基于MDEM的非线性半刚性空间钢框架的弹塑性动力分析

叶继红, 许玲玲

叶继红, 许玲玲. 基于MDEM的非线性半刚性空间钢框架的弹塑性动力分析[J]. 工程力学, 2025, 42(2): 54-63. DOI: 10.6052/j.issn.1000-4750.2022.11.0956
引用本文: 叶继红, 许玲玲. 基于MDEM的非线性半刚性空间钢框架的弹塑性动力分析[J]. 工程力学, 2025, 42(2): 54-63. DOI: 10.6052/j.issn.1000-4750.2022.11.0956
YE Ji-hong, XU Ling-ling. ELASTOPLASTIC DYNAMIC ANALYSIS OF SPACE STEEL FRAMES WITH SEMI-RIGID JOINTS USING MDEM[J]. Engineering Mechanics, 2025, 42(2): 54-63. DOI: 10.6052/j.issn.1000-4750.2022.11.0956
Citation: YE Ji-hong, XU Ling-ling. ELASTOPLASTIC DYNAMIC ANALYSIS OF SPACE STEEL FRAMES WITH SEMI-RIGID JOINTS USING MDEM[J]. Engineering Mechanics, 2025, 42(2): 54-63. DOI: 10.6052/j.issn.1000-4750.2022.11.0956

基于MDEM的非线性半刚性空间钢框架的弹塑性动力分析

基金项目: 国家重点研发项目(2017YFC1500702)
详细信息
    作者简介:

    许玲玲(1987−),女,河南人,讲师,博士,主要从事结构抗震和离散元理论研究(E-mail: xllfyc@163.com)

    通讯作者:

    叶继红(1967−),女,广东人,教授,博士,博导,从事大跨空间结构、轻钢结构的抗震、抗风、抗火(E-mail: jhye@cumt.edu.cn)

  • 中图分类号: TU313;TU323

ELASTOPLASTIC DYNAMIC ANALYSIS OF SPACE STEEL FRAMES WITH SEMI-RIGID JOINTS USING MDEM

  • 摘要:

    基于三维杆系离散元法(MDEM)提出了一种能够有效地进行具有半刚性节点的三维钢框架结构动力分析的计算方法,该法可同时考虑结构的几何非线性、材料非线性以及梁柱节点连接的半刚性非线性。其中,几何非线性行为利用刚体运动学进行处理,而材料非线性行为则通过引入精细塑性铰模型进行考虑。与此同时,该文中在半刚性节点处设置了虚拟的具有3个平动自由度和3个转动自由度的空间弹簧单元,该弹簧单元以线性分配的方式将三维梁柱节点的半刚性特性量化到与之相邻的接触单元各方向刚度,进而根据能量等效原理推导了上述接触单元刚度的修正公式,且通过独立硬化模型考虑了半刚性节点的非线性滞回性能。多个数值结果与已有研究成果的对比验证了该文所提方法的正确性和精确性。

    Abstract:

    A novel and effective algorithm based on the member discrete element method (MDEM) is presented for dynamic analysis of space steel frames with semi-rigid joints, which incorporates nonlinear semi-rigidity of beam-to-column joints as well as material nonlinearity and geometric nonlinearity. The geometric nonlinearity is considered using rigid-body kinematics, while the inelasticity of material is modeled by introducing the defined plastic hinge model. Meanwhile, a virtual three-dimensional spring element with three translational degrees of freedom and three rotational degrees of freedom is proposed on the semi-rigid beam-column connection. The spring element quantifies the semi-rigidity of three-dimensional beam-column joints in a linearly distributed manner to the stiffness of the contact elements adjacent to these joints, and then the modified formula of the contact elements is derived through the energy equivalence principle. Additionally, the nonlinear cyclic behaviour of the beam-to-column connection is captured by the independent hardening model. The comparison between several sets of representative numerical results obtained by the proposed method and the published results verified the correctness and accuracy of the proposed method.

  • 图  1   三维钢框架离散元模型

    Figure  1.   Discrete element model of a three-dimensional steel frame

    图  2   三维钢框架的杆系离散元模型和半刚性连接处的零长度弹簧单元

    Figure  2.   Member discrete element model of a 3-D steel frame and the zero-length spring element at a semi-rigid joint

    图  3   钢框架结构尺寸和荷载情况

    Figure  3.   The properties of the portal frame and loading

    图  4   钢框架的荷载-变形曲线

    Figure  4.   Load-deformation curves of the portal frame

    图  5   空间框架结构几何特性 /m

    Figure  5.   Schematic configuration of a space steel frame

    图  6   空间框架结构的离散元模型

    Figure  6.   Member discrete element model of space steel frame

    图  7   EI-centro地震波作用下框架顶部节点G的弹性位移时程曲线

    Figure  7.   Elastic displacement time history curves at the top point G of a steel frame under EI-centro wave

    图  8   EI-Centro地震波作用下框架顶部节点G的弹塑性位移时程曲线

    Figure  8.   Elastic-plastic displacement time history curves at the top point G of a steel frame under EI-Centro wave

    图  9   六层空间钢框架 /m

    Figure  9.   Six-story space steel frame

    图  10   框架顶部节点N的弹性位移时程曲线

    Figure  10.   Elastic displacement time history curves at the top point N

    图  11   框架顶部节点N的弹塑性位移时程曲线

    Figure  11.   Elastic-plastic displacement time history curves at the top point N

    图  12   节点N处一个强轴弹簧单元的滞回曲线

    Figure  12.   Hysteretic loops of a strong-axis rotational spring element at the connection N

    图  13   瑞利阻尼的计算方法[31]

    Figure  13.   Rayleigh damping [31]

    表  1   二层空间框架结构模态分析结果

    Table  1   Modal analysis of the two-story steel frame

    节点类型模态文献[30]本文误差/(%)
    刚性15.53865.5384−0.0036
    21.99591.9956−0.0150
    半刚性16.07976.08230.0430
    22.13382.13440.0280
    下载: 导出CSV
  • [1]

    BERTERO V V. Performance of steel building structures during the Northridge earthquake [M]. Berkeley: Earthquake Engineering Research Center, University of California, 1994: 5 − 25.

    [2]

    ELNASHAI A S, ELGHAZOULI A Y, DENESH-ASHTIANI F A. Response of semirigid steel frames to cyclic and earthquake loads [J]. Journal of Structural Engineering, 1998, 124(8): 857 − 867. doi: 10.1061/(ASCE)0733-9445(1998)124:8(857)

    [3]

    AZIZINAMINI A, RADZIMINSKI J B. Static and cyclic performance of semirigid steel beam-to-column connections [J]. Journal of Structural Engineering, 1989, 115(12): 2979 − 2999. doi: 10.1061/(ASCE)0733-9445(1989)115:12(2979)

    [4]

    CHEN W F, KISHI N. Semirigid steel beam-to-column connections: Data base and modeling [J]. Journal of Structural Engineering, 1989, 115(1): 105 − 119. doi: 10.1061/(ASCE)0733-9445(1989)115:1(105)

    [5]

    ABDALLA K M, CHEN W F. Expanded database of semi-rigid steel connections [J]. Computers & Structures, 1995, 56(4): 553 − 564.

    [6]

    RAMBERG W, OSGOOD W R. Description of stress-strain curves by three parameters [R]. Washington, DC: National Advisory Committee for Aeronautics, 1943.

    [7] 陆新征, 廖文杰, 顾栋炼, 等. 从基于模拟到基于人工智能的建筑结构设计方法研究进展 [J/OL]. 工程力学, 2023: 1 − 18. https://www.engineeringmechanics.cn/cn/article/doi/10.6052/j.issn.1000-4750.2022.11.0963, 2023-01-31.

    LU Xinzheng, LIAO Wenjie, GU Donglian, et al. Research progress on building structural design methods: From simulation-based to artificial intelligence-based [J/OL]. Engineering Mechanics, 2023: 1 − 18. https://www.engineeringmechanics.cn/cn/article/doi/10.6052/j.issn.1000-4750.2022.11.0963, 2023-01-31 (in Chinese)

    [8] 孟宝, 杜强强, 钟炜辉, 等. 基于新型耗能板提升钢框架节点抗震和抗连续倒塌能力[J]. 工程力学, 2024, 41(2): 83 − 97. doi: 10.6052/j.issn.1000-4750.2022.03.0255

    MENG Bao, DU Qiangqiang, ZHONG Weihui, et al. Enhancing anti-seismic and anti-progressive collapse capacity of steel frame joints with new energy dissipation plates [J]. Engineering Mechanics, 2024, 41(2): 83 − 97. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.03.0255

    [9]

    LUI E M, LOPES A. Dynamic analysis and response of semirigid frames [J]. Engineering Structures, 1997, 19(8): 644 − 654. doi: 10.1016/S0141-0296(96)00143-5

    [10]

    AWKAR J C, LUI E M. Seismic analysis and response of multistory semirigid frames [J]. Engineering Structures, 1999, 21(5): 425 − 441. doi: 10.1016/S0141-0296(97)00210-1

    [11]

    SEKULOVIC M, NEFOVSKA-DANILOVIC M. Contribution to transient analysis of inelastic steel frames with semi-rigid connections [J]. Engineering Structures, 2008, 30(4): 976 − 989. doi: 10.1016/j.engstruct.2007.06.004

    [12]

    NGO-HUU C, NGUYEN P C, KIM S E. Second-order plastic-hinge analysis of space semi-rigid steel frames [J]. Thin-Walled Structures, 2012, 60: 98 − 104. doi: 10.1016/j.tws.2012.06.019

    [13]

    NGUYEN P C, KIM S E. Nonlinear inelastic time-history analysis of three-dimensional semi-rigid steel frames [J]. Journal of Constructional Steel Research, 2014, 101: 192 − 206. doi: 10.1016/j.jcsr.2014.05.009

    [14]

    NGUYEN P C, KIM S E. Second-order spread-of-plasticity approach for nonlinear time-history analysis of space semi-rigid steel frames [J]. Finite Elements in Analysis and Design, 2015, 105: 1 − 15. doi: 10.1016/j.finel.2015.06.006

    [15]

    NGUYEN P C, KIM S E. Investigating effects of various base restraints on the nonlinear inelastic static and seismic responses of steel frames [J]. International Journal of Non-Linear Mechanics, 2017, 89: 151 − 167. doi: 10.1016/j.ijnonlinmec.2016.12.011

    [16]

    CHIOREAN C G. Second-order flexibility-based model for nonlinear inelastic analysis of 3D semi-rigid steel frameworks [J]. Engineering Structures, 2017, 136: 547 − 579. doi: 10.1016/j.engstruct.2017.01.040

    [17]

    FENG D C, WU J Y. Improved displacement-based Timoshenko beam element with enhanced strains [J]. Journal of Structural Engineering, 2020, 146(3): 04019221. doi: 10.1061/(ASCE)ST.1943-541X.0002549

    [18] 叶继红, 齐念. 基于离散元法与有限元法耦合模型的网壳结构倒塌过程分析[J]. 建筑结构学报, 2017, 38(1): 52 − 61. doi: 10.14006/j.jzjgxb.2017.01.006

    YE Jihong, QI Nian. Collapse process simulation of reticulated shells based on coupled DEM/FEM model [J]. Journal of Building Structures, 2017, 38(1): 52 − 61. (in Chinese) doi: 10.14006/j.jzjgxb.2017.01.006

    [19]

    CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies [J]. Géotechnique, 1979, 29(1): 47 − 65.

    [20]

    JIHONG Y, NIAN Q. Progressive collapse simulation based on DEM for single-layer reticulated domes [J]. Journal of Constructional Steel Research, 2017, 128: 721 − 731. doi: 10.1016/j.jcsr.2016.09.025

    [21] 许玲玲, 叶继红. 静动力弹塑性分析的杆系离散单元计算理论研究[J]. 工程力学, 2021, 38(11): 1 − 11. doi: 10.6052/j.issn.1000-4750.2020.10.0768

    XU Lingling, YE Jihong. Study on calculation theory of member discrete element for static and dynamic Elastoplastic analyses [J]. Engineering Mechanics, 2021, 38(11): 1 − 11. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.10.0768

    [22]

    XU L L, YE J H. DEM algorithm for progressive collapse simulation of single-layer reticulated domes under multi-support excitation [J]. Journal of Earthquake Engineering, 2019, 23(1): 18 − 45. doi: 10.1080/13632469.2017.1309606

    [23]

    YE J H, XU L L. Member discrete element method for static and dynamic responses analysis of steel frames with semi-rigid joints [J]. Applied Sciences, 2017, 7(7): 714. doi: 10.3390/app7070714

    [24]

    KIM S E, PARK M H, CHOI S H. Direct design of three-dimensional frames using practical advanced analysis [J]. Engineering Structures, 2001, 23(11): 1491 − 1502. doi: 10.1016/S0141-0296(01)00041-4

    [25]

    CHEN W F, LUI E M. Structural stability: Theory and implementation [M]. New York: Prentice Hall, 1987: 46 − 48.

    [26]

    ORBISON J G, MCGUIRE W, ABEL J F. Yield surface applications in nonlinear steel frame analysis [J]. Computer Methods in Applied Mechanics and Engineering, 1982, 33(1/2/3): 557 − 573.

    [27]

    RICHARD R M, ABBOTT B J. Versatile elastic-plastic stress-strain formula [J]. Journal of the Engineering Mechanics Division, 1975, 101(4): 511 − 555. doi: 10.1061/JMCEA3.0002047

    [28]

    LUI E M, CHEN W F. Analysis and behaviour of flexibly-jointed frames [J]. Engineering Structures, 1986, 8(2): 107 − 118. doi: 10.1016/0141-0296(86)90026-X

    [29]

    CHAN S L, CHUI P T. Non-linear static and cyclic analysis of steel frames with semi-rigid connections [M]. Amsterdam: Elsevier, 2000: 17 − 20.

    [30]

    YAU C Y, CHAN S L. Inelastic and stability analysis of flexibly connected steel frames by springs-in-series model [J]. Journal of Structural Engineering, 1994, 120(10): 2803 − 2819. doi: 10.1061/(ASCE)0733-9445(1994)120:10(2803)

    [31]

    CLOUGH R W, PENZIEN J. Dynamics of structures [M]. 2nd ed. New York: McGraw-Hill Inc., 1993: 61 − 68.

图(13)  /  表(1)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  50
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-10
  • 修回日期:  2023-03-16
  • 录用日期:  2023-04-09
  • 网络出版日期:  2023-04-26
  • 刊出日期:  2025-02-24

目录

    /

    返回文章
    返回