Loading [MathJax]/jax/output/SVG/jax.js

土质边坡的单元失效概率与失效模式研究

彭普, 李泽, 张小艳, 申林方, 许芸

彭普, 李泽, 张小艳, 申林方, 许芸. 土质边坡的单元失效概率与失效模式研究[J]. 工程力学, 2024, 41(1): 193-207. DOI: 10.6052/j.issn.1000-4750.2022.02.0192
引用本文: 彭普, 李泽, 张小艳, 申林方, 许芸. 土质边坡的单元失效概率与失效模式研究[J]. 工程力学, 2024, 41(1): 193-207. DOI: 10.6052/j.issn.1000-4750.2022.02.0192
PENG Pu, LI Ze, ZHANG Xiao-yan, SHEN Lin-fang, XU Yun. RESEARCH ON ELEMENT FAILURE PROBABILITY AND FAILURE MODE OF SOIL SLOPE[J]. Engineering Mechanics, 2024, 41(1): 193-207. DOI: 10.6052/j.issn.1000-4750.2022.02.0192
Citation: PENG Pu, LI Ze, ZHANG Xiao-yan, SHEN Lin-fang, XU Yun. RESEARCH ON ELEMENT FAILURE PROBABILITY AND FAILURE MODE OF SOIL SLOPE[J]. Engineering Mechanics, 2024, 41(1): 193-207. DOI: 10.6052/j.issn.1000-4750.2022.02.0192

土质边坡的单元失效概率与失效模式研究

基金项目: 国家自然科学基金项目(12162018,12262016);昆明理工大学引进人才科研启动基金项目(KKSY201904006)
详细信息
    作者简介:

    彭 普(1995−),男,湖北人,博士生,主要从事结构可靠度方面的科研工作(E-mail: pengpu@stu.kust.edu.cn)

    张小艳(1981−),女,湖北人,讲师,博士,主要从事结构可靠度方面的教学和科研工作(E-mail: zhangxiaoyan@kust.edu.cn)

    申林方(1982−),女,湖南人,副教授,博士,主要从事岩体力学领域的教学与研究工作(E-mail: linfangshen@126.com)

    许 芸(1984−),女,湖北人,工程师,学士,主要从事岩土工程方面的科研工作(E-mail: xuyun@cjwsjy.com.cn)

    通讯作者:

    李 泽(1981−),男,云南人,教授,博士,主要从事岩土力学领域的科研工作(E-mail: lize@kust.edu.cn)

  • 中图分类号: TU43

RESEARCH ON ELEMENT FAILURE PROBABILITY AND FAILURE MODE OF SOIL SLOPE

  • 摘要:

    土质边坡系统失效概率与土体抗剪强度参数以及地下水位息息相关,在传统边坡可靠度分析中一般只考虑了土体抗剪强度参数的变异性,忽略了地下水位随机性带来的影响。该文将有限元离散技术、上限法理论、相关非高斯随机场模拟方法以及随机规划理论结合起来研究随机地下水位作用下考虑参数空间变异性的边坡系统失效概率。采用有限单元离散边坡土体,将边坡地下水位作为随机变量并考虑土体抗剪参数的空间变异性,基于塑性极限分析上限法构建边坡可靠度分析的随机规划模型;采用基于蒙特卡洛的迭代方法进行求解,得到边坡稳定性系数和速度场;根据边坡中单元的失效信息首次采用AP聚类分析方法来估算边坡的系统失效概率,发展了边坡系统可靠度分析理论。对一个经典的边坡算例进行了系统分析并与极限平衡分析方法、有限元方法结果进行对比,结果表明:随机地下水位作用下考虑参数空间变异性时,边坡存在多种失效模式,AP聚类分析方法可以根据失效单元的位置信息识别出边坡所有失效模式以及对应的失效概率;基于Matlab编制了高效的上限法并行程序,大大提高了计算效率。

    Abstract:

    The failure probability of a soil slope system is strongly related to soil shear strength parameters and groundwater level. In the traditional slope reliability analysis, only the variability of soil shear strength parameters is generally considered, and the influence of random groundwater level is ignored. Finite element discrete technique, upper bound method theory, relevant non-Gaussian random field simulation method and, stochastic planning theory are combined to study the failure probability of the slope system under the effect of stochastic groundwater level considering the spatial variability of parameters. A stochastic programming model for slope reliability analysis is constructed upon the upper bound method for plastic limit analysis by using a finite element discrete slope soil body, taking the groundwater level of the slope as a random variable and considering the spatial variability of the soil shear parameters, and then the model is employed to obtain the stability safety coefficient and velocity field of the slope upon Monte Carlo simulation; the AP clustering analysis method is used for the first time to the system failure probability of the slope estimated based on the failure information of the elements in the slope, and the reliability analysis theory of the slope system is developed. A classical slope calculation case is systematically analyzed and compared with the results of Limit Equilibrium Analysis Method and Finite Element Method. The results show that: there are multiple failure modes of slopes under the action of random groundwater level considering the spatial variability of parameters, and the AP cluster analysis method can identify all the failure modes of slopes and the corresponding failure probabilities based on the location information of failed elements; an efficient parallel program of upper bound method is prepared upon Matlab, which greatly improved computing efficiency.

  • 图  1   边坡随机地下水位作用示意图

    Figure  1.   Schematic diagram of random groundwater level of soil slope

    图  2   边坡可靠度上限法流程图

    Figure  2.   Flow chart of reliability analysis using upper bound method for slope

    图  3   AP聚类算法选点过程

    Figure  3.   AP clustering algorithm selection process

    图  4   均质边坡计算模型 /m

    Figure  4.   Homogeneous slope calculation model

    图  5   地下水位随机数分布直方图

    Figure  5.   Histogram of random distribution of groundwater level

    图  6   边坡稳定渗流场

    Figure  6.   Steady seepage field of slope

    图  7   关键点处孔隙水压力随机变化情况

    Figure  7.   The pore water pressure of the monitoring points

    图  8   边坡抗剪强度参数随机场

    Figure  8.   Random Field of Slope Shear Strength Parameters

    图  9   边坡稳定性系数分布特征

    Figure  9.   Distribution characteristics of slope safety factor

    图  10   边坡稳定性系数概率密度曲线

    Figure  10.   Probability density curve of safety factor of slope

    图  11   边坡稳定性系数累积概率密度曲线

    Figure  11.   Cumulative probability density curve of safety factor of slope

    图  12   边坡稳定性系数的均值与地下水位的关系

    Figure  12.   The relationship between the slope safety factor and groundwater

    图  13   边坡稳定性系数的频数分布直方图

    Figure  13.   Frequency distribution histogram of safety factors

    图  14   边坡失效模式AP聚类结果

    Figure  14.   Schematic diagram of AP clustering results of slope failure mode

    图  15   边坡整体失效概率与地下水位的关系

    Figure  15.   The relationship between slope failure probability and groundwater

    图  16   单元失效概率等值线

    Figure  16.   Element failure probability contour

    图  17   单元失效概率与地下水位的关系

    Figure  17.   The relationship between the element failure probability and groundwater

    表  1   土体参数统计特性

    Table  1   Statistics of soil parameters

    土体参数均值变异系数分布类型波动范围相关系数
    黏聚力c/kPa100.3对数正态Lh=40 mρc,φ=−0.5
    摩擦角φ/(°)300.2对数正态Lv=4 m
    下载: 导出CSV

    表  2   不同方法的边坡可靠度结果对比

    Table  2   Comparison of slope reliability results of different methods

    计算方法水平坐标方向
    波动范围Lh/m
    竖直坐标方向
    波动范围Lv/m
    均值
    uk
    标准差
    σk
    失效概率
    PZf/(%)
    本文方法4041.2010.0961.10×10−2
    K-L法[37]1.1990.1061.71×10−2
    LHS法[32]1.1840.1021.80×10−2
    FEM法1.2250.0990.40×10−2
    下载: 导出CSV

    表  3   三种水位作用下边坡的可靠度指标

    Table  3   Calculation results of reliability index

    水位计算方法均值uk标准差σk失效概率PZf/(%)
    tw=1UBM1.2010.0961.10×10−2
    LEM1.1990.1061.71×10−2
    FEM1.2260.0970.60×10−2
    tw=25UBM1.1430.0904.50×10−2
    LEM1.1430.0975.60×10−2
    FEM1.1680.0902.40×10−2
    tw=50UBM0.8940.07092.70×10−2
    LEM0.8920.06993.40×10−2
    FEM0.9160.07189.40×10−2
    下载: 导出CSV

    表  4   边坡失效模式以及对应的失效概率

    Table  4   Slope failure mode and the corresponding failure probability

    失效模式失效面积/m2失效次数失效概率PZf/(%)
    模式15.45~7.415261.052
    模式210.35~15.526671.334
    模式348.72~53.4433426.684
    模式469.43~72.4210882.176
    模式589.45~92.911220.244
    模式6110.05~112.65640.128
    总和580911.618
    下载: 导出CSV

    表  5   不同地下水位作用下边坡失效模式以及对应的失效概率

    Table  5   Slope failure modes and corresponding failure probabilities under the action of different groundwater levels

    地下水位失效模式失效次数失效概率PZf/(%)
    tw=1模式380.800
    tw=25模式3131.300
    模式4121.200
    tw=50模式12192.190
    模式21781.780
    模式33403.400
    模式41551.550
    模式5260.260
    模式690.090
    下载: 导出CSV
  • [1]

    DAI F C, LEE C F, NGAI Y Y. Landslide risk assessment and management: an overview [J]. Engineering Geology, 2002, 64(1): 65 − 87. doi: 10.1016/S0013-7952(01)00093-X

    [2] 杨智勇, 李典庆, 曹子君, 等. 考虑土质边坡多失效模式的区域概率风险分析方法[J]. 工程力学, 2019, 36(5): 216 − 225, 234. doi: 10.6052/j.issn.1000-4750.2018.03.0171

    YANG Zhiyong, LI Dianqing, CAO Zijun, et al. Region probability method for soil slope risk assessment involving multiple failure modes [J]. Engineering Mechanics, 2019, 36(5): 216 − 225, 234. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.03.0171

    [3] 蒋水华, 姚池, 杨建华, 等. 基于模型修正的空间变异边坡可靠度分析方法[J]. 工程力学, 2018, 35(8): 154 − 161. doi: 10.6052/j.issn.1000-4750.2017.04.0308

    JIANG Shuihua, YAO Chi, YANG Jianhua, et al. Model correction factor method based approach for reliability analysis of spatially variable slopes [J]. Engineering Mechanics, 2018, 35(8): 154 − 161. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.04.0308

    [4]

    WANG L, WU C, LI Y, et al. Probabilistic risk assessment of unsaturated slope failure considering spatial variability of hydraulic parameters [J]. KSCE Journal of Civil Engineering, 2019, 23(12): 5032 − 5040.

    [5]

    MALKAWI A, HASSAN W F, ABDULLA F A. Uncertainty and reliability analys is applied to slope stability [J]. Structural Safety, 2000, 22(2): 161 − 187.

    [6]

    JI J, ZHANG W, ZHANG F, et al. Reliability analysis on permanent displacement of earth slopes using the simplified bishop method [J]. Computers and Geotechnics, 2020, 117(1): 103286-1 − 103286-8.

    [7] 卢应发, 张凌晨, 张玉芳, 等. 边坡渐进破坏多参量评价指标[J]. 工程力学, 2021, 38(3): 132 − 147. doi: 10.6052/j.issn.1000-4750.2020.05.0286

    LU Yingfa, ZHANG Lingchen, ZHANG Yufang, et al. Multi parameter evaluation index of progressive failure of landslide [J]. Engineering Mechanics, 2021, 38(3): 132 − 147. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.0286

    [8]

    CHING J, PHOON K K, HU Y G. Efficient evaluation of reliability for slopes with circular slip surfaces using importance sampling [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(6): 768 − 777. doi: 10.1061/(ASCE)GT.1943-5606.0000035

    [9]

    DYSON A P, TOLOOIYAN A. Comparative approaches to probabilistic finite element methods for slope stability analysis [J]. Simulation Modelling Practice and Theory, 2020, 100(1): 102061-1 − 102061-17.

    [10] 杨奎斌, 朱彦鹏. 基于坡面卸荷的土质边坡应力状态及稳定性分析[J]. 工程力学, 2021, 38(11): 95 − 104. doi: 10.6052/j.issn.1000-4750.2020.10.0753

    YANG Kuibin, ZHU Yanpeng. Soil slope stress state and stability analysis based on unloading effect of slope surfaces [J]. Engineering Mechanics, 2021, 38(11): 95 − 104. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.10.0753

    [11]

    GRIFFITHS D V, HUANG J, FENTON G A. Influence of spatial variability on slope reliability using 2-D random fields [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(10): 1367 − 1378. doi: 10.1061/(ASCE)GT.1943-5606.0000099

    [12]

    LYSMER J. Limit analysis of plane problems in soil mechanics [J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1970, 96(4): 1311 − 1334. doi: 10.1061/JSFEAQ.0001441

    [13]

    CHEN W F. Limit analysis and soil plasticity [M]. Amsterdam: Elsevier Science, 1975.

    [14]

    SLOAN S W. Lower bound limit analysis using finite elements and linear programming [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(1): 61 − 77. doi: 10.1002/nag.1610120105

    [15]

    SLOAN S W, KLEEMAN P W. Upper bound limit analysis using discontinuous velocity fields [J]. Computer Methods in Applied Mechanics & Engineering, 1995, 127(1/2/3/4): 293 − 314.

    [16]

    YU H S, SALGADO R, SLOAN S W, et al. Limit analysis versus limit equilibrium for slope stability [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(1): 1 − 11.

    [17]

    KIM J, SALGADO R, YU H S. Limit analysis of soil slopes subjected to pore-water pressures [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(1): 49 − 58. doi: 10.1061/(ASCE)1090-0241(1999)125:1(49)

    [18]

    LI Z, ZHOU Y, GUO Y. Upper-bound analysis for stone retaining wall slope based on mixed numerical discretization [J]. International Journal of Geomechanics, 2018, 18(10): 04018122-1 − 04018122-14.

    [19] 张小艳, 张立翔, 李泽. 基于塑性极限分析上限法理论的土质边坡可靠度分析[J]. 岩土力学, 2018, 39(5): 1840 − 1850. doi: 10.16285/j.rsm.2017.1894

    ZHANG Xiaoyan, ZHANG Lixiang, LI Ze. Reliability analysis of soil slope based on upper bound method of limit analysis [J]. Rock and Soil Mechanics, 2018, 39(5): 1840 − 1850. (in Chinese) doi: 10.16285/j.rsm.2017.1894

    [20] 李亮, 刘宝琛. 边坡极限承载力的下限分析法及其可靠度理论[J]. 岩石力学与工程学报, 2001, 20(4): 508 − 513. doi: 10.3321/j.issn:1000-6915.2001.04.017

    LI Liang, LIU Baochen. Lower bound limit analysis on bearing capacity of slope and its reliability [J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(4): 508 − 513. (in Chinese) doi: 10.3321/j.issn:1000-6915.2001.04.017

    [21] 陈朝晖, 雷坚, 黄景华, 等. 考虑参数空间变异性的边坡稳定可靠性有限元极限分析[J]. 岩土工程学报, 2018, 40(6): 985 − 993.

    CHEN Zhaohui, LEI Jian, HUANG Jinghua, et al. Finite element limit analysis of slope stability considering spatial variability of soil strengths [J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 985 − 993. (in Chinese)

    [22] 李典庆, 肖特, 曹子君, 等. 基于极限平衡法和有限元法的边坡协同式可靠度分析[J]. 岩土工程学报, 2016, 38(6): 1004 − 1013. doi: 10.11779/CJGE201606005

    LI Dianqing, XIAO Te, CAO Zijun, et al. Auxiliary slope reliability analysis using limit equilibrium method and finite element method [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1004 − 1013. (in Chinese) doi: 10.11779/CJGE201606005

    [23] 蒋水华, 潘嘉铭, 秦根泉. 基于代表性滑动面的空间变异土坡可靠度分析[J]. 武汉大学学报(工学版), 2016, 49(5): 768 − 773. doi: 10.14188/j.1671-8844.2016-05-021

    JIANG Shuihua, PAN Jiaming, QIN Genquan. Reliability analysis of spatially variable soil slopes based on representative slip surfaces [J]. Engineering Journal of Wuhan University, 2016, 49(5): 768 − 773. (in Chinese) doi: 10.14188/j.1671-8844.2016-05-021

    [24]

    CASSIDY M J, UZIELLI M, LACASSE S. Probability risk assessment of landslides: A case study at finneidfjord [J]. Canadian Geotechnical Journal, 2008, 45(9): 1250 − 1267.

    [25] 雷坚, 陈朝晖, 黄景华. 饱和渗透系数空间变异性对边坡稳定性的影响[J]. 武汉大学学报(工学版), 2016, 49(6): 831 − 837. doi: 10.14188/j.1671-8844.2016-06-006

    LEI Jian, CHEN Zhaohui, HUANG Jinghua. Effects of spatial variability of saturated permeability on slope stability [J]. Engineering Journal of Wuhan University, 2016, 49(6): 831 − 837. (in Chinese) doi: 10.14188/j.1671-8844.2016-06-006

    [26] 左自波, 张璐璐, 程演, 等. 基于MCMC法的非饱和土渗流参数随机反分析[J]. 岩土力学, 2013, 34(8): 2393 − 2400.

    ZUO Zibo, ZHANG Lulu, CHENG Yan, et al. Probabilistic back analysis of unsaturated soil seepage parameters based on markov chain monte carlo method [J]. Rock and Soil Mechanics, 2013, 34(8): 2393 − 2400. (in Chinese)

    [27]

    SHADABFAR M, HUANG H, KORDESTANI H, et al. Reliability analysis of slope stability considering uncertainty in water table level [J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part A Civil Engineering, 2020, 6(3): 04020025-1 − 04020025-8.

    [28] 周建烽, 王均星, 陈炜, 罗贝尔. 线性与非线性强度的土石坝坝坡稳定分析下限法[J]. 岩土力学, 2015, 36(1): 233 − 239. doi: 10.16285/j.rsm.2015.01.032

    ZHOU Jianfeng, WANG Junxing, CHEN Wei, et al. Lower bound method for slope stability of earth-rockfill dam with linear and nonlinear strengths [J]. Rock and Soil Mechanics, 2015, 36(1): 233 − 239. (in Chinese) doi: 10.16285/j.rsm.2015.01.032

    [29]

    CHO S E, PARK H C. Effect of spatial variability of cross-correlated soil properties on bearing capacity of strip footing [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34(1): 1 − 26.

    [30]

    LI K S, LUMB P. Probabilistic design of slopes [J]. Canadian Geotechnical Journal, 1987, 24(4): 520 − 535. doi: 10.1139/t87-068

    [31] 李典庆, 蒋水华, 周创兵, 等. 考虑参数空间变异性的边坡可靠度分析非侵入式随机有限元法[J]. 岩土工程学报, 2013, 35(8): 1413 − 1422.

    LI Dianqing, JIANG Shuihua, ZHOU Chuangbing, et al. Reliability analysis of slopes considering spatial variability of soil parameters using non-intrusive stochastic finite element method [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1413 − 1422. (in Chinese)

    [32] 蒋水华, 李典庆, 周创兵, 等. 考虑自相关函数影响的边坡可靠度分析[J]. 岩土工程学报, 2014, 36(3): 508 − 518. doi: 10.11779/CJGE201403014

    JIANG Shuihua, LI Dianqing, ZHOU Chuangbing, et al. Slope reliability analysis considering effect of autocorrelation functions [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 508 − 518. (in Chinese) doi: 10.11779/CJGE201403014

    [33] 王均星, 李泽. 考虑孔隙水压力的土坡稳定性的有限元上限分析[J]. 岩土力学, 2007, 28(2): 213 − 218. doi: 10.3969/j.issn.1000-7598.2007.02.001

    WANG Junxing, LI Ze. Upper bound analysis of stability of soil slope subjected to pore water pressure using finite elements [J]. Rock and Soil Mechanics, 2007, 28(2): 213 − 218. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.02.001

    [34]

    METYA S, MUKHOPADHYAY T, ADHIKARI S, et al. System reliability analysis of soil slopes with general slip surfaces using multivariate adaptive regression splines [J]. Computers and Geotechnics, 2017, 87(7): 212 − 228.

    [35]

    HUANG J, LYAMIN A V, GRIFFITHS D V, et al. Quantitative risk assessment of landslide by limit analysis and random fields [J]. Computers and Geotechnics, 2013, 53(3): 60 − 67.

    [36] 李典庆, 肖特, 曹子君, 等. 基于高效随机有限元法的边坡风险评估[J]. 岩土力学, 2016, 37(7): 1994 − 2003. doi: 10.16285/j.rsm.2016.07.021

    LI Dianqing, XIAO Te, CAO Zijun, et al. Slope risk assessment using efficient random finite element method [J]. Rock and Soil Mechanics, 2016, 37(7): 1994 − 2003. (in Chinese) doi: 10.16285/j.rsm.2016.07.021

    [37]

    CHO S E. Probabilistic assessment of slope stability that considers the spatial variability of soil properties [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(7): 975 − 984. doi: 10.1061/(ASCE)GT.1943-5606.0000309

图(17)  /  表(5)
计量
  • 文章访问数:  410
  • HTML全文浏览量:  85
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-26
  • 修回日期:  2022-06-29
  • 网络出版日期:  2022-07-28
  • 刊出日期:  2024-01-24

目录

    /

    返回文章
    返回