自动审图及智能审图研究与应用综述

林佳瑞, 周育丞, 郑哲, 陆新征

林佳瑞, 周育丞, 郑哲, 陆新征. 自动审图及智能审图研究与应用综述[J]. 工程力学, 2023, 40(7): 25-38. DOI: 10.6052/j.issn.1000-4750.2021.11.0908
引用本文: 林佳瑞, 周育丞, 郑哲, 陆新征. 自动审图及智能审图研究与应用综述[J]. 工程力学, 2023, 40(7): 25-38. DOI: 10.6052/j.issn.1000-4750.2021.11.0908
LIN Jia-rui, ZHOU Yu-cheng, ZHENG Zhe, LU Xin-zheng. RESEARCH AND APPLICATION OF INTELLIGENT DESIGN REVIEW[J]. Engineering Mechanics, 2023, 40(7): 25-38. DOI: 10.6052/j.issn.1000-4750.2021.11.0908
Citation: LIN Jia-rui, ZHOU Yu-cheng, ZHENG Zhe, LU Xin-zheng. RESEARCH AND APPLICATION OF INTELLIGENT DESIGN REVIEW[J]. Engineering Mechanics, 2023, 40(7): 25-38. DOI: 10.6052/j.issn.1000-4750.2021.11.0908

自动审图及智能审图研究与应用综述

基金项目: 国家自然科学基金项目(51908323,72091512);清华大学-广联达BIM联合研究中心项目(RCBIM)
详细信息
    作者简介:

    周育丞(1998−),男,贵州人,硕士生,主要从事建筑信息化相关的研究(E-mail: zhouyc19@mails.tsinghua.edu.cn)

    郑 哲(1997−),男,四川人,博士生,主要从事建筑信息化相关的研究(E-mail: zhengz19@mails.tsinghua.edu.cn)

    陆新征(1978−),男,安徽人,教授,博士,博导,主要从事数值模拟与防灾减灾研究(E-mail: luxz@tsinghua.edu.cn)

    通讯作者:

    林佳瑞(1987−),男,山东人,助理研究员,博士,主要从事智能建造、数字孪生、知识图谱相关研究(E-mail: lin611@tsinghua.edu.cn)

  • 中图分类号: TU17

RESEARCH AND APPLICATION OF INTELLIGENT DESIGN REVIEW

  • 摘要: 审图,即设计审查,是保障工程设计安全、环保、舒适、合规的关键环节。针对传统人工审图成本高、主观性强、低效、易错等问题,智能审图应运而生并被广泛关注与应用。该文对近年来自动化审图和智能审图的研究与应用做了全面调研和综述,建立了相应的理论研究框架,并系统总结了智能审图的应用发展路径。当前,相关研究主要围绕图(或设计)的可计算性与规范(或知识)的可计算性展开,前者重点解决计算机如何识别、理解设计方案的问题,后者重点解决计算机如何理解规范知识并进行推理的问题。根据数字化与智能化的方式,可将智能审图相关应用实践分为数字化、感知智能、认知智能三个维度,其中审图流程及业务的数字化是基础,感知智能是CAD(Computer-Aided Design)识图、逆向翻模的技术支撑,认知智能则是知识推理计算的重要手段。最后,研究指出智能审图方兴未艾,在模型语义扩充、复杂工程知识表示学习、性能化设计审查、算法鲁棒性及透明性等方面仍面临着巨大挑战。
    Abstract: Design review, i.e., design compliance checking, is a key step to ensure the safety, environmental protection, comfort, and compliance of a design. To address the problem of high cost, subjectivity, low efficiency and error-proneness of manual checking of building designs, intelligent design review (e.g., automated compliance checking) has been proposed and widely studied and applied. This research provides a comprehensive review of the research and application progress of intelligent design review in recent years, establishes its theoretical research framework, and systematically summarizes the development path of its application. Currently, researches are mainly focusing on the computability of drawings (or designs solutions) and computability & reasoning of regulations (or knowledge). The application of intelligent design review can be classified into three aspects: digitization, perceptual intelligence and cognitive intelligence. Among them, digitization is the foundation of the design review process, perceptual intelligence supports automatic CAD drawing recognition and model reconstruction, while cognitive intelligence makes it possible for knowledge reasoning and computation. Finally, this research points out that the intelligent design review is in the ascendant stage, and it still faces huge challenges in terms of model semantic extending, complex knowledge representation, performance-based design review and algorithm robustness & transparency.
  • 图  1   自动审图及智能审图的研究框架

    Figure  1.   Research framework of intelligent design review

    图  2   设计信息表达方式的演进[2]

    Figure  2.   Evolution of the design information representation[2]

    图  3   自动审图及智能审图应用实践的三个维度

    Figure  3.   Three aspects of the application of intelligent design review

    图  4   我国各级政府智能审图相关政策的数量变化

    Figure  4.   Number of published policies for intelligent design review in China

    表  1   部分国内外自动审图应用系统/软件

    Table  1   Summary of ARC applications

    应用数字化维度感知智能维度认知智能维度
    广联达BIM审图
    (v3.3版,2016年)
    审图问题批注
    云端协同沟通
    多种BIM格式支持
    直接使用BIM模型内嵌规则支持净空、净高以及管道间隙等空间规则的检查
    PKPM BIM云审查(2020年)网页轻量化展示
    多种BIM格式支持
    直接使用BIM模型内置30余本规范、400多条审查规则
    万翼AI审图审图问题批注
    文件云端存储
    审查报告输出
    智能识别CAD图纸
    对图层样式无要求
    无须处理图块等信息
    支持建筑、结构、给排水、暖通、电气等多个国家规范的审图规则
    小智审图文件云端存储
    审查报告输出
    智能识别CAD图纸
    对图层样式无要求
    无须处理图块等信息
    支持建筑、结构、设备等专业规范的强条规则审查
    中设数字BIM审批云端审批协同
    审查报告输出
    支持多种BIM格式
    直接使用BIM模型通过领域特定语言支持多个国家规范,同时支持属性值缺失、异常等数据质量检查
    SMC软件审图问题批注
    云端审批协同
    支持IFC标准格式
    直接使用BIM模型支持参数化定义规则,具有建模质量检查、逃生路径和无障碍访问等规则审查
    D-COM系统云端审查流程
    支持IFC标准格式
    直接使用BIM模型通过RASE标注支持规则提取,以支持BIM模型自动审查
    注:软件版本及其功能信息统计截止时间为2021年11月。
    下载: 导出CSV
  • [1]

    NAWARI N O. Building information modeling: Automated code checking and compliance processes [M/OL]. CRC Press, 2018[2020-08-18]. https://www.taylorfrancis.com/books/9781351200998

    [2] 林佳瑞, 郭建锋. 基于BIM的合规性自动审查[J]. 清华大学学报(自然科学版), 2020, 60(10): 873 − 879.

    LIN Jiarui, GUO Jianfeng. BIM-based automatic compliance checking [J]. Journal of Tsinghua University (Science and Technology), 2020, 60(10): 873 − 879. (in Chinese)

    [3]

    ZHANG J, EL-GOHARY N M. Integrating semantic NLP and logic reasoning into a unified system for fully-automated code checking [J]. Automation in Construction, 2017, 73: 45 − 57. doi: 10.1016/j.autcon.2016.08.027

    [4]

    BEACH T H, HIPPOLYTE J L, REZGUI Y. Towards the adoption of automated regulatory compliance checking in the built environment [J]. Automation in Construction, 2020, 118: 103285. doi: 10.1016/j.autcon.2020.103285

    [5]

    ISMAIL A S, ALI K N, IAHAD N A. A Review on BIM-based automated code compliance checking system [C]// Proceedings of the 5th International Conference on Research and Innovation in Information Systems (ICRIIS). Langkawi, Malaysia: IEEE, 2017: 1 − 6 [2020-02-22].

    [6]

    FENVES S J. Tabular decision logic for structural design [J]. Journal of the Structural Division, 1966, 92(6): 473 − 490. doi: 10.1061/JSDEAG.0001567

    [7]

    GARRETT J H, FENVES S J. A knowledge-based standards processor for structural component design [J]. Engineering with Computers, 1987, 2(4): 219 − 238. doi: 10.1007/BF01276414

    [8]

    DELIS E A, DELIS A. Automatic fire-code checking using expert-system technology [J]. Journal of Computing in Civil Engineering, 1995, 9(2): 141 − 156. doi: 10.1061/(ASCE)0887-3801(1995)9:2(141)

    [9]

    HAN C S, KUNZ J C, LAW K H. A hybrid prescriptive/performance based approach to automated building code checking [C]// International Computing Congress. Boston, Massachusetts, USA: ASCE, 1998: 537− 548 .

    [10] DING L, DROGEMULLER R, ROSENMAN M, 等. Automating code checking for building designs -DesignCheck[J]. Clients Driving Innovation: Moving Ideas into Practice, 2006: 1-16.

    DING L, DROGEMULLER R, ROSENMAN M, et al. Automating code checking for building designs -Design check[J]. Clients Driving Innovation: Moving Ideas into Practice, 2006: 1 − 16.

    [11] 林佳瑞, 张建平. 我国BIM政策发展现状综述及其文本分析[J]. 施工技术, 2018, 47(6): 73 − 78.

    LIN Jiarui, ZHANG Jianping. Review and exploratory text mining of building information modeling policies in China [J]. Construction Technology, 2018, 47(6): 73 − 78. (in Chinese)

    [12] LIN J R, ZHOU Y C, ZHANG J P, et al. Classification and exemplary BIM models development of design changes [C]// Proceedings of the 36th International Symposium on Automation and Robotics in Construction (ISARC). Banff, Canada: IAARC Publications, 2019: 122 − 127.
    [13]

    LIN J R, ZHOU Y C. Semantic classification and hash code accelerated detection of design changes in BIM models [J]. Automation in Construction, 2020, 115: 103212. doi: 10.1016/j.autcon.2020.103212

    [14] 张晓洋, 胡振中. 面向结构有限元分析的模型转换方法研究[J]. 工程力学, 2017, 34(6): 120 − 127. doi: 10.6052/j.issn.1000-4750.2015.12.1014

    ZHANG Xiaoyang, HU Zhenzhong. Research on model conversion approach towards structural finite element analysis [J]. Engineering Mechanics, 2017, 34(6): 120 − 127. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.12.1014

    [15]

    ZHOU Y C, LIN J R. Ontology-based risk assessment and solution during shield tunnel construction [C]// Proceedings of the 8th International Conference on Innovative Production and Construction (IPC). Hong Kong: Hong Kong University of Science and Technology, 2019: 10.

    [16] 王向前, 张宝隆, 李慧宗. 本体研究综述[J]. 情报杂志, 2016, 35(6): 163 − 170. doi: 10.3969/j.issn.1002-1965.2016.06.028

    WANG Xiangqian, ZHANG Baolong, LI Huizong. Overview of ontology research [J]. Journal of Intelligence, 2016, 35(6): 163 − 170. (in Chinese) doi: 10.3969/j.issn.1002-1965.2016.06.028

    [17]

    EASTMAN C, LEE J M, JEONG Y S, et al. Automatic rule-based checking of building designs [J]. Automation in Construction, 2009, 18(8): 1011 − 1033. doi: 10.1016/j.autcon.2009.07.002

    [18]

    NAWARI N O. Automating codes conformance in structural domain [C]// Computing in Civil Engineering. Miami, Florida, USA: ASCE, 2011: 569 − 577.

    [19]

    SALAMA D M, EL-GOHARY N M. Semantic modeling for automated compliance checking [C]// Computing in Civil Engineering. Miami, Florida, USA: ASCE, 2011: 641 − 648.

    [20]

    SALAMA D A, EL-GOHARY N M. Automated compliance checking of construction operation plans using a deontology for the construction domain [J]. Journal of Computing in Civil Engineering, 2013, 27(6): 681 − 698. doi: 10.1061/(ASCE)CP.1943-5487.0000298

    [21]

    DIMYADI J, AMOR R. Automated building code compliance checking–where is it at [J]. Proceedings of CIB WBC, 2013, 6: 1.

    [22]

    DIMYADI J, AMOR R. Regulatory knowledge representation for automated compliance audit of BIM-based models[C]// Proceedings of the 30th CIB W78 International Conference. Beijing, China: CRC Press, 2013: 68 − 78.

    [23]

    MARTINS J P, MONTEIRO A. LicA: A BIM based automated code-checking application for water distribution systems [J]. Automation in Construction, 2013, 29: 12 − 23. doi: 10.1016/j.autcon.2012.08.008

    [24]

    HOI J, KIM I. Development of BIM-based evacuation regulation checking system for high-rise and complex buildings [J]. Automation in Construction, 2014, 46: 38 − 49. doi: 10.1016/j.autcon.2013.12.005

    [25] 覃川. 基于PKPM-BIM平台的工程图纸三维重建设计与实现[C]// 2019全国模板脚手架工程创新技术交流会暨首届工程建设行业杰出科技青年论坛论文集. 天津: 施工技术编辑部, 2019: 4.

    QIN Chuan. Design and implementation of 3D model reconstruction for construction drawing based on PKPM-BIM platform [C]// Proceedings of the National Formwork Scaffolding Engineering Innovation Technology Exchange Conference and First Engineering Construction Industry Outstanding Science and Technology Youth Forum. Tianjin, China: Editorial Office of Construction Technology, 2019: 4. (in Chinese)

    [26]

    ZHAO Y, DENG X, LAI H. A YOLO-Based Method to Recognize Structural Components from 2D Drawings [C]// Proceedings of the Construction Research Congress 2020. Tempe, Arizona, USA: ASCE, 2020: 753 − 762.

    [27]

    LU Q, CHEN L, LI S, et al. Semi-automatic geometric digital twinning for existing buildings based on images and CAD drawings [J]. Automation in Construction, 2020, 115: 103183. doi: 10.1016/j.autcon.2020.103183

    [28]

    BYUN Y, SOHN B S. ABGS: A system for the automatic generation of building information models from two-dimensional CAD drawings [J]. Sustainability, 2020, 12(17): 12176713. doi: 10.3390/su12176713

    [29]

    ZHAO Y, DENG X, LAI H. A deep learning-based method to detect components from scanned structural drawings for reconstructing 3D models [J]. Applied Sciences, 2020, 10(6): 10062066. doi: 10.3390/app10062066

    [30] 王太阳. 基于CAD图纸的建筑物BIM模型重建方法研究[J]. 城市住宅, 2020, 27(7): 182 − 183. doi: 10.3969/j.issn.1006-6659.2020.07.060

    WANG Taiyang. Research on reconstruction method of building BIM model based on CAD drawing [J]. City & House, 2020, 27(7): 182 − 183. (in Chinese) doi: 10.3969/j.issn.1006-6659.2020.07.060

    [31] 邓林建, 程效军, 程小龙, 等. 一种基于点云数据的建筑物BIM模型重建方法[J]. 地矿测绘, 2016, 32(4): 14 − 16.

    DENG Linjian, CHENG Xiaojun, CHENG Xiaolong, et al. A method of building information model reconstruction based on point cloud data [J]. Surveying and Mapping of Geology and Mineral Resources, 2016, 32(4): 14 − 16. (in Chinese)

    [32]

    CHO C Y, LIU X, AKINCI B. Automated building information models reconstruction using 2D mechanical drawings [C]// Mutis I, Hartmann T. Advances in Informatics and Computing in Civil and Construction Engineering. Cham: Springer International Publishing, 2019: 505 − 512.

    [33]

    BASSIER M, VERGAUWEN M. Unsupervised reconstruction of building information modeling wall objects from point cloud data [J]. Automation in Construction, 2020, 120: 103338. doi: 10.1016/j.autcon.2020.103338

    [34]

    MACHER H, LANDES T, GRUSSENMEYER P. From point clouds to building information models: 3D semi-automatic reconstruction of indoors of existing buildings [J]. Applied Sciences, 2017, 7(10): 7101030. DOI: 10.3390/app7101030.

    [35] LEE J K, LEE J, JEONG Y suk, 等. Development of space database for automated building design review systems[J]. Automation in Construction, 2012, 24: 203-212.

    LEE J K, LEE J, JEONG Y S, et al. Development of space database for automated building design review systems[J]. Automation in Construction, 2012, 24: 203 − 212.

    [36]

    TAN X Y, HAMMAD A, FAZIO P. Automated code compliance checking for building envelope design [J]. Journal of Computing in Civil Engineering, 2010, 24(2): 203 − 211. doi: 10.1061/(ASCE)0887-3801(2010)24:2(203)

    [37]

    SOLIHIN W, DIMYADI J, LEE Y C, et al. The critical role of accessible data for BIM-based automated rule checking systems [C]// Proceedings of the Joint Conference on Computing in Construction (JC3). Heraklion, Crete, Greece: Heriot-Watt University, 2017: 53 − 60.

    [38]

    SOLIHIN W, DIMYADI J, LEE Y C, et al. Simplified schema queries for supporting BIM-based rule-checking applications [J]. Automation in Construction, 2020, 117: 103248. doi: 10.1016/j.autcon.2020.103248

    [39] 顾栋炼, 张银安, 刘华斌, 等. 新冠肺炎疫情临时医院排风的环境影响快速模拟方法[J]. 工程力学, 2020, 37(12): 243 − 249. doi: 10.6052/j.issn.1000-4750.2020.02.0047

    GU Donglian, ZHANG Yinan, LIU Huabin, et al. A high-efficiency simulation method for analyzing the impact of exhausted air from temporary hospitals built for the treatment of novel coronavirus pneumonia [J]. Engineering Mechanics, 2020, 37(12): 243 − 249. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.0047

    [40]

    KANNALA M. Escape route analysis based on building information models: Design and implementation [D]. Helsinki: Helsinki University of Technology, 2005.

    [41]

    SOLIHIN W. A simplified BIM data representation using a relational database schema for an efficient rule checking system and its associated rule checking language [D]. Atlanta: Georgia Institute of Technology, 2015.

    [42] 邱灿星, 杜修力. 一种抗震性能化设计方法及在防屈曲支撑钢框架结构中的应用[J]. 工程力学, 2022, 39(11): 63 − 72. doi: 10.6052/j.issn.1000-4750.2021.06.0463

    QIU Canxing, DU Xiuli. A novel performance-based seismic design method and its application in BRB steel frames [J]. Engineering Mechanics, 2022, 39(11): 63 − 72. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.06.0463

    [43] 徐龙河, 肖水晶. 内置碟簧自复位混凝土剪力墙基于性能的截面设计方法[J]. 工程力学, 2020, 37(4): 70 − 77, 86. doi: 10.6052/j.issn.1000-4750.2019.03.0119

    XU Longhe, XIAO Shuijing. A performance-based section design method of a self-centering concrete shear wall with disc spring devices [J]. Engineering Mechanics, 2020, 37(4): 70 − 77, 86. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.03.0119

    [44]

    PAUWELS P, TERKAJ W. Express to OWL for construction industry: Towards a recommendable and usable ifcOWL ontology [J]. Automation in Construction, 2016, 63: 100 − 133. doi: 10.1016/j.autcon.2015.12.003

    [45]

    AL-ARFAJ A, AL-SALMAN A. Ontology construction from text: Challenges and trends [J]. International Journal of Artificial Intelligence and Expert Systems, 2015, 6(2): 15 − 26.

    [46]

    FAHAD M, BUS N, ANDRIEUX F. Towards validation of IFC models with IfcDoc and SWRL: A comparative study [C]// The Twelfth International Conference on Internet and Web Applications and Services. Venice, Italy: ICIW, 2017: 7 − 13.

    [47]

    YURCHYSHYNA A, ZARLI A. An ontology-based approach for formalisation and semantic organisation of conformance requirements in construction [J]. Automation in Construction, 2009, 18(8): 1084 − 1098. doi: 10.1016/j.autcon.2009.07.008

    [48]

    SYDORA C, STROULIA E. Rule-based compliance checking and generative design for building interiors using BIM [J]. Automation in Construction, 2020, 120: 103368.

    [49] PREIDEL C, BORRMANN A. Automated code compliance checking based on a visual language and building information modeling [C]// Proceedings of the 32nd International Symposium on Automation and Robotics in Construction (ISARC). Oulu, Finland: IAARC Publications, 2015(32): 1 − 8.
    [50]

    HÄUSSLER M, ESSER S, BORRMANN A. Code compliance checking of railway designs by integrating BIM, BPMN and DMN [J]. Automation in Construction, 2021, 121: 103427. doi: 10.1016/j.autcon.2020.103427

    [51]

    SOLIHIN W. Lessons learned from experience of code-checking implementation in Singapore [C]// Building SMART Conference. Singapore: Building SMART, 2004.

    [52]

    HÄUSSLER M, BORRMANN A. Knowledge-based engineering in the context of railway design by integrating BIM, BPMN, DMN and the methodology for knowledge-based engineering applications (MOKA) [J]. Journal of Information Technology in Construction, 2021, 26: 193 − 226. doi: 10.36680/j.itcon.2021.012

    [53] GREENWOOD D, LOCKLEY S, MALSANE S, et al. Automated compliance checking using building information models [C]// The Construction, Building and Real Estate Research Conference of the Royal Institution of Chartered Surveyors. Paris: RICS, 2010.
    [54]

    NAWARI N O. A Generalized adaptive framework (GAF) for automating code compliance checking [J]. Buildings, 2019, 9(4): 9040086. doi: 10.3390/buildings9040086

    [55]

    HJELSETH E, NISBET N. Capturing normative constraints by use of the semantic mark-up RASE methodology [C]// Proceedings of the 28th CIB W78 Conference. France: Sophia Antipolis, 2011: 1 − 10.

    [56]

    BEACH T H, REZGUI Y, LI H, et al. A rule-based semantic approach for automated regulatory compliance in the construction sector [J]. Expert Systems with Applications, 2015, 42(12): 5219 − 5231. doi: 10.1016/j.eswa.2015.02.029

    [57]

    LAU G, LAW K. An information infrastructure for comparing accessibility regulations and related information from multiple sources [C]// Proceedings of the 10th International Conference on Computing in Civil and Building Engineering. Weimar, Germany: Professur Informatik im Bauwesen, 2004.

    [58] 林佳瑞, 廖盤宇. 面向法规智能的消防规范图谱构建及应用初探 [C]// 第六届全国BIM学术会议论文集. 山西太原: 中国图学学会建筑信息模型(BIM)专业委员会, 2020: 5.

    LIN Jiarui, LIAO Panyu. Preliminary study on the construction and application of the law-oriented intelligence-oriented fire protection code map [C]// Proceedings of the 6th National BIM Academic Conference. Taiyuan, China: BIM Professional Committee of China Graphics Society, 2020: 5. (in Chinese)

    [59]

    ZHANG J, EL-GOHARY N M. Automated information transformation for automated regulatory compliance checking in construction [J]. Journal of Computing in Civil Engineering, 2015, 29(4): B4015001. doi: 10.1061/(ASCE)CP.1943-5487.0000427

    [60]

    ZHANG J, EL-GOHARY N M. Semantic NLP-based information extraction from construction regulatory documents for automated compliance checking [J]. Journal of Computing in Civil Engineering, 2016, 30(2): 04015014. doi: 10.1061/(ASCE)CP.1943-5487.0000346

    [61]

    XUE X, ZHANG J. Part-of-speech tagging of building codes empowered by deep learning and transformational rules [J]. Advanced Engineering Informatics, 2021, 47: 101235. doi: 10.1016/j.aei.2020.101235

    [62]

    ZHOU P, EL-GOHARY N. Ontology-based automated information extraction from building energy conservation codes [J]. Automation in Construction, 2017, 74: 103 − 117. doi: 10.1016/j.autcon.2016.09.004

    [63]

    LI S, CAI H, KAMAT V R. Integrating natural language processing and spatial reasoning for utility compliance checking [J]. Journal of Construction Engineering and Management, 2016, 142(12): 04016074. doi: 10.1061/(ASCE)CO.1943-7862.0001199

    [64]

    XU X, CAI H. Semantic frame-based information extraction from utility regulatory documents to support compliance checking [C]// Proceedings of the 35th CIB W78 Conference. Chicago, USA: Springer, Cham, 2018.

    [65]

    LAM H P, HASHMI M. Enabling reasoning with LegalRuleML [J]. Theory and Practice of Logic Programming, 2019, 19(1): 1 − 26. doi: 10.1017/S1471068418000339

    [66]

    TOMASSETTI G. The ANTLR mega tutorial [EB/OL]// Federico Tomassetti - Software Architect. (2017-03-08)[2020-08-19]. https://tomassetti.me/antlr-mega-tutorial/.

    [67]

    ZHANG R, EL-GOHARY N. A deep neural network-based method for deep information extraction using transfer learning strategies to support automated compliance checking [J]. Automation in Construction, 2021, 132: 103834. doi: 10.1016/j.autcon.2021.103834

    [68] 周育丞, 郑哲, 林佳瑞, 等. 面向智能审图的规范条文命名实体识别[C]// 第七届全国BIM学术会议. 中国重庆: 中国建筑工业出版社数字出版中心, 2021: 478 − 482.

    ZHOU Yucheng, ZHENG Zhe, LIN Jiarui, et al. Named entity recognition of regulatory text for intelligent design review [C]// Proceedings of the 7th National BIM Academic Conference of China. Chongqing, China: China Architecture & Building Press, 2021: 478 − 482. (in Chinese)

    [69] 孙镇, 王惠临. 命名实体识别研究进展综述[J]. 数据分析与知识发现, 2010, 26(6): 42 − 47.

    SUN Zhen, WANG Huilin. Overview on the advance of the research on named entity recognition [J]. Data Analysis and Knowledge Discovery, 2010, 26(6): 42 − 47. (in Chinese)

    [70]

    MOON S, LEE G, CHI S, et al. Automated construction specification review with named entity recognition using natural language processing [J]. Journal of Construction Engineering and Management, 2021, 147(1): 04020147. doi: 10.1061/(ASCE)CO.1943-7862.0001953

    [71]

    WU L T, LIN J R, LENG S, et al. Rule-based information extraction for mechanical-electrical-plumbing-specific semantic web [J]. Automation in Construction, 2022, 135: 104108. doi: 10.1016/j.autcon.2021.104108

    [72] 李冬梅, 张扬, 李东远, 等. 实体关系抽取方法研究综述[J]. 计算机研究与发展, 2020, 57(7): 1424 − 1448.

    LI Dongmei, ZHANG Yang, LI Dongyuan, et al. Review of entity relation extraction methods [J]. Journal of Computer Research and Development, 2020, 57(7): 1424 − 1448. (in Chinese)

    [73] 邓擘, 樊孝忠, 杨立公. 用语义模式提取实体关系的方法[J]. 计算机工程, 2007, 33(10): 212 − 214.

    DENG Bo, FAN Xiaozhong, YANG Ligong. Entity relation extraction method using semantic pattern [J]. Computer Engineering, 2007, 33(10): 212 − 214. (in Chinese)

    [74]

    MOR B, GARHWAL S, KUMAR A. A systematic review of hidden markov models and their applications [J]. Archives of Computational Methods in Engineering, 2021, 28(3): 1429 − 1448. doi: 10.1007/s11831-020-09422-4

    [75]

    YU B, FAN Z. A comprehensive review of conditional random fields: variants, hybrids and applications [J]. Artificial Intelligence Review, 2020, 53(6): 4289 − 4333. doi: 10.1007/s10462-019-09793-6

    [76]

    GRISHMAN R. Information extraction [J]. IEEE Intelligent Systems, 2015, 30(5): 8 − 15. doi: 10.1109/MIS.2015.68

    [77]

    CHEN Y, ZHENG D Q, ZHAO T J. Chinese relation extraction based on deep belief nets: Chinese relation extraction based on deep belief nets [J]. Journal of Software, 2012, 23(10): 2572 − 2585. doi: 10.3724/SP.J.1001.2012.04181

    [78]

    HU Z Z, LENG S, LIN J R, et al. Knowledge extraction and discovery based on BIM: A critical review and future directions [J]. Archives of Computational Methods in Engineering, 2021, 29: 335 − 356. doi: 10.1007/s11831-021-09576-9

    [79]

    DIMYADI J, PAUWELS P, AMOR R. Modelling and accessing regulatory knowledge for computer-assisted compliance audit [J]. Journal of Information Technology in Construction, 2016, 21: 317 − 336.

    [80]

    ZHOU P, EL-GOHARY N. Semantic information alignment of BIMs to computer-interpretable regulations using ontologies and deep learning [J]. Advanced Engineering Informatics, 2021, 48: 101239. doi: 10.1016/j.aei.2020.101239

    [81]

    SHEN W, WANG J, HAN J. Entity linking with a knowledge base: Issues, techniques, and solutions [J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(2): 443 − 460. doi: 10.1109/TKDE.2014.2327028

    [82]

    MORGAN A A, LU Z, WANG X, et al. Overview of BioCreative II gene normalization [J]. Genome Biology, 2008, 9(Suppl 2): 142 − 144. doi: 10.1186/gb-2008-9-s2-s3

    [83]

    GHIASVAND O, KATE R J. UWM: Disorder mention extraction from clinical text using CRFs and normalization using learned edit distance patterns [C]// Proceedings of the 8th International Workshop on Semantic Evaluation. Dublin, Ireland: Association for Computational Linguistics, 2014: 828 − 832.

    [84] MOHAN S, ANGELL R, MONATH N, et al. Low resource recognition and linking of biomedical concepts from a large ontology [C]// Proceedings of the 12th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics. New York, USA: Association for Computing Machinery, 2021: 1 − 10.
    [85]

    XU X, CAI H. Ontology and rule-based natural language processing approach for interpreting textual regulations on underground utility infrastructure [J]. Advanced Engineering Informatics, 2021, 48: 101288. doi: 10.1016/j.aei.2021.101288

    [86]

    KARADENIZ I, OZGUR A. Linking entities through an ontology using word embeddings and syntactic re-ranking [J]. BMC Bioinformatics, 2019, 20(1): 156. doi: 10.1186/s12859-019-2678-8

    [87] 住房和城乡建设部. 2016—2020年建筑业信息化发展纲要[J]. 建筑安全, 2017, 32(1): 4 − 7. doi: 10.3969/j.issn.1004-552X.2017.01.002

    Ministry of Housing and Urban-Rural Development. 2016—2020 Outline for the development of construction industry informatization [J]. Construction Safety, 2017, 32(1): 4 − 7. (in Chinese) doi: 10.3969/j.issn.1004-552X.2017.01.002

    [88] 国务院办公厅. 国务院办公厅关于全面开展工程建设项目审批制度改革的实施意见 [EB/OL]. (2019)[2021-07-27]. http://www.gov.cn/zhengce/content/2019-03/26/content_5376941.htm.

    General Office of the State Council. Implementation opinions of the general office of the state council on comprehensively carrying out the reform of the approval system for construction projects [EB/OL]. (2019)[2021-07-27]. http://www.gov.cn/zhengce/content/2019-03/26/content_5376941.htm. (in Chinese)

    [89] 王树平, 刘宗宝, 郝庆斌, 等. 全国数字化审图、政府购买服务人工智能(AI)审图情况的调研报告[J]. 中国勘察设计, 2021(2): 68 − 79.

    WANG Shuping, LIU Zongbao, HAO Qingbin, et al. Survey report on the situation of national digital plan review and government purchase service artificial intelligence (AI) plan review [J]. China Engineering Consulting, 2021(2): 68 − 79. (in Chinese)

    [90] 湖南省住房和城乡建设厅. 关于开展全省房屋建筑工程施工图BIM审查试点工作的通知 [EB/OL]. (2020)[2021-07-17]. https://zjt.hunan.gov.cn/zjt/xxgk/tzgg/202008/t20200812_13395963.html.

    Department of Housing and Urban-Rural Development of Hunan Province. Notice on the pilot work of BIM review of construction drawings of housing construction projects in the province [EB/OL]. (2020) [2021-07-17]. https://zjt.hunan.gov.cn/zjt/xxgk/tzgg/202008/t20200812_13395963.html. (in Chinese)

    [91] 广联达. 广联达BIM审图软件全球首发[EB/OL]. (2014)[2022-03-06]. https://www.glodon.com/news/143.html.

    Glodon. The releasing of Glodon's BIM drawing review software. [EB/OL]. (2014)[2022-03-06]. https://www.glodon.com/news/143.html. (in Chinese)

    [92] PKPM. BIM云审查平台[EB/OL]. (2020)[2022-03-06]. http://www.pkpm.cn/product/productDetail?type=5&id=76.

    PKPM. BIM cloud review platform [EB/OL]. (2020)[2022-03-06]. http://www.pkpm.cn/product/productDetail?type=5&id=76. (in Chinese)

    [93] 湖南省勘察设计协会, 中国建筑科学研究院有限公司. BIM 审查系统用户手册 V1 [R/OL]. (2020)[2021-07-25]. http://www.hn-bim.cn/upload/202001/06/202001062325269687.pdf.

    Hunan Engineering and Consulting Association, China Academy of Building Research. BIM review system user manual V1 [R/OL]. (2020)[2021-07-25]. http://www.hn-bim.cn/upload/202001/06/202001062325269687.pdf. (in Chinese)

    [94] 万翼科技. 万翼AI审图[EB/OL]. (2021)[2022-03-06]. https://www.vanyitech.com/profession/aidesign.

    Vanyi Tech. Vanyi AI drawing review system [EB/OL]. (2021)[2022-03-06]. https://www.vanyitech.com/profession/aidesign. (in Chinese)

    [95] 新华网. 深圳住建局全面应用万翼AI审图系统[EB/OL]. (2021)[2022-03-06]. http://www.xinhuanet.com/house/2021-01/18/c_1126994560.htm.

    Xinhua Net. Shenzhen housing and urban-rural development bureau fully applies Wanyi AI plan review system [EB/OL]. (2021)[2022-03-06]. http://www.xinhuanet.com/house/2021-01/18/c_1126994560.htm. (in Chinese)

    [96] 小智审图. 小智审图 — 施工图智能审查[EB/OL]. (2020)[2022-03-06]. https://www.xzst360.com.

    Xiaozhi Drawing Review. Smart review of construction drawings [EB/OL]. (2020)[2022-03-06]. https://www.xzst360.com. (in Chinese)

    [97] 中设数字. 中设数字CBIM首页 [EB/OL]. (2022)[2022-03-06]. http://www.cbim.com.cn.

    CBIM. CBIM. [EB/OL]. (2022)[2022-03-06]. http://www.cbim.com.cn. (in Chinese)

    [98]

    SOLIBRI. BIM software for architects, engineers and construction industry [EB/OL]. Solibri. (2021)[2021-07-23]. https://www.solibri.com/.

    [99]

    MALACARNE G. RR3 - Nicholas Nisbet - AEC3 Require1 and D-COM [EB/OL]. (2021-04-22)[2021-07-24]. https://vimeo.com/540099774.

    [100]

    WANGARA J. Quality management in BIM: Use of solibri model checker and CoBIM guidelines for BIM quality validation [D]. Helsinki: Metropolia University of Applied Sciences, 2018.

    [101]

    KALLINEN A R, VIRKAMAKI P. RR3 - Nicholas Nisbet - AEC3 require1 and D-COM [EB/OL]. (2021-04-22)[2021-07-24]. https://vimeo.com/540099774.

    [102]

    BEACH T. D-COM network – driving forward digitised compliance checking in the built environment [EB/OL]. (2021)[2021-07-23]. https://www.dcom.org.uk/.

图(4)  /  表(1)
计量
  • 文章访问数:  1740
  • HTML全文浏览量:  327
  • PDF下载量:  441
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-18
  • 修回日期:  2022-03-22
  • 录用日期:  2022-03-31
  • 网络出版日期:  2022-03-31
  • 刊出日期:  2023-07-24

目录

    LU Xin-zheng, luxz@tsinghua.edu.cn

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回