震作用下TMIS的轻量化控制效果

    Table  4.   Lightweight effect of TMIS under seismic excitation

    附加
    质量
    TMDTMIS附加质量变化程度$\delta$/(%)
    ${\mu _{{\rm{t,TMD}}} } =$0.0500${\mu _{ {\rm{t,TMIS} } } } =$0.0289
    减震比${\gamma _{{\rm{U,peak}}} }$${\gamma _{{\rm{U,RMS}}} }$${\gamma _{ {\rm{U,pea} }{\rm{k}}} }$${\gamma _{{\rm{U,RMS}}} }$−42.2
    NW10.5010.3820.5650.384
    NW20.5290.4300.4930.419
    AW10.7370.5640.7540.567
    下载: 导出CSV

    表  5  风荷载作用下附加TMD单自由度体系减振比

    Table  5.   Vibration mitigation ratio of SDOF system with TMD under wind load

    工况调谐质量比${\mu _{{\rm{t,TMD}}} }$减振比${\gamma _{{\rm{A,TMD}}} }$工况调谐质量比${\mu _{{\rm{t,TMD}}} }$减振比${\gamma _{{\rm{A,TMD}}} }$
    10.010.900110.110.789
    20.020.860120.120.786
    30.030.839130.130.784
    40.040.826140.140.782
    50.050.817150.150.780
    60.060.810160.160.778
    70.070.804170.170.776
    80.080.799180.180.775
    90.090.795190.190.774
    100.100.792200.200.772
    下载: 导出CSV

    表  6  风荷载作用下TMIS的轻量化控制效果

    Table  6.   Lightweight effect of TMIS under wind load

    工况TMD 调谐质量比${\mu _{{\rm{t,TMD}}} }$TMIS 调谐质量比${\mu _{{\rm{t,TMIS}}} }$附加质量
    变化程度$\delta $/(%)
    1 0.01 0.0075 −25.0
    2 0.02 0.0145 −27.5
    3 0.03 0.0213 −29.0
    4 0.04 0.0277 −30.8
    5 0.05 0.0340 −32.0
    6 0.06 0.0400 −33.3
    7 0.07 0.0459 −34.4
    8 0.08 0.0516 −35.5
    9 0.09 0.0572 −36.4
    10 0.10 0.0628 −37.2
    11 0.11 0.0682 −38.0
    12 0.12 0.0735 −38.8
    13 0.13 0.0788 −39.4
    14 0.14 0.0840 −40.0
    15 0.15 0.0892 −40.5
    16 0.16 0.0943 −41.1
    17 0.17 0.0995 −41.5
    18 0.18 0.1046 −41.9
    19 0.19 0.1097 −42.3
    20 0.20 0.1147 −42.7
    下载: 导出CSV

    表  7  不同重现期的风荷载工况下TMIS(600 t)和TMD(1000 t)加速度响应对比

    Table  7.   Acceleration response of structures with TMD (1000 t) and TMIS (600 t) under wind load

    工况加速度峰值/(m/s2)加速度均方根/(m/s2)
    TMDTMISTMDTMIS
    1年80° 0.041 0.030 0.009 0.007
    1年270° 0.034 0.032 0.008 0.007
    10年80° 0.128 0.102 0.033 0.026
    10年270° 0.175 0.137 0.040 0.038
    50年80° 0.204 0.120 0.062 0.033
    50年270° 0.283 0.164 0.087 0.048
    100年80° 0.241 0.134 0.064 0.037
    100年270° 0.296 0.174 0.098 0.048
    500年80° 0.247 0.161 0.067 0.045
    500年270° 0.323 0.194 0.099 0.056
    下载: 导出CSV

    表  8  人致激励下TMIS的轻量化控制效果

    Table  8.   Lightweight effect of TMIS under human-induced excitation

    工况TMDTMIS
    TMD 调谐
    质量比${\mu _{{\rm{t,TMD}}} }$
    减振比
    ${\gamma _{{\rm{A,TMD}}} }$
    TMIS 调谐
    质量比${\mu _{{\rm{t,TMIS}}} }$
    附加质量变化
    程度$\delta$/(%)
    1 0.1 0.497 0.079 −21.0
    2 0.3 0.353 0.123 −59.0
    3 0.5 0.296 0.141 −71.8
    下载: 导出CSV
  • [1] Symans M D, Charney F A, Whittaker A S, et al. Energy dissipation systems for seismic applications: Current practice and recent developments [J]. Journal of Structural Engineering, 2008, 134(1): 3 − 21. doi: 10.1061/(ASCE)0733-9445(2008)134:1(3)
    [2] Saaed T E, Nikolakopoulos G, Jonasson J E, et al. A state-of-the-art review of structural control systems [J]. Journal of Vibration and Control, 2015, 21(5): 919 − 937. doi: 10.1177/1077546313478294
    [3] Soong T T, Spencer B F. Supplemental energy dissipation: state-of-the-art and state-of-the practice [J]. Engineering Structures, 2002, 24(3): 243 − 259. doi: 10.1016/S0141-0296(01)00092-X
    [4] Den Hartog J P. Mechanical vibrations [M]. 4th ed. New York: Dover, 1956.
    [5] Sadek F, Mohraz B, Taylor A W, et al. A method of estimating the parameters of tuned mass dampers for seismic applications [J]. Earthquake Engineering & Structural Dynamics, 1997, 26(6): 617 − 635.
    [6] Bekdaş G, Nigdeli S M. Mass ratio factor for optimum tuned mass damper strategies [J]. International Journal of Mechanical Sciences, 2013, 71: 68 − 84. doi: 10.1016/j.ijmecsci.2013.03.014
    [7] Li Chunxiang, Cao Baoya. Hybrid active tuned mass dampers for structures under the ground acceleration [J]. Structural Control and Health Monitoring, 2015, 22(4): 757 − 773. doi: 10.1002/stc.1716
    [8] Zhang R F, Zhao Z P, Pan C,et al. Damping enhancement principle of inerter system [J]. Structural Control and Health Monitoring, 2020, 27(5): e2523. doi: 10.1002/stc.2523
    [9] Zhao Z F, Chen Q J, Zhang R F, et al. Energy dissipation mechanism of inerter systems [J]. International Journal of Mechanical Sciences, 2020(184): 105845. doi: 10.1016/j.ijmecsci.2020.105845
    [10] Zhang R F, Zhao Z P, Dai K S. Seismic response mitigation of a wind turbine tower using a tuned parallel inerter mass system [J]. Engineering Structures, 2019, 180: 29 − 39. doi: 10.1016/j.engstruct.2018.11.020
    [11] Chen Q J, Zhao Z P, Xia Y Y, et al. Comfort based floor design employing tuned inerter mass system [J]. Journal of Sound and Vibration, 2019, 458: 143 − 157. doi: 10.1016/j.jsv.2019.06.019
    [12] 斉藤賢二, 井上範夫. 慣性接続要素を利用した粘性ダンパーをもつ制振構造の最適応答制御に関するー考察: 最適設計システムにおける線形粘性要素の等価非線形粘性要素への置換法[C]. 日本建築学会技術報告集, 2007, 13(26): 457 − 462.

    Saito K, Inoue N. A study on optimum response control of passive control systems using viscous damper with inertial mass: substituting equivalent nonlinear viscous elements for linear viscous elements in optimum control systems [C]. Journal of Architecture and Building Science, 2007, 13(26): 457 − 462. (in Japanese)
    [13] 斉藤賢二, 栗田哲, 井上範夫. 慣性接続要素を利用した線形粘性ダンパーによる一質点構造の最適応答制御とKelvinモデル化手法に関する考察[C]. 構造工学論文集, 2007, 53: 53 − 66.

    Saito K, Kurita S, Inoue N. Optimum response control of 1-DOF system using linear viscous damper with inertial mass and its Kelvin-type modeling [C]. Journal of Structural Engineering, 2007, 53: 53 − 66. (in Japanese)
    [14] Ikago K, Saito K, Inoue N. Seismic control of single-degree-of-freedom structure using tuned viscous mass damper [J]. Earthquake Engineering & Structural Dynamics, 2012, 41(3): 453 − 474.
    [15] Saito K, Toyota K, Nagae K, et al. Dynamic loading test and its application to a high-rase building of viscous damping devices with amplification system [C]. Como, Italy: Proceedings of the Third World Conference on Structural Control, 2002.
    [16] Saito K, Yogo K, Sugimura Y, et al. Application of rotary inertia to displacement reduction for vibration control system [C]. Vancouver, Canada: The 13th World Conference on Earthquake Engineering, 2004.
    [17] Ikago K, Sugimura Y, Saito K, et al. Simple design method for a tuned viscous mass damper seismic control system [C]. Lisbon, Portugal: Proceedings of the 15th World Conference on Earthquake Engineering, 2012.
    [18] 张瑞甫, 曹嫣如, 潘超. 惯容减震(振)系统及其研究进展[J]. 工程力学, 2019, 36(10): 8 − 27. doi: 10.6052/j.issn.1000-4750.2018.09.0496

    Zhang Ruifu, Cao Yanru, Pan Chao. Inerter system and its state-of-the-art [J]. Engineering Mechanics, 2019, 36(10): 8 − 27. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.09.0496
    [19] 赵志鹏, 张瑞甫, 陈清军, 等. 基于减震比设计方法的惯容减震结构分析[J]. 工程力学, 2019, 36(增刊 1): 125 − 130. doi: 10.6052/j.issn.1000-4750.2018.05.S022

    Zhao Zhipeng, Zhang Ruifu, Chen Qingjun, et al. Analysis of structures with inerter systems based on thed response mitigation ratio design method [J]. Engineering Mechanics, 2019, 36(Suppl 1): 125 − 130. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.05.S022
    [20] 潘超, 张瑞甫, 王超, 等. 单自由度混联Ⅱ型惯容减震体系的随机地震响应与参数设计[J]. 工程力学, 2019, 36(1): 129 − 137, 145. doi: 10.6052/j.issn.1000-4750.2017.11.0809

    Pan Chao, Zhang Ruifu, Wang Chao, et al. Stochastic seismic response and design of structural system with series-parallel-II inerter system [J]. Engineering Mechanics, 2019, 36(1): 129 − 137, 145. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.11.0809
    [21] Sugimura Y, Goto W, Tanizawa H, et al. Response control effect of steel building structure using tuned viscous mass damper [C]. Lisbon, Portugal: The 15th World Conference on Earthquake Engineering, 2012.
    [22] Garrido H, Curadelli O, Ambrosini D. Improvement of tuned mass damper by using rotational inertia through tuned viscous mass damper [J]. Engineering Structures, 2013, 56: 2149 − 2153. doi: 10.1016/j.engstruct.2013.08.044
    [23] Marian L, Giaralis A. Optimal design of inverter devices combined with TMDs for vibration control of buildings exposed to sto- chastic seismic excitations [C]. New York, USA: Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures-Proceedings of the 11th International Conference on Structural Safety and Reliability, 2013: 1025 − 1032.
    [24] Marian L, Giaralis A. Optimal design of a novel tuned mass-damper–inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems [J]. Probabilistic Engineering Mechanics, 2014, 38: 156 − 164. doi: 10.1016/j.probengmech.2014.03.007
    [25] Giaralis A, Marian L. Use of inerter devices for weight reduction of tuned mass-dampers for seismic protection of multi-story building: The tuned mass-damper-interter (TMDI) [C]. Las Vegas, Nevada, United States: Active and Passive Smart Structures and Integrated Systems, 2016: 97991G.
    [26] Marian L, Giaralis A. The tuned mass-damper-inerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting [J]. Smart Structures and Systems, 2017, 19(6): 665 − 678.
    [27] Hu Y L, Chen M Z Q, Shu Z, et al. Analysis and optimisation for inerter-based isolators via fixed-point theory and algebraic solution [J]. Journal of Sound and Vibration, 2015, 346: 17 − 36. doi: 10.1016/j.jsv.2015.02.041
    [28] Krenk S, Høgsberg J. Tuned resonant mass or inerter-based absorbers: unified calibration with quasi-dynamic flexibility and inertia correction [J]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2016, 472(2185): 20150718. doi: 10.1098/rspa.2015.0718
    [29] 俞载道, 曹国敖. 随机振动理论及其应用 [M]. 上海: 同济大学出版社, 1988.

    Yu Zaidao, Cao Guoao. Thoery and application of stochastic vibration [M]. Shanghai, Tongji University Press, 1988. (in Chinese)
    [30] Davenport A G. The spectrum of horizontal gustiness near the ground in high winds [J]. Quarterly Journal of the Royal Meteorological Society, 1961, 87(372): 194 − 211.
    [31] Marcheggiani L, Lenci S. On a model for the pedestrians-induced lateral vibrations of footbridges [J]. Meccanica, 2010, 45(4): 531 − 551. doi: 10.1007/s11012-009-9269-0
    [32] Živanovic S, Pavic A, Reynolds P. Vibration serviceability of footbridges under human-induced excitation: a literature review [J]. Journal of Sound and Vibration, 2005, 279(1): 1 − 74. doi: 10.1016/j.jsv.2004.01.019
    [33] Bachmann H, Ammann W. Vibrations in structures induced by man and machines [J]. Canadian Journal of Civil Engineering, 1987, 15(6): 1806 − 1807.
    [34] Warburton G. Optimum absorber parameters for various combinations of response and excitation parameters [J]. Earthquake Engineering & Structural Dynamics, 1982, 10(3): 381 − 401. doi: 10.1002/eqe.4290100304
  • 加载中
图(21) / 表(8)
计量
  • 文章访问数:  333
  • HTML全文浏览量:  159
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-03
  • 修回日期:  2021-09-03
  • 网络出版日期:  2021-09-17
  • 刊出日期:  2022-09-01

目录

    /

    返回文章
    返回