TIME-SEQUENCE CHARACTERISTICS AND REGIONAL STATISTICAL ANALYSIS OF HEATING LOAD OF EMBANKMENT IN COLD REGIONS
-
摘要:
为保证路基供热防冻胀系统的合理设计和节能运行控制,发展一种基于建筑热环境设计模拟工具包DeST(designer’s simulation toolkit)的寒区路基动态热负荷预测方法。在DeST软件中建立由一系列“路基微元”构成的计算模型,利用软件内置的气象模型、遮挡模型、光照模型模拟路基所处的气候环境、太阳辐照和地形条件;应用建筑分析模拟模块BAS(building analysis simulation module),通过状态空间法求解路基微元基础温度,通过预测值与实测值的校核保证计算精度;设置路基目标温度,完成热负荷的逐时计算。依托哈齐高铁DK221+150监测断面实测数据,对所述方法进行验证,结果表明,路基温度场计算值与实测值一致。案例路基的最大热负荷为945 W/m,冻结期平均热负荷为335 W/m。热负荷可以反映路基阴阳坡效应和沿深度的传热滞后效应。基于中国严寒和寒冷气候区23个城市的典型气象年数据,对高铁路基的热负荷进行区域统计分析,结果表明,最大热负荷范围为531 W/m~1338 W/m,并与纬度呈线性正相关关系。研究成果可为寒区路基冻害评价和供热方案设计提供参考。
Abstract:Based on the Designer’s Simulation Toolkit (DeST), a method for predicting the dynamic embankment heating load in cold regions are proposed. A model composed of a series of 'micro elements' is first established, and the meteorological, shielding, and illumination models are used to simulate the climatic environment, topographic conditions, and solar radiation of the embankment, respectively. The state space method in the Building Analysis Simulation (BAS) module is then used to determine the initial temperature. The accuracy of the calculation is increased by setting the similarity threshold between the predicted value and the model training data. The heating load is identified by setting the target temperature. As a case study, the method is applied to the DK221+150 section of the Harbin-Qiqihar high speed railway. The results show consistency between the calculated and measured temperatures. The maximum and average heating loads are 945 W/m and 335 W/m, respectively. The method reflect the effects of both slope exposure to solar radiation and the lag in heat transfer inside the embankment. The data for typical meteorological years of 23 cities positioned in cold and severely cold climate zones in China are selected for a regional statistical analysis of the heating load of a high-speed railway embankment. The results show a maximum heating load of 531~ 1,338 W/m and a linear positive correlation between heating load and latitude. The results of this study can guide the evaluation of embankment frost state and the design of heating schemes in cold regions.
-
Keywords:
- frozen soil embankment /
- artificial heating /
- DeST software /
- temperature /
- heating load /
- latitude
-
-
表 1 路基土体的热物性参数取值
Table 1 Values of thermophysical parameters of soils
材料 密度/(kg/m3) 导热系数/(W/m·K) 比热容/(J/kg·K) 级配碎石 1980 1.61 1830 A/B组土 1500 0.93 1160 护道填土 1600 1.23 1520 表 2 不同气候分区的高铁路基热负荷
Table 2 Heat loads of highspeed railway embankment in different climatic zones
序号 城市 位置 海拔/m 最大负荷/(W/m) 平均负荷/(W/m) 1 齐齐哈尔 N47.20° 145.90 1144.92 475.82 2 哈尔滨 N45.44° 142.30 1076.33 498.95 3 牡丹江 N44.35° 241.40 1014.85 446.73 4 佳木斯 N46.47° 81.20 1145.45 499.69 5 克拉玛依 N45.59° 427.30 973.46 385.22 6 海拉尔 N49.12° 610.20 1338.39 644.84 7 满洲里 N49.35° 661.70 1286.83 616.91 8 长春 N43.54° 236.80 1050.49 419.61 9 沈阳 N41.48° 42.80 809.30 315.59 10 酒泉 N39.77° 1477.20 886.34 277.13 11 乌鲁木齐 N43.50° 917.90 935.16 365.36 12 哈密 N42.78° 737.20 778.21 291.14 13 西宁 N36.62° 2261.20 612.37 218.64 14 伊宁 N43.55° 662.50 862.92 214.67 15 呼和浩特 N40.83° 1063.00 844.27 338.47 16 大同 N40.08° 1067.20 1007.00 320.37 17 丹东 N40.07° 15.10 569.22 205.41 18 大连 N39.02° 91.50 535.53 166.58 19 兰州 N36.04° 1517.20 586.31 168.13 20 喀什 N39.28° 1288.70 530.60 180.20 21 银川 N38.48° 1110.90 556.05 198.21 22 太原 N37.54° 778.30 589.01 167.51 23 张家口 N40.40° 724.20 675.94 228.40 -
[1] 叶阳升, 蔡德钩, 张千里, 等. 高速铁路路基结构设计方法现状与发展趋势[J]. 中国铁道科学, 2021, 42(3): 1 − 12. YE Yangsheng, CAI Degou, ZHANG Qianli, et al. Current status and development trend of design method for high-speed railway subgrade bed structure [J]. China Railway Science, 2021, 42(3): 1 − 12. (in Chinese)
[2] 闫宏业. 寒区铁路路基冻害微型盾构靶向置换整治技术[J]. 铁道建筑, 2019, 59(6): 93 − 96. YAN Hongye. Target replacement remediation technology for railway subgrade frost-heaving by micro-shield in cold region [J]. Railway Engineering, 2019, 59(6): 93 − 96. (in Chinese)
[3] 朱梦杰, 任亮, 李宏男, 等. 基于iBeam3单元逆有限元法的冻土区管道变形研究[J]. 工程力学, 2022, 39(10): 61 − 67. doi: 10.6052/j.issn.1000-4750.2021.05.0334 ZHU Mengjie, REN Liang, LI Hongnan, et al. Research on pipeline deformation in permafrost region using inverse finite element method based on iBeam3 element [J]. Engineering Mechanics, 2022, 39(10): 61 − 67. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.0334
[4] 陈先华, 马丽莉, 杨国涛, 等. 寒区高铁沥青混凝土基床表层的温度场特性[J]. 西南交通大学学报, 2019, 54(6): 1196 − 1202. CHEN Xianhua, MA Lili, YANG Guotao, et al. Temperature field characteristics of high-speed railway subgrade surface with asphalt concrete layer in cold regions [J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1196 − 1202. (in Chinese)
[5] XIONG Z Y, LI X Z, ZHAO P, et al. An in-situ experimental investigate of thermo-mechanical behavior of a large diameter over length energy pile [J]. Energy and Buildings, 2021, 252: 111474. doi: 10.1016/j.enbuild.2021.111474
[6] 张国柱, 张玉强, 夏才初, 等. 利用地温能的隧道加热系统及其施工方法[J]. 现代隧道技术, 2015, 52(6): 170 − 176. ZHANG Guozhu, ZHANG Yuqiang, XIA Caichu, et al. The construction of a geothermal energy based tunnel heating system [J]. Modern Tunnelling Technology, 2015, 52(6): 170 − 176. (in Chinese)
[7] LORIA A F R, DI DONNA A, ZHANG M L. Stresses and deformations induced by geothermal operations of energy tunnels [J]. Tunnelling and Underground Space Technology, 2022, 124: 104438. doi: 10.1016/j.tust.2022.104438
[8] 李思茹, 袁艳平, 曹晓玲, 等. 综合管廊地埋管换热系统传热特性的数值模拟[J]. 太阳能学报, 2021, 42(5): 24 − 31. doi: 10.19912/j.0254-0096.tynxb.2018-1242 LI Siru, YUAN Yanping, CAO Xiaoling, et al. Numerical simulation on heat transfer characteristics of ground-source heat pump system in utility tunnel [J]. Acta Energiae Solaris Sinica, 2021, 42(5): 24 − 31. (in Chinese) doi: 10.19912/j.0254-0096.tynxb.2018-1242
[9] BARLA M, DI DONNA A, SANTI A. Energy and mechanical aspects on the thermal activation of diaphragm walls for heating and cooling [J]. Renewable Energy, 2020, 147: 2654 − 2663. doi: 10.1016/j.renene.2018.10.074
[10] TAN Y Q, ZHANG C, LV H J, et al. Experimental and numerical analysis of the critical heating strategy for hydronic heated snow melting airfield runway [J]. Applied Thermal Engineering, 2020, 178: 115508. doi: 10.1016/j.applthermaleng.2020.115508
[11] 胡田飞. 制冷与集热技术在寒区路基工程中的应用研究[D]. 北京: 北京交通大学, 2018. HU Tianfei. Application of refrigeration and heat-collect technology to subgrade engineering in cold regions[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese)
[12] 胡田飞, 徐丽霞, 张宗凯. 寒区路基直膨式热泵制热性能与防冻胀效果研究[J]. 制冷与空调, 2021, 21(9): 67 − 74. doi: 10.3969/j.issn.1009-8402.2021.09.015 HU Tianfei, XU Lixia, ZHANG Zongkai. Study on heating performance and anti-frost effect of a new direct-expansion heat pump for embankment in cold regions [J]. Refrigeration and Air-Conditioning, 2021, 21(9): 67 − 74. (in Chinese) doi: 10.3969/j.issn.1009-8402.2021.09.015
[13] 胡田飞, 岳祖润, 闫晓夏, 等. 季节性冻土区路基专用地源热泵供热装置研究[J]. 中国铁道科学, 2021, 42(6): 39 − 49. doi: 10.3969/j.issn.1001-4632.2021.06.05 HU Tianfei, YUE Zurun, YAN Xiaoxia, et al. Study on heating device for subgrade in seasonally frozen soil regions based on ground-source heat pump [J]. China Railway Science, 2021, 42(6): 39 − 49. (in Chinese) doi: 10.3969/j.issn.1001-4632.2021.06.05
[14] 张松, 岳祖润, 孙铁成, 等. 季节性冻土地区铁路路基冻结深度变化规律研究[J]. 铁道建筑, 2020, 60(1): 72 − 76. ZHANG Song, YUE Zurun, SUN Tiecheng, et al. Study on evolution law of frost depth in railway subgrade at seasonal frozen soil region [J]. Railway Engineering, 2020, 60(1): 72 − 76. (in Chinese)
[15] 刘廷章, 邰敏, 李占培, 等. 建筑空间负荷预测方法[J]. 暖通空调, 2016, 46(10): 45 − 54. LIU Tingzhang, TAI Min, LI Zhanpei, et al. Building load prediction methods [J]. Heating Ventilating & Air Conditioning, 2016, 46(10): 45 − 54. (in Chinese)
[16] GB 50736−2012, 民用建筑供暖通风与空气调节设计规范[S]. 北京: 中国建筑工业出版社, 2012. GB 50736−2012, Design code for heating ventilation and air conditioning of civil buildings [S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)
[17] 周欣, 燕达, 洪天真, 等. 建筑能耗模拟软件空调系统模拟对比研究[J]. 暖通空调, 2014, 44(4): 113 − 122, 131. ZHOU Xin, YAN Da, HONG Tianzhen, et al. Comparison and research on HVAC system simulation part for different building energy modeling programs [J]. Heating Ventilating & Air Conditioning, 2014, 44(4): 113 − 122, 131. (in Chinese)
[18] YUN K, LUCK R, MAGO P J, et al. Building hourly thermal load prediction using an indexed ARX model [J]. Energy and Buildings, 2012, 54: 225 − 233. doi: 10.1016/j.enbuild.2012.08.007
[19] 谢晓娜, 宋芳婷, 燕达, 等. 建筑环境设计模拟分析软件DeST第2讲建筑动态热过程模型[J]. 暖通空调, 2004, 34(8): 35 − 47. doi: 10.3969/j.issn.1002-8501.2004.08.008 XIE Xiaona, SONG Fangting, YAN Da, et al. Building environment design simulation software DeST (2): Dynamic thermal process of buildings [J]. Heating Ventilating & Air Conditioning, 2004, 34(8): 35 − 47. (in Chinese) doi: 10.3969/j.issn.1002-8501.2004.08.008
[20] 李海飞, 何书勇, 刘庆宽. 坡度及防雪栅对路堤周边流场影响的数值研究[J]. 工程力学, 2021, 38(增刊 1): 21 − 25. doi: 10.6052/j.issn.1000-4750.2020.05.S004 LI Haifei, HE Shuyong, LIU Qingkuan. Numerical study on the influence of slope and snow-fence on the flow field around embankment [J]. Engineering Mechanics, 2021, 38(Suppl 1): 21 − 25. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.S004
[21] 白青波, 李旭, 田亚护. 路基温度场长期模拟中的地表热边界条件研究[J]. 岩土工程学报, 2015, 37(6): 1142 − 1149. doi: 10.11779/CJGE201506021 BAI Qingbo, LI Xu, TIAN Yahu. Upper boundary conditions in long-term thermal simulation of subgrade [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1142 − 1149. (in Chinese) doi: 10.11779/CJGE201506021
[22] 陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2019. TAO Wenquan. Heat transfer [M]. 5th ed. Beijing: Higher Education Press, 2019. (in Chinese)
[23] 岳祖润, 程佳. 季节性冻土地区保温护道路基温度场数值模拟[J]. 石家庄铁道大学学报(自然科学版), 2015, 28(3): 25 − 29. doi: 10.13319/j.cnki.sjztddxxbzrb.2015.03.05 YUE Zurun, CHENG Jia. A numerical simulation of temperature field of insulating berm roadbed in seasonally frozen regions [J]. Journal of Shijiazhuang Tiedao University (Natural Science), 2015, 28(3): 25 − 29. (in Chinese) doi: 10.13319/j.cnki.sjztddxxbzrb.2015.03.05
[24] 邰博文, 岳祖润, 刘建坤, 等. 严寒地区客专路堤阴阳面地温及变形差异分析[J]. 铁道学报, 2017, 39(3): 82 − 89. TAI Bowen, YUE Zurun, LIU Jiankun, et al. Analysis on difference of ground temperature and deformation between southern and northern sides of high-speed railway embankment in cold regions [J]. Journal of the China Railway Society, 2017, 39(3): 82 − 89. (in Chinese)
[25] 仝睿, 宋二祥, 赵志宏, 等. 某铁路路基冻胀过程实测及“时变覆盖效应”分析[J]. 铁道科学与工程学报, 2020, 17(8): 1949 − 1956. doi: 10.19713/j.cnki.43-1423/u.T20190950 TONG Rui, SONG Erxiang, ZHAO Zhihong, et al. Measurement of frost heave process of a railway subgrade and analysis of "time-varying canopy effect" [J]. Journal of Railway Science and Engineering, 2020, 17(8): 1949 − 1956. (in Chinese) doi: 10.19713/j.cnki.43-1423/u.T20190950
[26] 刘玉莲, 陈莉, 康恒元, 等. 中国建筑气候分区和采暖气候条件变化研究[J]. 气象与环境学报, 2020, 36(5): 97 − 104. LIU Yulian, CHEN Li, KANG Hengyuan, et al. A study on the variation of building climate zones and heating climate conditions in China [J]. Journal of Meteorology and Environment, 2020, 36(5): 97 − 104. (in Chinese)