留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

运行状态风力机地震响应的解耦分析方法

席仁强 许成顺 杜修力 许坤

席仁强, 许成顺, 杜修力, 许坤. 运行状态风力机地震响应的解耦分析方法[J]. 工程力学, 2022, 39(9): 20-30. doi: 10.6052/j.issn.1000-4750.2021.04.0309
引用本文: 席仁强, 许成顺, 杜修力, 许坤. 运行状态风力机地震响应的解耦分析方法[J]. 工程力学, 2022, 39(9): 20-30. doi: 10.6052/j.issn.1000-4750.2021.04.0309
XI Ren-qiang, XU Cheng-shun, DU Xiu-li, XU Kun. UNCOUPLED ANALYSIS METHOD FOR SEISMIC RESPONSE OF WIND TURBINES IN THE OPERATIONAL CONDITION[J]. Engineering Mechanics, 2022, 39(9): 20-30. doi: 10.6052/j.issn.1000-4750.2021.04.0309
Citation: XI Ren-qiang, XU Cheng-shun, DU Xiu-li, XU Kun. UNCOUPLED ANALYSIS METHOD FOR SEISMIC RESPONSE OF WIND TURBINES IN THE OPERATIONAL CONDITION[J]. Engineering Mechanics, 2022, 39(9): 20-30. doi: 10.6052/j.issn.1000-4750.2021.04.0309

运行状态风力机地震响应的解耦分析方法

doi: 10.6052/j.issn.1000-4750.2021.04.0309
基金项目: 国家自然科学基金青年科学基金项目(51808061);国家自然科学基金优秀青年科学基金项目(51722801);国家重点研发计划项目(2018YFC1504302)
详细信息
    作者简介:

    席仁强(1984−),男,河南三门峡人,副教授,博士,主要从事地震工程领域研究(E-mail: xirenqiang@cczu.edu.cn)

    杜修力(1962−),男,四川广安人,教授,博士,博导,主要从事地震工程领域研究(E-mail: duxiuli@bjut.edu.cn)

    许 坤(1988−),男,山东德州人,副教授,博士,主要从事桥梁与结构抗风研究(E-mail: xukun@bjut.edu.cn)

    通讯作者:

    许成顺(1977−),女,黑龙江海林人,教授,博士,博导,主要从事岩土力学基础理论与试验研究(E-mail: xuchengshun@bjut.edu.cn)

  • 中图分类号: TU311.3;TM315

UNCOUPLED ANALYSIS METHOD FOR SEISMIC RESPONSE OF WIND TURBINES IN THE OPERATIONAL CONDITION

  • 摘要: 对于运行状态的风力发电机,其地震响应涉及风荷载与地震的联合激励。为建立风-地震共同作用下风力机动力响应的解耦分析方法,该文基于最小二乘法,建立水平轴风力机模态气动阻尼比简化模型;将叶轮气动阻力以等效阻尼比施加于支撑结构,形成风力机地震响应的解耦分析方法,与耦合方法模拟结果进行比较,验证解耦方法的可靠性。结果表明:双线性模型能够准确模拟风力机模态气动阻尼比随轮毂高度处10 min平均风速变化的规律,解耦方法得到的风力机塔顶加速度和塔底弯矩峰值与耦合方法所得结果的误差不超过15%,同时,解耦方法的计算效率也高于耦合方法。
  • 图  1  分析模型

    Figure  1.  Analysis model

    图  2  NREL 5 MW风力机模态气动阻尼比

    Figure  2.  Modal aerodynamic damping ratios of NREL 5 MW wind turbine

    图  3  NREL 5 MW风力机前后向模态气动阻尼比

    Figure  3.  Modal aerodynamic damping ratios of fore-aft modes for NREL 5 MW wind turbine

    图  4  NREL 5 MW风力机侧向模态气动阻尼比

    Figure  4.  Modal aerodynamic damping ratios of side-side modes for NREL 5 MW wind turbine

    图  5  Bolu强震记录的一个水平分量

    Figure  5.  One horizontal component of Bolu seismic record

    图  6  Bolu强震记录单独激励下的风力发电机塔底弯矩

    Figure  6.  Tower-base bending moment of wind turbine excited by Bolu seismic record only

    图  7  稳态风-Bolu波共同激励下的风力发电机动力响应

    Figure  7.  Dynamic response of wind turbine excited by combined steady wind and Bolu wave

    图  8  Chy101强震记录单独激励下的风力发电机塔底弯矩

    Figure  8.  Tower-base bending moment of wind turbine excited by Chy101 seismic record only

    图  9  稳态风-Chy101波激励下的风力发电机动力响应

    Figure  9.  Dynamic response of wind turbine excited by steady wind and Chy101 wave

    图  10  Bolu波-湍流风激励下的塔身响应峰值

    Figure  10.  Response amplitudes of the tower when the wind turbine excited by Bolu wave and turbulent wind

    图  11  Bolu波-风激励下风力发电机响应峰值

    Figure  11.  Response amplitude of wind turbines excited by Bolu seismic wave and wind

    图  12  Chy101波-湍流风激励下的塔身响应峰值

    Figure  12.  Response amplitude of the tower induced by Chy101 wave and turbulent wind

    图  13  Chy101波-风激励下的风力发电机响应峰值

    Figure  13.  Response amplitude of wind turbines excited by Chy101 seismic wave and wind

    图  14  叶片各单元法向气动荷载

    Figure  14.  Aerodynamic forces of blade element in the normal direction

    图  15  叶片振动速度平方比

    Figure  15.  Ratio for squared blade vibration velocity

    图  16  平均风速等于11.4 m/s的解耦模型误差

    Figure  16.  Errors of uncoupled model when mean wind speed is 11.4 m/s

    图  17  平均风速等于5 m/s的解耦模型误差

    Figure  17.  Errors of uncoupled model when mean wind speed is 5 m/s

    图  18  平均风速等于18 m/s的解耦模型误差

    Figure  18.  Errors of uncoupled model when mean wind speed is 18 m/s

    表  1  NREL 5 MW风机的主要性质

    Table  1.   Properties of NREL 5 MW wind turbines

    构件参数取值
    叶片叶轮直径/m126
    轮毂高度/m90
    切入、额定、切出风速/(m/s)3、11.4、25
    叶轮切入、额定转速/rpm6.9、12.1
    长度/m61.5
    质量/kg17 740
    结构阻尼比/(%)0.5
    轮毂轮毂直径/m3
    轮毂质量/kg56 780
    叶轮-机舱总质量/kg240 000
    ζ 轴转动惯量/(kg·m2)43 700 000
    η 轴转动惯量/(kg·m2)23 600 000
    塔架塔底、塔顶外径/m6、3.87
    塔底、塔顶壁厚/m0.027、0.019
    总质量/kg347460
    结构阻尼比/(%)1
    下载: 导出CSV

    表  2  拟合曲线参数

    Table  2.   Parameters of fitting curves

    参数前后向振型侧向振型
    一阶二阶一阶二阶
    k0.3110.0720.0520.0010
    b2.5710.811−0.173−0.0514
    R0.9210.9010.9890.9610
    下载: 导出CSV

    表  A1  地震地面运动

    Table  A1.   Earthquake Ground motions

    序号地震/时间/年台站/分量序号地震/时间/年台站/分量
    1 Kocaeli/1999 Arcelik/000 26 Erzican/1992 Erzincan/032
    2 Duzce/1999 Bolu/000 27 Kocaeli/1999 Izmit/090
    3 Loma Prieta/1989 Capitola/000 28 Landers/1992 Lucerne/260
    4 Chi-Chi/1999 CHY101/E 29 Cape Mendocino/1992 Petrolia/090
    5 Imperial Valley/1979 Delta/262 30 Superstition Hills-02/1987 Parachute Test Site/225
    6 Kocaeli/1999 Duzce/180 31 Northridge-01/1994 Rinaldi Receiving Sta./122
    7 Imperial Valley/1979 El Centro Array-11/140 32 Loma Prieta/1989 Saratoga-Aloha/090
    8 Loma Prieta/1989 Gilroy Array-3/090 33 Irpinia/1980 Sturno/270
    9 Hector Mine/1999 Hector/090 34 Northridge-01/1994 Sylmar-Olive View/360
    10 Superstition Hills/1987 El Centro Imp. Co./090 35 Chi-Chi/1999 TCU065/E
    11 Northridge/1994 Canyon Country-WLC/000 36 Chi-Chi/1999 TCU102/E
    12 Northridge/1994 Beverly Hills-Mulhol/009 37 Northridge-01/1994 LA-Sepulveda VA/122
    13 Kobe/1995 Nishi-Akashi/000 38 Imperial Valley-06/1979 Bonds Corner/140
    14 San Fernando/1971 LA-Hollywood Stor/090 39 Loma Prieta/1989 BRAN/000
    15 Superstition Hills/1987 Poe Road (temp)/360 40 Imperial Valley-06/1979 Chihuahua/282
    16 Cape Mendocino/1992 Rio Dell Overpass/270 41 Loma Prieta/1989 Corralitos/000
    17 Kobe/1995 Shin-Osaka/000 42 Gazli/1976 Karakyr/000
    18 Friuli/1976 Tolmezzo/000 43 Nahanni/1985 Site-2/240
    19 Landers/1992 Yermo Fire Sta./270 44 Nahanni/1985 Site-1/010
    20 Manjil/1990 Abbar/T 45 Northridge-01/1994 Northridge-Saticoy/090
    21 Landers/1992 Coolwater/TR 46 Chi-Chi/1999 TCU067/E
    22 Chi-Chi/1999 TCU045/E 47 Chi-Chi/1999 TCU084/E
    23 Duzce/1999 Duzce/172 48 Kocaeli/1999 Yarimca/330
    24 Imperial Valley-06/1979 El Centro Array-6/230 49 Cape Mendocino/1992 Cape Mendocino/000
    25 Imperial Valley-06/1979 El Centro Array-7/140 50 Denali/2002 TAPS Pump Sta.-10/047
    下载: 导出CSV
  • [1] 戴靠山, 胡皓, 梅竹, 等. 长周期地震下风力发电塔架结构地震反应分析[J]. 工程力学, 2021, 38(8): 213 − 221. doi: 10.6052/j.issn.1000-4750.2021.02.0121

    Dai Kaoshan, Hu Hao, Mei Zhu, et al. Seismic response analysis of wind power tower under long period ground motions [J]. Engineering Mechanics, 2021, 38(8): 213 − 221. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.02.0121
    [2] Manwell J F, McGowan J G, Rogers A L. Wind energy explained: theory, design and application [M]. Wiltshire: John Wiley & Sons, 2010.
    [3] Huang S, Huang M, Lyu Y, et al. Effect of sea ice on seismic collapse-resistance performance of wind turbine tower based on a simplified calculation model [J]. Engineering Structures, 2021, 227: 111426-1 − 111426-13.
    [4] Katsanos E I, Thons S, Georgakis C T. Wind turbines and seismic hazard: a state-of-the-art review [J]. Wind Energy, 2016, 19(11): 2113 − 2133. doi: 10.1002/we.1968
    [5] Hansen M O L, Sørensen J N, Voutsinas S, et al. State of the art in wind turbine aerodynamics and aero-elasticity [J]. Progress in Aerospace Sciences, 2006, 42(4): 285 − 330. doi: 10.1016/j.paerosci.2006.10.002
    [6] Ritschel U, Warnke I, Kirchner J, et al. Wind turbines and earthquakes [C]// Proceedings of 569 the 2nd World Wind Energy Conference. Cape Town, South Africa, 2003.
    [7] Witcher D. Seismic analysis of wind turbines in the time domain [J]. Wind Energy, 2010, 8(1): 81 − 91.
    [8] Prowell I, Elgamal A, Uang C, et al. Estimation of seismic load demand for a wind turbine in the time domain [C]// European Wind Energy Conference (EWEC). Warsaw, Poland, 2010.
    [9] Prowell I, Elgamal A, Uang C M, et al. Shake table testing and numerical simulation of a utility-scale wind turbine including operational effects [J]. Wind Energy, 2014, 17(7): 997 − 1016. doi: 10.1002/we.1615
    [10] 席仁强, 许成顺, 杜修力, 等. 风-波浪荷载对海上风机地震响应的影响[J]. 工程力学, 2020, 37(11): 58 − 68. doi: 10.6052/j.issn.1000-4750.2019.12.0715

    Xi Renqiang, Xu Chengshun, Du Xiuli, et al. Effects of wind-wave loadings on the seismic response of offshore wind turbines [J]. Engineering Mechanics, 2020, 37(11): 58 − 68. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0715
    [11] Wang W, Li X, Zhao H, et al. Vibration control of a pentapod offshore wind turbine under combined seismic wind and wave loads using multiple tuned mass damper [J]. Applied Ocean Research, 2020, 103: 102254-1 − 102254-17.
    [12] 席仁强, 许成顺, 杜修力, 等. 工作状态对风力发电机地震响应的影响[J]. 工程力学, 2019, 36(4): 80 − 88. doi: 10.6052/j.issn.1000-4750.2017.12.0939

    Xi Renqiang, Xu Chengshun, Du Xiuli, et al. Effects of operating conditions on the seismic response of wind turbines [J]. Engineering Mechanics, 2019, 36(4): 80 − 88. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.12.0939
    [13] Jin X, Liu H, Ju W. Wind turbine seismic load analysis based on numerical calculation [J]. Slovenian Journal of Mechanical Engineering, 2014, 60: 638 − 648.
    [14] Wang W, Gao Z, Li X, et al. Model test and numerical analysis of a multi-pile offshore wind turbine under seismic, wind, wave and current loads [J]. Journal of Offshore Mechanics and Arctic Engineering, 2017, 139(3): 1 − 17.
    [15] Bazeos N, Hatzigeorgiou G D, Hondros I D, et al. Static, seismic and stability analyses of a prototype wind turbine steel tower [J]. Engineering Structures, 2002, 24: 1015 − 1025. doi: 10.1016/S0141-0296(02)00021-4
    [16] Zhao X, Maißer P. Seismic response analysis of wind turbine towers including soil structure interaction [J]. Proceedings of The Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics, 2006, 220: 53 − 61. doi: 10.1243/146441905X73691
    [17] Ishihara T, Sarwar M W. Numerical and theoretical study on seismic response of wind turbines [C]// Proceedings of the European Wind Energy Conference and Exhibition. Brussels, Belgium, 2008.
    [18] Asareh M A, Schonberg W, Volz J. Fragility analysis of a 5-MW NREL wind turbine considering aero-elastic and seismic interaction using finite element method [J]. Finite Elements in Analysis & Design, 2016, 120(1): 57 − 67.
    [19] Santangelo F, Failla G, Arena F, et al. On time-domain uncoupled analyses for offshore wind turbines under seismic loads [J]. Bulletin of Earthquake Engineering, 2018, 16(2): 1007 − 1040. doi: 10.1007/s10518-017-0191-x
    [20] Xi Renqiang, Wang Piguang, Du Xiuli, et al. A semi-analytical model of aerodynamic damping for horizontal axis wind turbines and its applications [J]. Ocean Engineering, 2020, 214: 107861-1 − 107861-18.
    [21] Xi Renqiang, Wang Piguang, Du Xiuli, et al. Evaluation of an uncoupled method for analyzing the seismic response of wind turbines excited by wind and earthquake loads [J]. Energies, 2020, 13(15): 3833-1 − 3833-27.
    [22] Chen C, Duffour P. Modelling damping sources in monopile-supported offshore wind turbines [J]. Wind Energy, 2018, 21(11): 1 − 20.
    [23] Jonkman J M, Butterfield S, Musial W, et al. Definition of a 5 MW Reference wind turbine for offshore system development [R]. Colorado: National Renewable Energy Laboratory, 2009.
    [24] Jonkman J M, Buhl M L. FAST user’s guide [R]. Colorado: National Renewable Energy Laboratory, 2005.
    [25] FEMA P-695. Quantification of building seismic performance factors [R]. Redwood City: Applied Technology Council, 2009.
    [26] IEC 61400-1, Wind turbines part 1: Design requirements [S]. Geneva, Switzerland: International Electrotechnical Commission, 2005.
    [27] Germanischer Lloyd, Guideline for the certification of offshore wind turbines [S]. Hamburg: Germanischer Lloyd, 2005.
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  373
  • HTML全文浏览量:  93
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-24
  • 修回日期:  2022-02-28
  • 网络出版日期:  2022-04-24
  • 刊出日期:  2022-09-01

目录

    /

    返回文章
    返回