THEORETICAL AND SIMULATION RESEARCH ON TIGHTENING PROCESS OF DOUBLE NUT ANTI-LOOSENING BOLTS
-
摘要:
工程中双螺母防松是一种常见的螺栓连接防松形式。为研究双螺母螺栓拧紧过程中的力学性能,考虑螺纹柔性的影响,建立了双螺母螺栓连接的力学模型,对螺纹的受力进行了分析,推导并给出了螺栓杆轴力和螺纹表面接触应力的计算方法,研究了螺纹接触应力的分布规律,以及上下螺母拧紧力矩配比对螺纹接触状态的影响,建立了螺栓预紧力与上下螺母拧紧力矩的关系,分析对比了螺栓规格、螺母厚度配比对螺栓杆轴力分布、接触应力的影响规律。建立了双螺母螺栓的精细化有限元模型,并将仿真结果与理论结果进行了对比验证,结果发现该文推导给出的螺栓杆轴力计算方法与有限元结果吻合很好。
Abstract:Double nut is a common anti-loosening form of bolt connection in engineering practice. In order to study the mechanical properties of double nut bolts during tightening process, the mechanical model of double-nut bolted joint considering the influence of thread flexibility is established, and the thread forces are analyzed. The calculation method is deduced for the bolt rod axial force and the thread surface contact stress. Analyzed on thread contact state are the distribution law of thread contact stress and, the influence of upper and lower nut tightening torque ratio. The relationship between bolt preload and nut tightening torque is established, and the influence of bolt specification and the ratio of upper and lower nut thickness on bolt axial force distribution and on contact stress are compared. The refined finite element models of double-nut bolted joint are established, and the simulation results are compared with the theoretical results. The results show that the calculation method of the bolt rod axial force presented are consistent with the finite element results very well.
-
表 1 M16螺栓基本结构参数
Table 1 Basic structural parameters of M16 bolt
参数名称 取值 强度等级 6.8 弹性模量/GPa 206 泊松比 0.3 螺纹公称直径/mm 16 螺距/mm 2 牙型角/(o) 60 夹紧长度/mm 20 螺母高度/mm 14 表 2 不同拧紧力矩组合
Table 2 Combination of different tightening torques
模型编号 T1/Ty/(%) T2/Ty/(%) η 1 50 0 − 2 50 10 0.2 3 50 25 0.5 4 50 35 0.7 5 50 50 1.0 6 30 30 1.0 7 70 70 1.0 注:T1为下螺母扭矩;T2为上螺母扭矩;Ty为螺栓屈服载荷Fy对应的扭矩;η为下螺母与上螺母拧紧力矩之比。 表 3 上螺母拧紧力矩与螺栓预紧力关系
Table 3 Relationship between tightening torque of upper nut and bolt preload
上螺母扭矩T2/(N·m) 5 8 10 15 18 预紧力FP/kN 4.58 4.71 4.92 5.22 5.48 -
[1] 齐连训, 罗云标, 严加宝, 等. 高变形能力螺栓抗剪连接件抗剪承载力理论分析与验证[J]. 工程力学, 2021, 38(10): 74 − 82. doi: 10.6052/j.issn.1000-4750.2020.09.0678 QI Lianxun, LUO Yunbiao, YAN Jiabao, et al. Theoretical analysis and verification on shear capacity of high-deformability bolted shear connector [J]. Engineering Mechanics, 2021, 38(10): 74 − 82. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.09.0678
[2] 范俊伟, 杨璐, 班慧勇. 新型单边拧紧高强度螺栓摩擦型连接扭矩系数及抗剪性能试验研究[J]. 工程力学, 2021, 38(1): 119 − 128. doi: 10.6052/j.issn.1000-4750.2020.02.0111 FAN Junwei, YANG Lu, BAN Huiyong. Experimental study on torque coefficient and on shear performance of a novel blind bolted connection with high-strength bolts [J]. Engineering Mechanics, 2021, 38(1): 119 − 128. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.0111
[3] LIU X C, CUI F Y, JIANG Z Q, et al. Tension-bend-shear capacity of bolted-flange connection for square steel tube column [J]. Engineering Structures, 2019, 201: 109798. doi: 10.1016/j.engstruct.2019.109798
[4] NA W S. Bolt loosening detection using impedance based non-destructive method and probabilistic neural network technique with minimal training data [J]. Engineering Structures, 2021, 226: 111228. doi: 10.1016/j.engstruct.2020.111228
[5] DU J G, QIU Y Y, WANG Z Q, et al. A three-stage criterion to reveal the bolt self-loosening mechanism under random vibration by strain detection [J]. Engineering Failure Analysis, 2022, 133: 105954. doi: 10.1016/j.engfailanal.2021.105954
[6] JIANG W Q, LIU Y P, CHAN S L, et al. Direct analysis of an ultrahigh-voltage lattice transmission tower considering joint effects [J]. Journal of Structural Engineering, 2017, 143(5): 04017009. doi: 10.1061/(ASCE)ST.1943-541X.0001736
[7] JIANG W Q, WANG Z Q, MCCLURE G, et al. Accurate modeling of joint effects in lattice transmission towers [J]. Engineering Structures, 2011, 33(5): 1817 − 1827. doi: 10.1016/j.engstruct.2011.02.022
[8] AN L Q, WU J, JIANG W Q. Experimental and numerical study of the axial stiffness of bolted joints in steel lattice transmission tower legs [J]. Engineering Structures, 2019, 187: 490 − 503. doi: 10.1016/j.engstruct.2019.02.070
[9] 杨风利. 考虑螺栓连接滑移影响的输电铁塔塔身结构分析[J]. 工程力学, 2018, 35(增刊 1): 193 − 199. doi: 10.6052/j.issn.1000-4750.2017.04.S039 YANG Fengli. Structural analysis on a typical transmission tower body section with bolt slippage effects [J]. Engineering Mechanics, 2018, 35(Suppl 1): 193 − 199. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.04.S039
[10] 杜永强, 刘建华, 刘学通, 等. 偏心载荷作用下螺栓连接结构的松动行为研究[J]. 机械工程学报, 2018, 54(14): 74 − 81. DU Yongqiang, LIU Jianhua, LIU Xuetong, et al. Research on self-loosening behavior of bolted joints under eccentric excitation [J]. Journal of Mechanical Engineering, 2018, 54(14): 74 − 81. (in Chinese)
[11] 张明远, 鲁连涛, 唐明明, 等. 横向载荷作用下螺栓临界松动载荷数值计算方法研究[J]. 机械工程学报, 2018, 54(5): 173 − 178. doi: 10.3901/JME.2018.05.173 ZHANG Mingyuan, LU Liantao, TANG Mingming, et al. Research on numerical calculation method of critical load for bolt loosening under transverse loading [J]. Journal of Mechanical Engineering, 2018, 54(5): 173 − 178. (in Chinese) doi: 10.3901/JME.2018.05.173
[12] 杨风利, 李正, 张大长, 等. 输电铁塔双螺母防松螺栓横向振动试验研究[J]. 振动与冲击, 2018, 37(10): 164 − 171. YANG Fengli, LI Zheng, ZHANG Dachang, et al. Experimental study on the transversal vibration of double-nut bolted joints of transmission towers [J]. Journal of Vibration and Shock, 2018, 37(10): 164 − 171. (in Chinese)
[13] JIANG W Q, MO Z, YANG L Q, et al. Theoretical study on early stage self-loosening of bolted joint in lattice transmission tower under transverse load [J]. Advanced Steel Construction, 2022, 18(2): 574 − 584.
[14] 江文强, 墨泽, 安利强, 等. 考虑螺纹柔性的螺栓连接临界松动载荷计算方法[J]. 机械工程学报, 2020, 56(15): 238 − 248. doi: 10.3901/JME.2020.15.238 JIANG Wenqiang, MO Ze, AN Liqiang, et al. Computing method of bolted joint critical loosening load with flexible thread [J]. Journal of Mechanical Engineering, 2020, 56(15): 238 − 248. (in Chinese) doi: 10.3901/JME.2020.15.238
[15] 李海江, 田煜, 孟永钢, 等. 横向振动作用下螺纹联接松动过程的实验研究[J]. 清华大学学报(自然科学版), 2016, 56(2): 171 − 175, 184. LI Haijiang, TIAN Yu, MENG Yonggang, et al. Experimental study of the loosening of threaded fasteners with transverse vibration [J]. Journal of Tsinghua University (Science and Technology), 2016, 56(2): 171 − 175, 184. (in Chinese)
[16] 胡阳, 姜东, 王旻睿, 等. 横向载荷作用下螺栓连接松动过程研究[J]. 振动、测试与诊断, 2020, 40(6): 1091 − 1098. HU Yang, JIANG Dong, WANG Minrui, et al. Study on loosening process of bolted joints under transverse load [J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(6): 1091 − 1098. (in Chinese)
[17] 卫星, 刘铭扬, 温宗意, 等. 列车风激励下高铁声屏障连接螺栓经时松弛研究[J]. 振动与冲击, 2021, 40(22): 188 − 193. WEI Xing, LIU Mingyang, WEN Zongyi, et al. Time-dependent relaxation of the connection bolts of a high-speed railway noise barrier under train wind excitation [J]. Journal of Vibration and Shock, 2021, 40(22): 188 − 193. (in Chinese)
[18] 王开平, 张明远, 闫明, 等. 冲击载荷下材料松动期内螺栓松动影响因素研究[J]. 振动与冲击, 2020, 39(22): 35 − 40, 66. WANG Kaiping, ZHANG Mingyuan, YAN Ming, et al. Factors affecting bolt loosening during material loosening period under impact loading [J]. Journal of Vibration and Shock, 2020, 39(22): 35 − 40, 66. (in Chinese)
[19] 张敏照, 王乐, 田鑫海. 基于内积矩阵及卷积自编码器的螺栓松动状态监测[J]. 工程力学, 2022, 39(12): 222 − 231. doi: 10.6052/j.issn.1000-4750.2021.07.0583 ZHANG Minzhao, WANG Le, TIAN Xinhai. Bolt loosening state monitoring based on inner product matrix and convolutional autoencoder [J]. Engineering Mechanics, 2022, 39(12): 222 − 231. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.07.0583
[20] 赵思钛, 吕伟荣, 戚菁菁, 等. 基于柔度系数影响线的风力机塔架法兰螺栓松动识别方法研究[J]. 工程力学, 2023, 40(12): 185 − 193. doi: 10.6052/j.issn.1000-4750.2022.02.0180 ZHAO Sitai, LYU Weirong, QI Jingjing, et al. Research on identification technology of wind turbine tower flange bolt looseness upon influence line of flexibility coefficient [J]. Engineering Mechanics, 2023, 40(12): 185 − 193. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.02.0180
[21] YAMATOTO A. The theory and computation of threads connection [M]. Tokyo: Yokendo, 1980: 41 − 55. (in Japanese) [22] 景秀并. 双螺母防松振动性能分析与研究[D]. 天津: 天津大学, 2004. JING Xiubing. Analyze and study on anti-looseness properties of double-nuts [D]. Tianjin: Tianjin University, 2004. (in Chinese)
-
期刊类型引用(3)
1. 张强,王柄楠,张晓晨,徐波,李燕,凌晨冰,江文强. 考虑基础-土相互作用的采空区输电铁塔承载特性研究. 山西建筑. 2025(01): 6-11 . 百度学术
2. 冯立言,王彤,霍仕康,江文强. 特高压钢管塔微风振动稳态幅值估计方法研究. 建筑钢结构进展. 2025(03): 66-75 . 百度学术
3. 周文强,蒋良潍,罗强,肖卓琦,罗義錬,魏明. 锚杆框架梁柔性外锚头减震性能振动台模型试验研究. 岩土力学. 2025(04): 1163-1173+1186 . 百度学术
其他类型引用(3)