UNCOUPLED ANALYSIS METHOD FOR SEISMIC RESPONSE OF WIND TURBINES IN THE OPERATIONAL CONDITION
-
摘要: 对于运行状态的风力发电机,其地震响应涉及风荷载与地震的联合激励。为建立风-地震共同作用下风力机动力响应的解耦分析方法,该文基于最小二乘法,建立水平轴风力机模态气动阻尼比简化模型;将叶轮气动阻力以等效阻尼比施加于支撑结构,形成风力机地震响应的解耦分析方法,与耦合方法模拟结果进行比较,验证解耦方法的可靠性。结果表明:双线性模型能够准确模拟风力机模态气动阻尼比随轮毂高度处10 min平均风速变化的规律,解耦方法得到的风力机塔顶加速度和塔底弯矩峰值与耦合方法所得结果的误差不超过15%,同时,解耦方法的计算效率也高于耦合方法。Abstract: For the wind tubrines in their running conditions, their seismic responses involve the combined excitation of wind and earthquake loadings. In order to establish an uncoupled analysis method for the dynamic response of wind turbines excited by wind and earthquake, a bilinear simplified model for the aerodynamic damping ratios of horizontal-axis wind turbines was established by the least square method first. An uncoupled seismic response analysis method was built up where the aerodynamic damping forces on the rotor were replaced by equivalent modal aerodynamic damping ratios added to the support structure. The simulation results of this uncoupled method were compared with those of the coupled one to evaluate the reliability of this decoupled model. The analysis result indicates that the bilinear model can describe the regularity of modal aerodynamic damping ratios with respect to mean wind speed at the hub-height. Both errors of tower-top acceleration amplitudes and tower-base bending moment amplitudes obtained by the uncoupled and coupled method are less than 15 %. In addition, the computational efficiency of this uncoupled method is higher than that of the coupled one.
-
表 1 NREL 5 MW风机的主要性质
Table 1. Properties of NREL 5 MW wind turbines
构件 参数 取值 叶片 叶轮直径/m 126 轮毂高度/m 90 切入、额定、切出风速/(m/s) 3、11.4、25 叶轮切入、额定转速/rpm 6.9、12.1 长度/m 61.5 质量/kg 17 740 结构阻尼比/(%) 0.5 轮毂 轮毂直径/m 3 轮毂质量/kg 56 780 叶轮-机舱 总质量/kg 240 000 ζ 轴转动惯量/(kg·m2) 43 700 000 η 轴转动惯量/(kg·m2) 23 600 000 塔架 塔底、塔顶外径/m 6、3.87 塔底、塔顶壁厚/m 0.027、0.019 总质量/kg 347460 结构阻尼比/(%) 1 表 2 拟合曲线参数
Table 2. Parameters of fitting curves
参数 前后向振型 侧向振型 一阶 二阶 一阶 二阶 k 0.311 0.072 0.052 0.0010 b 2.571 0.811 −0.173 −0.0514 R 0.921 0.901 0.989 0.9610 表 A1 地震地面运动
Table A1. Earthquake Ground motions
序号 地震/时间/年 台站/分量 序号 地震/时间/年 台站/分量 1 Kocaeli/1999 Arcelik/000 26 Erzican/1992 Erzincan/032 2 Duzce/1999 Bolu/000 27 Kocaeli/1999 Izmit/090 3 Loma Prieta/1989 Capitola/000 28 Landers/1992 Lucerne/260 4 Chi-Chi/1999 CHY101/E 29 Cape Mendocino/1992 Petrolia/090 5 Imperial Valley/1979 Delta/262 30 Superstition Hills-02/1987 Parachute Test Site/225 6 Kocaeli/1999 Duzce/180 31 Northridge-01/1994 Rinaldi Receiving Sta./122 7 Imperial Valley/1979 El Centro Array-11/140 32 Loma Prieta/1989 Saratoga-Aloha/090 8 Loma Prieta/1989 Gilroy Array-3/090 33 Irpinia/1980 Sturno/270 9 Hector Mine/1999 Hector/090 34 Northridge-01/1994 Sylmar-Olive View/360 10 Superstition Hills/1987 El Centro Imp. Co./090 35 Chi-Chi/1999 TCU065/E 11 Northridge/1994 Canyon Country-WLC/000 36 Chi-Chi/1999 TCU102/E 12 Northridge/1994 Beverly Hills-Mulhol/009 37 Northridge-01/1994 LA-Sepulveda VA/122 13 Kobe/1995 Nishi-Akashi/000 38 Imperial Valley-06/1979 Bonds Corner/140 14 San Fernando/1971 LA-Hollywood Stor/090 39 Loma Prieta/1989 BRAN/000 15 Superstition Hills/1987 Poe Road (temp)/360 40 Imperial Valley-06/1979 Chihuahua/282 16 Cape Mendocino/1992 Rio Dell Overpass/270 41 Loma Prieta/1989 Corralitos/000 17 Kobe/1995 Shin-Osaka/000 42 Gazli/1976 Karakyr/000 18 Friuli/1976 Tolmezzo/000 43 Nahanni/1985 Site-2/240 19 Landers/1992 Yermo Fire Sta./270 44 Nahanni/1985 Site-1/010 20 Manjil/1990 Abbar/T 45 Northridge-01/1994 Northridge-Saticoy/090 21 Landers/1992 Coolwater/TR 46 Chi-Chi/1999 TCU067/E 22 Chi-Chi/1999 TCU045/E 47 Chi-Chi/1999 TCU084/E 23 Duzce/1999 Duzce/172 48 Kocaeli/1999 Yarimca/330 24 Imperial Valley-06/1979 El Centro Array-6/230 49 Cape Mendocino/1992 Cape Mendocino/000 25 Imperial Valley-06/1979 El Centro Array-7/140 50 Denali/2002 TAPS Pump Sta.-10/047 -
[1] 戴靠山, 胡皓, 梅竹, 等. 长周期地震下风力发电塔架结构地震反应分析[J]. 工程力学, 2021, 38(8): 213 − 221. doi: 10.6052/j.issn.1000-4750.2021.02.0121Dai Kaoshan, Hu Hao, Mei Zhu, et al. Seismic response analysis of wind power tower under long period ground motions [J]. Engineering Mechanics, 2021, 38(8): 213 − 221. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.02.0121 [2] Manwell J F, McGowan J G, Rogers A L. Wind energy explained: theory, design and application [M]. Wiltshire: John Wiley & Sons, 2010. [3] Huang S, Huang M, Lyu Y, et al. Effect of sea ice on seismic collapse-resistance performance of wind turbine tower based on a simplified calculation model [J]. Engineering Structures, 2021, 227: 111426-1 − 111426-13. [4] Katsanos E I, Thons S, Georgakis C T. Wind turbines and seismic hazard: a state-of-the-art review [J]. Wind Energy, 2016, 19(11): 2113 − 2133. doi: 10.1002/we.1968 [5] Hansen M O L, Sørensen J N, Voutsinas S, et al. State of the art in wind turbine aerodynamics and aero-elasticity [J]. Progress in Aerospace Sciences, 2006, 42(4): 285 − 330. doi: 10.1016/j.paerosci.2006.10.002 [6] Ritschel U, Warnke I, Kirchner J, et al. Wind turbines and earthquakes [C]// Proceedings of 569 the 2nd World Wind Energy Conference. Cape Town, South Africa, 2003. [7] Witcher D. Seismic analysis of wind turbines in the time domain [J]. Wind Energy, 2010, 8(1): 81 − 91. [8] Prowell I, Elgamal A, Uang C, et al. Estimation of seismic load demand for a wind turbine in the time domain [C]// European Wind Energy Conference (EWEC). Warsaw, Poland, 2010. [9] Prowell I, Elgamal A, Uang C M, et al. Shake table testing and numerical simulation of a utility-scale wind turbine including operational effects [J]. Wind Energy, 2014, 17(7): 997 − 1016. doi: 10.1002/we.1615 [10] 席仁强, 许成顺, 杜修力, 等. 风-波浪荷载对海上风机地震响应的影响[J]. 工程力学, 2020, 37(11): 58 − 68. doi: 10.6052/j.issn.1000-4750.2019.12.0715Xi Renqiang, Xu Chengshun, Du Xiuli, et al. Effects of wind-wave loadings on the seismic response of offshore wind turbines [J]. Engineering Mechanics, 2020, 37(11): 58 − 68. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0715 [11] Wang W, Li X, Zhao H, et al. Vibration control of a pentapod offshore wind turbine under combined seismic wind and wave loads using multiple tuned mass damper [J]. Applied Ocean Research, 2020, 103: 102254-1 − 102254-17. [12] 席仁强, 许成顺, 杜修力, 等. 工作状态对风力发电机地震响应的影响[J]. 工程力学, 2019, 36(4): 80 − 88. doi: 10.6052/j.issn.1000-4750.2017.12.0939Xi Renqiang, Xu Chengshun, Du Xiuli, et al. Effects of operating conditions on the seismic response of wind turbines [J]. Engineering Mechanics, 2019, 36(4): 80 − 88. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.12.0939 [13] Jin X, Liu H, Ju W. Wind turbine seismic load analysis based on numerical calculation [J]. Slovenian Journal of Mechanical Engineering, 2014, 60: 638 − 648. [14] Wang W, Gao Z, Li X, et al. Model test and numerical analysis of a multi-pile offshore wind turbine under seismic, wind, wave and current loads [J]. Journal of Offshore Mechanics and Arctic Engineering, 2017, 139(3): 1 − 17. [15] Bazeos N, Hatzigeorgiou G D, Hondros I D, et al. Static, seismic and stability analyses of a prototype wind turbine steel tower [J]. Engineering Structures, 2002, 24: 1015 − 1025. doi: 10.1016/S0141-0296(02)00021-4 [16] Zhao X, Maißer P. Seismic response analysis of wind turbine towers including soil structure interaction [J]. Proceedings of The Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics, 2006, 220: 53 − 61. doi: 10.1243/146441905X73691 [17] Ishihara T, Sarwar M W. Numerical and theoretical study on seismic response of wind turbines [C]// Proceedings of the European Wind Energy Conference and Exhibition. Brussels, Belgium, 2008. [18] Asareh M A, Schonberg W, Volz J. Fragility analysis of a 5-MW NREL wind turbine considering aero-elastic and seismic interaction using finite element method [J]. Finite Elements in Analysis & Design, 2016, 120(1): 57 − 67. [19] Santangelo F, Failla G, Arena F, et al. On time-domain uncoupled analyses for offshore wind turbines under seismic loads [J]. Bulletin of Earthquake Engineering, 2018, 16(2): 1007 − 1040. doi: 10.1007/s10518-017-0191-x [20] Xi Renqiang, Wang Piguang, Du Xiuli, et al. A semi-analytical model of aerodynamic damping for horizontal axis wind turbines and its applications [J]. Ocean Engineering, 2020, 214: 107861-1 − 107861-18. [21] Xi Renqiang, Wang Piguang, Du Xiuli, et al. Evaluation of an uncoupled method for analyzing the seismic response of wind turbines excited by wind and earthquake loads [J]. Energies, 2020, 13(15): 3833-1 − 3833-27. [22] Chen C, Duffour P. Modelling damping sources in monopile-supported offshore wind turbines [J]. Wind Energy, 2018, 21(11): 1 − 20. [23] Jonkman J M, Butterfield S, Musial W, et al. Definition of a 5 MW Reference wind turbine for offshore system development [R]. Colorado: National Renewable Energy Laboratory, 2009. [24] Jonkman J M, Buhl M L. FAST user’s guide [R]. Colorado: National Renewable Energy Laboratory, 2005. [25] FEMA P-695. Quantification of building seismic performance factors [R]. Redwood City: Applied Technology Council, 2009. [26] IEC 61400-1, Wind turbines part 1: Design requirements [S]. Geneva, Switzerland: International Electrotechnical Commission, 2005. [27] Germanischer Lloyd, Guideline for the certification of offshore wind turbines [S]. Hamburg: Germanischer Lloyd, 2005. -