考虑场址危险一致性的中国完备条件目标谱与记录选取

汪维依, 冀昆, 温瑞智, 任叶飞

汪维依, 冀昆, 温瑞智, 任叶飞. 考虑场址危险一致性的中国完备条件目标谱与记录选取[J]. 工程力学, 2024, 41(2): 71-82. DOI: 10.6052/j.issn.1000-4750.2022.03.0250
引用本文: 汪维依, 冀昆, 温瑞智, 任叶飞. 考虑场址危险一致性的中国完备条件目标谱与记录选取[J]. 工程力学, 2024, 41(2): 71-82. DOI: 10.6052/j.issn.1000-4750.2022.03.0250
WANG Wei-yi, JI Kun, WEN Rui-zhi, REN Ye-fei. SITE-SPECIFIC HAZARD CONSISTENT EXACT CONDITIONAL TARGET SPECTRUM AND SELECTION OF GROUND MOTION RECORDINGS FOR CHINA[J]. Engineering Mechanics, 2024, 41(2): 71-82. DOI: 10.6052/j.issn.1000-4750.2022.03.0250
Citation: WANG Wei-yi, JI Kun, WEN Rui-zhi, REN Ye-fei. SITE-SPECIFIC HAZARD CONSISTENT EXACT CONDITIONAL TARGET SPECTRUM AND SELECTION OF GROUND MOTION RECORDINGS FOR CHINA[J]. Engineering Mechanics, 2024, 41(2): 71-82. DOI: 10.6052/j.issn.1000-4750.2022.03.0250

考虑场址危险一致性的中国完备条件目标谱与记录选取

基金项目: 国家自然科学基金项目(51908518,U1901602,51778589);黑龙江省自然科学基金项目(LH2020E022);黑龙江省头雁行动计划项目
详细信息
    作者简介:

    汪维依 (1996−),女,安徽人,博士生,主要从事工程地震动输入研究(E-mail: wyyang1996@163.com)

    温瑞智 (1968−),男,山东人,研究员,博士,博导,主要从事工程地震与强震动技术研究(E-mail: ruizhi@iem.ac.cn)

    任叶飞 (1983−),男,江苏人,研究员,博士,硕导,主要从事工程地震与强震动技术研究(E-mail: renyefei@iem.ac.cn)

    通讯作者:

    冀 昆 (1990−),男,山西人,副研究员,博士,硕导,主要从事工程地震动输入研究(E-mail: jikun@iem.ac.cn)

  • 中图分类号: P315.9

SITE-SPECIFIC HAZARD CONSISTENT EXACT CONDITIONAL TARGET SPECTRUM AND SELECTION OF GROUND MOTION RECORDINGS FOR CHINA

  • 摘要:

    即使所处地区的宏观抗震设防烈度相同,不同城市的地震地质构造与活动性背景仍然存在差异。为使地震动输入与所在场址的地震危险性水平保持一致,该研究衔接我国第五代地震区划图的概率地震危险性分析结果,给出了完备条件目标谱的构建方法。采用与第五代地震区划图相同的三级潜源分布和地震动预测方程,进行目标场址的危险性分析与设定地震解耦,衔接三维(震级-经纬度)设定地震解耦结果,给出了考虑所有潜源走向与位置相对贡献的“完备”条件谱。以北京近郊某城市作为算例,结果表明,完备条件谱的均值介于使用长轴和短轴衰减关系的粗略条件谱之间,条件标准差高于粗略条件谱。研究给出的完备条件谱适用于我国区划图的长短轴类型衰减关系,可以很好体现潜源的空间分布特征与背景地震危险性差异。基于我国强震动记录数据库拟合的加速度反应谱相关系数得到的条件谱要略高于基于国外数据库的计算结果。为了实现加速度反应谱均值和标准差的高效匹配,该研究采取多元高斯分布的协方差矩阵近似替换完备条件谱高斯混合分布的协方差矩阵,结合贪心优化算法,选取得到满足目标完备条件谱分布的强震动记录数据集。研究结果系统给出了我国条件目标谱进行记录选取的构建思路与选波方案,可为后续全概率结构性态分析提供依据。

    Abstract:

    The seismic geological structure and the background seismicity varied between different cities or regions, even the corresponding design seismic intensity are identical. To make the hazard level consistent with the target site, this study proposed to construct the conditional spectrum (CS) based on the output of the fifth-generation seismic zonation map of China. The potential seismic sources and GMPE used in the zonation map were applied to carry out the PSHA and the disaggregation of earthquake scenarios. The 3D (magnitude-longitudes-latitude) disaggregation results were applied to construct the "exact" CS considering the contribution of different strikes of the seismic source area. A city in north China was taken as the example to illustrate the CS computation results. The comparison results indicated that the median value of an exact CS lies within the approximate CS using long axis and short axis, the conditional variance is higher than that of the approximate CS. The exact CS could reflect the spatial distribution of the potential seismic area sources and the difference in seismicity, and more suitable for China GMPE which has long axis and short axis equations. The correlation derived using China ground motion dataset would result in higher CS compared with that using PEER dataset. In this study, the covariance matrix of multivariate Gaussian distribution is adopted to approximately replace the covariance matrix of Gaussian mixture distribution of an exact CS. With greedy optimization algorithm, highly efficient matching of mean, standard deviation, and Sa distribution was realized. The exact CS constructed in this study and corresponding ground motion recordings selection could provide a basis for following performance-based analysis of structures.

  • 图  1   重现期2475年下周期1.0 s的设定地震解耦结果

    Figure  1.   Disaggregation of earthquakes with a period of 1.0 s under the return period of 2475 years

    图  2   潜源走向示意图

    Figure  2.   Schematic diagram of strike directions of the source area

    图  3   50年超越概率2%下,条件周期为1.0 s的条件谱

    Figure  3.   Condition spectrum with conditional period of 1.0 s under the 50-year excess probability of 2%

    4   相关系数对比

    4.   Comparison of correlation coefficients

    5   三种相关系数下周期0 s~2 s条件均值对比

    5.   Condition mean spectrum of 0 s~2 s under three kinds of correlation coefficients

    图  6   三种相关系数下周期0 s~2 s标准差对比

    Figure  6.   Standard deviation of 0 s~2 s under three kinds of correlation coefficients

    图  7   服从高斯混合分布的完备条件谱的天然地震动记录选取流程

    Figure  7.   Flow diagram of ground motion selection of exact conditional target spectrum obeying gaussian mixture distribution

    图  8   随机模拟方法生成不同数量模拟反应谱的均值及标准差

    Figure  8.   Mean and standard deviation of different numbers of simulated response spectra generated by stochastic simulation method

    图  9   生成的模拟谱与完备条件谱对比

    Figure  9.   Comparison of the simulated spectrum with exact conditional target spectrum

    10   匹配完备条件谱的天然强震动记录选取结果

    10.   Results of selected ground motion matching exact conditional target spectrum

    图  11   选取结果在周期0.1 s、0.5 s、2.0 s和5.0 s与目标分布对比

    Figure  11.   Comparison of the distribution in periods of 0.1 s, 0.5 s, 2.0 s and 5.0 s with target

  • [1] GB 50011−2010, 建筑抗震设计规范 [S]. 北京: 中国建筑工业出版社, 2010.

    GB 50011−2010, Code for seismic design of buildings [S]. Beijing: China Construction Industry Press, 2010. (in Chinese)

    [2]

    BOMMER J J, SCOTT S G, SARMA S K. Hazard-consistent earthquake scenarios [J]. Soil Dynamics and Earthquake Engineering, 2000, 19(4): 219 − 231. doi: 10.1016/S0267-7261(00)00012-9

    [3] GB 17741−2005, 工程场地地震安全性评价[S]. 北京: 中国标准出版社, 2005.

    GB 17741−2005, Evaluation of seismic safety for engineering sites [S]. Beijing: Standards Press of China, 2005. (in Chinese)

    [4]

    BAKER J W. Conditional mean spectrum: Tool for ground-motion selection [J]. Journal of Structural Engineering, 2011, 137(3): 322 − 331. doi: 10.1061/(ASCE)ST.1943-541X.0000215

    [5]

    BAKER J W, ALLIN CORNELL C. Spectral shape, epsilon and record selection [J]. Earthquake Engineering & Structural Dynamics, 2006, 35(9): 1077 − 1095.

    [6]

    LIN T, HARMSEN S C, BAKER J W, et al. Conditional spectrum computation incorporating multiple causal earthquakes and ground‐motion prediction models [J]. Bulletin of the Seismological Society of America, 2013, 103(2): 1103 − 1116. doi: 10.1785/0120110293

    [7]

    LIN T, HASELTON C B, BAKER J W. Conditional spectrum-based ground motion selection. Part I: Hazard consistency for risk-based assessments [J]. Earthquake Engineering & Structural Dynamics, 2013, 42(12): 1847 − 1865.

    [8] 韩建平, 陈继强, 闫青, 等. 考虑谱形影响的地震动强度指标研究进展[J]. 工程力学, 2015, 32(10): 9 − 17. doi: 10.6052/j.issn.1000-4750.2014.07.ST06

    HAN Jianping, CHEN Jiqiang, YAN Qing, et al. State of the art of ground motion intensity measures accounting for the influence of spectral shape [J]. Engineering Mechanics, 2015, 32(10): 9 − 17. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.07.ST06

    [9] 吕大刚, 刘亭亭, 李思雨, 等. 概率地震危险性分析、分解与设定地震及其在西安地区的应用[J]. 地震工程与工程振动, 2018, 38(5): 12 − 21. doi: 10.13197/j.eeev.2018.05.12.lvdg.002

    LYU Dagang, LIU Tingting, LI Siyu, et al. Probabilistic earthquake hazard analysis, decomposition and set earthquake and its application in Xi'an [J]. Earthquake Engineering and Engineering Vibration, 2018, 38(5): 12 − 21. (in Chinese) doi: 10.13197/j.eeev.2018.05.12.lvdg.002

    [10] 朱瑞广, 于晓辉, 吕大刚. 基于地震动模拟的一致危险谱和条件均值谱生成及应用[J]. 工程力学, 2015, 32(增刊 1): 196 − 201. doi: 10.6052/j.issn.1000-4750.2014.05.S016

    ZHU Ruiguang, YU Xiaohui, LYU Dagang. Generation and application of the uniform hazard spectrum and the conditional mean spectrum based on ground motion simulation [J]. Engineering Mechanics, 2015, 32(Suppl 1): 196 − 201. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.05.S016

    [11] 冀昆, 温瑞智, 任叶飞. 我国条件均值谱及条件谱选波方法应用实例[J]. 建筑结构, 2018, 48(增刊 2): 291 − 298. doi: 10.19701/j.jzjg.2018.S2.059

    JI Kun, WEN Ruizhi, REN Yefei. Ground motion selection based on conditional mean spectrum and conditional spectrum method in China [J]. Building Structure, 2018, 48(Suppl 2): 291 − 298. (in Chinese) doi: 10.19701/j.jzjg.2018.S2.059

    [12] 冀昆, 温瑞智, 任叶飞. 中国地震安全性评价中天然强震记录选取[J]. 哈尔滨工业大学学报, 2016, 48(12): 183 − 188. doi: 10.11918/j.issn.0367-6234.2016.12.026

    JI Kun, WEN Ruizhi, REN Yefei. Real strong ground-motion selection for Chinese seismic safety evaluation work [J]. Journal of Harbin Institute of Technology, 2016, 48(12): 183 − 188. (in Chinese) doi: 10.11918/j.issn.0367-6234.2016.12.026

    [13]

    JI K, WEN R, REN Y, et al. Disaggregation of probabilistic seismic hazard and construction of conditional spectrum for China [J]. Bulletin of Earthquake Engineering, 2021, 19(14): 5769 − 5789. doi: 10.1007/s10518-021-01200-2

    [14]

    JAYARAM N, LIN T, BAKER J W. A computationally efficient ground-motion selection algorithm for matching a target response spectrum mean and variance [J]. Earthquake Spectra, 2011, 27(3): 797 − 815. doi: 10.1193/1.3608002

    [15]

    BRADLEY B A. A ground motion selection algorithm based on the generalized conditional intensity measure approach [J]. Soil Dynamics and Earthquake Engineering, 2012, 40: 48 − 61. doi: 10.1016/j.soildyn.2012.04.007

    [16] 吕大刚, 刘洋, 于晓辉. 第二代基于性能地震工程中的地震易损性模型及正逆概率风险分析[J]. 工程力学, 2019, 36(9): 1 − 11, 24. doi: 10.6052/j.issn.1000-4750.2018.07.ST08

    LYU Dagang, LIU Yang, YU Xiaohui. Seismic fragility models and forward-backward probabilistic risk analysis in second-generation performance-based earthquake engineering [J]. Engineering Mechanics, 2019, 36(9): 1 − 11, 24. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.ST08

    [17] 于晓辉, 吕大刚, 王光远. 关于概率地震需求模型的讨论[J]. 工程力学, 2013, 30(8): 172 − 179. doi: 10.6052/j.issn.1000-4750.2012.04.0278

    YU Xiaohui, LYU Dagang, WANG Guangyuan. Discussions on probabilistic seismic demand models [J]. Engineering Mechanics, 2013, 30(8): 172 − 179. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.04.0278

    [18] 董尧, 吕大刚. RC框架-剪力墙结构的一致倒塌风险决策分析[J]. 工程力学, 2022, 39(增刊): 71 − 77. doi: 10.6052/j.issn.1000-4750.2021.05.S011

    DONG Yao, LYU Dagang. Decision-making analysis of uniform collapse risk for RC frame-shear wall structures [J]. Engineering Mechanics, 2022, 39(Suppl): 71 − 77. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.S011

    [19] 任叶飞, 尹建华, 温瑞智, 等. 结构抗倒塌易损性分析中地震动输入不确定性影响研究[J]. 工程力学, 2020, 37(1): 115 − 125. doi: 10.6052/j.issn.1000-4750.2019.01.0042

    REN Yefei, YIN Jianhua, WEN Ruizhi, et al. The impact of ground motion inputs on the uncertainty of structural collapse fragility [J]. Engineering Mechanics, 2020, 37(1): 115 − 125. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.01.0042

    [20]

    PAGANI M, MONELLI D, WEATHERILL G, et al. OpenQuake-Engine: An open hazard (and risk) software for the global earthquake model [J]. Seismological Research Letters, 2014, 85(3): 692 − 702. doi: 10.1785/0220130087

    [21] GB 18306−2015, 中国地震动参数区划图[S]. 北京: 中国标准出版社, 2015.

    GB 18306−2015, Seismic ground motion parameters zonation map of China [S]. Beijing: Standards Press of China, 2015. (in Chinese)

    [22] 俞言祥, 李山有, 肖亮. 为新区划图编制所建立的地震动衰减关系[J]. 震灾防御技术, 2013, 8(1): 24 − 33. doi: 10.3969/j.issn.1673-5722.2013.01.003

    YU Yanxiang, LI Shanyou, XIAO Liang. Development of ground motion attenuation relations for the new seismic hazardmap of China [J]. Technology for Earthquake Disaster Prevention, 2013, 8(1): 24 − 33. (in Chinese) doi: 10.3969/j.issn.1673-5722.2013.01.003

    [23]

    BAKER J W, JAYARAM N. Correlation of spectral acceleration values from NGA ground motion models [J]. Earthquake Spectra, 2008, 24(1): 299 − 317. doi: 10.1193/1.2857544

    [24]

    JAYARAM N, BAKER J W, OKANO H, et al. Correlation of response spectral values in Japanese ground motions [J]. Earthquakes and Structures, 2011, 2(4): 357 − 376. doi: 10.12989/eas.2011.2.4.357

    [25]

    CIMELLARO G P. Correlation in spectral accelerations for earthquakes in Europe [J]. Earthquake Engineering & Structural Dynamics, 2013, 42(4): 623 − 633.

    [26]

    DANESHVAR P, BOUAANANI N, GODIA A. On computation of conditional mean spectrum in Eastern Canada [J]. Journal of Seismology, 2015, 19(2): 443 − 467. doi: 10.1007/s10950-014-9476-6

    [27]

    JI K, BOUAANANI N, WEN R, et al. Correlation of spectral accelerations for earthquakes in China [J]. Bulletin of the Seismological Society of America, 2017, 107(3): 1213 − 1226. doi: 10.1785/0120160291

    [28]

    BAKER J W, BRADLY B A. Intensity measure correlations observed in the NGA-West2 database, and dependence of correlations on rupture and site parameters [J]. Earthquake Spectra, 2017, 33(1): 145 − 156.

    [29]

    BRADLEY B A. Site-specific and spatially distributed ground-motion prediction of acceleration spectrum intensity [J]. Bulletin of the Seismological Society of America, 2010, 100(2): 792 − 801. doi: 10.1785/0120090157

    [30]

    BRADLEY B A. A generalized conditional intensity measure approach and holistic ground-motion selection [J]. Earthquake Engineering & Structural Dynamics, 2010, 39(12): 1321 − 1342.

图(14)
计量
  • 文章访问数:  267
  • HTML全文浏览量:  132
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-21
  • 修回日期:  2022-07-06
  • 网络出版日期:  2022-07-13
  • 刊出日期:  2024-01-31

目录

    /

    返回文章
    返回