异形PDC齿混合切削破碎花岗岩特性研究

刘伟吉, 阳飞龙, 董洪铎, 程润, 祝效华

刘伟吉, 阳飞龙, 董洪铎, 程润, 祝效华. 异形PDC齿混合切削破碎花岗岩特性研究[J]. 工程力学, 2023, 40(3): 245-256. DOI: 10.6052/j.issn.1000-4750.2021.10.0761
引用本文: 刘伟吉, 阳飞龙, 董洪铎, 程润, 祝效华. 异形PDC齿混合切削破碎花岗岩特性研究[J]. 工程力学, 2023, 40(3): 245-256. DOI: 10.6052/j.issn.1000-4750.2021.10.0761
LIU Wei-ji, YANG Fei-long, DONG Hong-duo, CHENG Run, ZHU Xiao-hua. INVESTIGATE ON THE MIXED-CUTTING OF SPECIALLY-SHAPED PDC CUTTERS IN GRANITE[J]. Engineering Mechanics, 2023, 40(3): 245-256. DOI: 10.6052/j.issn.1000-4750.2021.10.0761
Citation: LIU Wei-ji, YANG Fei-long, DONG Hong-duo, CHENG Run, ZHU Xiao-hua. INVESTIGATE ON THE MIXED-CUTTING OF SPECIALLY-SHAPED PDC CUTTERS IN GRANITE[J]. Engineering Mechanics, 2023, 40(3): 245-256. DOI: 10.6052/j.issn.1000-4750.2021.10.0761

异形PDC齿混合切削破碎花岗岩特性研究

基金项目: 国家自然科学基金项目(52004229,52034006);中国石油-西南石油大学创新联合体科技合作项目(2020CX040301)
详细信息
    作者简介:

    刘伟吉(1989−),男,四川简阳人,副研究员,博士,硕导,主要从事钻井提速与岩石破碎的研究(E-mail: lwj2017_swpu@163.com)

    阳飞龙(1997−),男,四川巴中人,硕士生,主要从事钻井提速与岩石破碎的研究(E-mail: 374291560@qq.com)

    董洪铎(1984−),男,辽宁营口人,工程师,学士,主要从事钻井工程的研究(E-mail: 153869125@qq.com)

    程 润(1984−),男,重庆人,工程师,学士,主要从事钻井提速与钻井事故复杂预防的研究(E-mail: 252697085@qq.com)

    通讯作者:

    祝效华(1978−),男,山东菏泽人,教授,博士,博导,主要从事油气井管柱力学与井下工具的研究(E-mail: zxhth113@163.com)

  • 中图分类号: TE921

INVESTIGATE ON THE MIXED-CUTTING OF SPECIALLY-SHAPED PDC CUTTERS IN GRANITE

  • 摘要: 针对常规齿PDC钻头在硬地层钻进中出现的磨损大,崩齿、碎齿严重等问题,各种异形齿被广泛用于钻头设计。为探究和优化单一齿形及混合齿形PDC钻头的布齿间距,提高PDC齿在花岗岩地层的破岩效率,进行了相同形状PDC齿组合切削破岩室内试验和平面PDC齿与异形齿混合布齿数值仿真实验。研究结果表明:在切削花岗岩且切深为1.0 mm时,平面齿组合的最优布齿间距为10 mm,斧形齿为12 mm,锥形齿为3 mm,三平面齿为11 mm。混合布齿组合中,“平面齿+斧形齿”的最优布齿间距为6 mm,“平面齿+锥形齿”为8 mm,“平面齿+三平面齿”为9 mm。在不同的组合中,包含三平面齿的组合其破岩比功最低,破岩效率最高。研究结果对单一齿形钻头以及混合齿钻头的齿形选择和布齿间距优化具有重要的参考作用。
    Abstract: Due to the serious problems of cutter abrasiveness and damage in drilling by PDC bits with conventional cutters in hard formation, various specially shaped cutters have been widely used in the bit design. To explore and to optimize the cutter arrangement of PDC bits with the same or mixed shaped cutters and to improve the rock breaking efficiency in granite formation, the rock cutting test using the same shaped PDC cutters and rock cutting simulation of mixed cutters with planar cutters and specially shaped cutters are conducted. The results show that: the optimal space of cutters is 10 mm for the planar cutter, 12 mm for the axe-shaped cutter, 3 mm for the conical cutter and, 11 mm for the tri-plane cutter respectively with a cutting depth of 1.0 mm. In terms of the mixed cutter arrangement, the optimal space of cutters is 6 mm for 'planar and axe-shaped cutters', 8 mm for 'planar and conical cutters' and, 9 mm for 'planar and tri-planar cutters' in turn. Among the different combinations, the combination consisting of tri-plane cutters has the smallest mechanical specific energy and largest rock breaking efficiency. In general, the results of this study play a significant role in the selection of cutter shape for a single or a hybrid PDC bit and optimization of cutter gaps.
  • 图  1   多齿切削花岗岩实验

    Figure  1.   Experiment of multi-cutter cutting granite

    图  2   多齿切削实验所用的PDC齿

    Figure  2.   PDC cutter for multi-cutter cutting experiment

    图  3   钻头布齿示意图

    Figure  3.   Schematic diagram of bit cutter arrangement

    图  4   多齿切削实验示意图

    Figure  4.   Schematic diagram of multi-cutter cutting experiment

    图  5   多齿切削破岩切削力随布齿间距的变化情况

    Figure  5.   The change of cutting force in multi-cutter cutting with spacing of cutter distribution

    图  6   多齿切削破岩比功随布齿间距的变化情况

    Figure  6.   The change of MSE in multi-cutter cutting with spacing of cutter distribution

    图  7   异形齿多齿切削破岩的岩屑

    Figure  7.   Cuttings from the rock breaking experiment of multi-cutter cutting with special-shaped cutters

    图  8   非均质花岗岩数值仿真模型 /mm

    Figure  8.   Numerical simulation model of heterogeneous granite

    图  9   PDC齿切削力变化情况

    Figure  9.   Variation of cutting force of PDC cutter

    图  10   “平面齿+异形齿”组合切削花岗岩模型示意图

    Figure  10.   Schematic diagram of “planar cutter + special-shaped cutter” combined cutting granite model

    图  11   “平面齿+异形齿”组合切削花岗岩的切削力

    Figure  11.   Cutting force of ‘planar cutter + special-shaped cutter’combined cutting granite

    图  12   前排齿切痕

    Figure  12.   The cut marks of the front cutter

    图  13   “平面齿+异形齿”组合切削花岗岩的破岩比功

    Figure  13.   MSE of ‘planar cutter + special-shaped cutter’ combined cutting granite

    图  14   “平面齿+异形齿”组合的破岩云图

    Figure  14.   Rock-breaking cloud map of the combination of ‘planar cutter + special-shaped cutter’

    表  1   岩样的基本力学特性

    Table  1   Basic mechanical properties of rock samples

    岩样种类弹性模量/GPa泊松比单轴抗压强度/MPa抗拉强度/MPa
    灰白色花岗岩21.50.168117.44.57
    下载: 导出CSV

    表  2   异形PDC齿布齿间距破岩特性研究实验参数

    Table  2   Experimental parameters of rock breaking characteristics of PDC cutter spacing

    齿形前倾角/(°)切削深度/mm切削速度/(r/min)布齿间距a/mm
    平面齿151.0116,8、9,…,13,
    16、17、18
    斧形齿151.0116,8、9,…,13,
    16、17、18
    锥形齿151.0112、3、4,…,11
    三平面齿151.0116,8、9,…,13,
    16、17、18
    下载: 导出CSV

    表  3   花岗岩矿物组份及材料属性

    Table  3   Mineral composition and material properties of granite

    矿物质量分数/(%)弹性模量/GPa泊松比抗压强度/MPa
    微斜长石41.153.00.130147
    钠长石34.555.00.120137
    石英12.275.00.080187
    白云母7.832.00.160167
    绿泥石4.448.00.140137
    粘结22.20.16867
    下载: 导出CSV

    表  4   多齿切削组合方式及其切削参数

    Table  4   Multi-cutter cutting combination and cutting parameters

    组合方式前排齿间距
    a/mm
    钻齿前倾角β/(°)切削速度v/(m/s)切削深度d/mm
    平面齿+斧形齿6、8、9、10、
    11、12、13、
    16、17、18
    151.01.0
    平面齿+锥形齿
    平面齿+三平面齿
    下载: 导出CSV
  • [1]

    WARREN T M, OSTER J H. Torsional resonance of drill collars with PDC bits in hard rock [R]. New Orleans: SPE 9204, 1998.

    [2] 张光亚, 马锋, 梁英波, 等. 全球深层油气勘探领域及理论技术进展[J]. 石油学报, 2015, 36(9): 1156 − 1166.

    ZHANG Guangya, MA Feng, LIANG Yingbo, et al. Domain and teoytechnology progress of global deep oil & gas exploration [J]. Acta Petrolei Sinica, 2015, 36(9): 1156 − 1166. (in Chinese)

    [3] 祝效华, 刘伟吉. 单齿高频扭转冲击切削的破岩及提速机理[J]. 石油学报, 2017, 38(5): 578 − 586. doi: 10.7623/syxb201705011

    ZHU Xiaohua, LIU Weiji. The rock breaking and ROP rising mechanism for single tooth highr frequency torsional impact cutting [J]. Acta Petrolei Sinica, 2017, 38(5): 578 − 586. (in Chinese) doi: 10.7623/syxb201705011

    [4] 张平, 贺若兰, 李夕兵, 等. 深部岩石渐进破损本构模型及其应用[J]. 工程力学, 2007, 24(12): 146 − 152. doi: 10.3969/j.issn.1000-4750.2007.12.025

    ZHANG Ping, HE Ruolan, LI Xibing, et al. Research on progressive damage constitutive model and its application to deep rock [J]. Engineering Mechanics, 2007, 24(12): 146 − 152. (in Chinese) doi: 10.3969/j.issn.1000-4750.2007.12.025

    [5] 周宏伟, 谢和平, 左建平. 深部高地应力下岩石力学行为研究进展[J]. 力学进展, 2005, 35(1): 91 − 99. doi: 10.3321/j.issn:1000-0992.2005.01.009

    ZHOU Hongwei, XIE Heping, ZUO Jianping. Developments in researches on mechanical behaviors of rocks under the condition of high ground pressure in the depths [J]. Advances in Mechanics, 2005, 35(1): 91 − 99. (in Chinese) doi: 10.3321/j.issn:1000-0992.2005.01.009

    [6] 王超, 乔世范, 刘红中. TBM破岩过程的滚刀受力计算模型研究[J]. 工程力学, 2021, 38(10): 54 − 63. doi: 10.6052/j.issn.1000-4750.2020.08.0605

    WANG Chao, QIAO Shifan, LIU Hongzhong. Research on force calculation model of hob in TBM rock breaking process [J]. Engineering Mechanics, 2021, 38(10): 54 − 63. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0605

    [7] 吴泽兵, 张帅, 王勇勇, 等. 基于ABAQUS的PDC钻头参数化布齿与破岩仿真[J]. 石油机械, 2020, 48(3): 30 − 36.

    WU Zebing, ZHANG Shuai, WANG Yongyong, et al. ABAQUS-based parameterized cutter layout and rock breaking simulation of PDC bits [J]. China Petroleum Machinery, 2020, 48(3): 30 − 36. (in Chinese)

    [8] 杨迎新, 刘芸芸, 黄奎林. PDC钻头布齿设计中的三维齿间距计算方法[J]. 钻采工艺, 2016, 39(3): 15 − 18. doi: 10.3969/J.ISSN.1006-768X.2016.03.05

    YANG Yingxin, LIU Yunyun, HUANG Kuilin. Calculating methods of 3D teeth gap on PDC bit [J]. DPT, 2016, 39(3): 15 − 18. (in Chinese) doi: 10.3969/J.ISSN.1006-768X.2016.03.05

    [9]

    GARCIA-GAVITO D, AZAR J J. Proper nozzle location, bit profile, and cutter arrangement affect PDC-bit performance significantly [J]. Spe Drilling & Completion, 1994, 9(3): 167 − 175. doi: 10.2118/20415-PA

    [10] 马亚超, 张鹏, 黄志强, 等. 全局力平衡PDC钻头布齿优化设计[J]. 中国机械工程, 2020, 31(20): 2412 − 2419, 2428. doi: 10.3969/j.issn.1004-132X.2020.20.003

    MA Yachao, ZHANG Peng, HUANG Zhiqiang, et al. Optimal design for cutter-layout of global force balanced PDC bits [J]. China Mechanical Engineering, 2020, 31(20): 2412 − 2419, 2428. (in Chinese) doi: 10.3969/j.issn.1004-132X.2020.20.003

    [11]

    ZIJSLING D H. Single cutter Testing-A key for PDC bit development [C]. Offshore Europe: Society of Petroleum Engineers, 1987.

    [12]

    CHEATHAM J B, DANIELS W H. A study of factors influencing the drillability of shales: Single-cutter experiments with STRATAPAX(T) drill blanks [J]. Journal of Energy Resources Technology, 1979, 101(3): 189 − 195. doi: 10.1115/1.3446918

    [13]

    GLOWKA D A. Use of single-cutter data in the analysis of PDC bit designs: Part 1 development of a PDC cutting force model [J]. J. Pet. Technol, 1989, 41(8): 797 − 849. doi: 10.2118/15619-PA

    [14]

    KAITKAY P, LEI S. Experimental study of rock cutting under external hydrostatic pressure [J]. Journal of Materials Processing Technology, 2005, 159(2): 206 − 213.

    [15] 刘伟吉, 王燕飞, 郭天阳, 等. 单齿切削破碎非均质花岗岩微宏观机理研究[J]. 工程力学, 2022, 39(6): 122 − 133. doi: 10.6052/j.issn.1000-4750.2021.03.0213

    LIU Weiji, WANG Yanfei, GUO Tianyang, et al. Investigation on the rock cutting mechanism of heterogeneous granite using a grain-based modeling approach [J]. Engineering Mechanics, 2022, 39(6): 122 − 133. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.03.0213

    [16]

    TEALE R. The concept of specific energy in rock drilling [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1965, 2(1): 57 − 73.

    [17]

    AKBARI B, MISKA S, MENGJIAO Y, et al. Effect of rock pore pressure on Mechanical Specific Energy of rock cutting using single PDC cutter [C]. San Francisco: The 47th U.S. Rock Mechanics/Geomechanics Symposium, 2013.

    [18]

    KARASAWA H, MISAWA S. Laboratory testing to design PDC bits for geothermal well driling [J]. Drilling technology ASME, PED, 1992, 40: 135 − 141.

    [19]

    SINOR L A, POWERS J R, WARREN T M. The effect of PDC cutter density, back rake, size, and speed on performance [R]. Dallas: The IADC/SPE Drilling Conference, 1998.

    [20] 夏宏南, 王克雄, 翟应虎, 等. 围压条件下PDC钻头不同齿形的破岩实验研究[J]. 江汉石油学院学报, 1997(4): 50 − 52.

    XIA Hongnan, WANG Kexiong, ZHAI Yinghu, et al. Experimental Research of PDC Cutter Shapes on Breaking Rock Efficiency under Various Confining Pressures [J]. Journal of Jianghan Petroleum Institute, 1997(4): 50 − 52. (in Chinese)

    [21]

    WISE J L. Geometry and material choices govern hard-rock drilling performance of PDC drag cutters [C]. Anchorage: The 40th U.S. Symposium on Rock Mechanics (USRMS), 2005.

    [22]

    LI N, TENG X Q, LIU H T, et al. Cutting mechanism study of an innovative non-planar cutter PDC bit and its field application [J]. Intemational Journal of Oil, Gas and Coal Engineering, 2020, 8(3): 53 − 57. doi: 10.11648/j.ogce.20200803.11

    [23]

    AZAR M, WHITE A, VELVALURI S, et al. Middle East hard/abrasive formation challenge: reducing PDC cutter volume at bit center increases ROP/drilling efficiency [R]. Dubai: Society of Petroleum Engineers, 2013.

    [24]

    NEGM S, AGUIB K, KARUPPIA H V, et al. The disruptive concept of 3D cutters and hybrid bits in polycrystalline diamond compact drill-bit design [R]. Abu Dhabi: Society of Petroleum Engineers, 2016.

    [25] 王滨, 邹德永, 林森, 等. 锥形PDC齿耐磨性能试验研究[J]. 石油机械, 2015, 43(7): 23 − 26.

    WANG Bin, ZOU Deyong, LIN Sen, et al. Wear resistance test of conical PDC cutter [J]. China Petroleum Machinery, 2015, 43(7): 23 − 26. (in Chinese)

    [26] 邹德永, 孙源秀, 于鹏, 等. 锥形齿PDC钻头台架试验研究[J]. 中国石油大学学报(自然科学版), 2015, 39(2): 48 − 52.

    ZOU Deyong, SUN Yuanxiu, YU Peng, et al. Experiment study on bench test of stinger PDC bit [J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(2): 48 − 52. (in Chinese)

    [27]

    XIONG C, HUANG Z, YANG R, et al. Comparative analysis cutting characteristics of stinger PDC cutter and conventional PDC cutter [J]. Journal of Petroleum Science and Engineering, 2020, 189(106792): 0920 − 4105.

    [28] 谢晗, 况雨春, 秦超. 非平面PDC切削齿破岩有限元仿真及试验[J]. 石油钻探技术, 2019, 47(5): 69 − 73. doi: 10.11911/syztjs.2019043

    XIE Han, KUANG Yuchun, QIN Chao. The finite element simulation and test of rock breaking by non-planar PDC cutting cutter [J]. Petroleum Drilling Techniques, 2019, 47(5): 69 − 73. (in Chinese) doi: 10.11911/syztjs.2019043

    [29] 赵润琦, 陈振良, 史怀忠, 等. 斧形PDC齿破碎致密硬质砂岩特性数值模拟研究[J]. 石油机械, 2021(10): 1 − 14.

    ZHAO Runqi, CHEN Zhenliang, SHI Huaizhong, et al. Numerical studies about rock-breaking characteristics of Axe-shaped PDC cutter in hard sandstones [J]. China Petroleum Machinery, 2021(10): 1 − 14. (in Chinese)

    [30]

    CRANE D, ZHANG Y H, DOUGLAS C, et al. Innovative PDC cutter with elongated ridge combines shear and crush action to improve PDC bit pertormance traditional PDC cuter technologies [R]. Manama: SPE-183984-MS, 2017.

    [31] 刘建华, 令文学, 王恒. 非平面三棱形PDC齿破岩机理研究与现场试验[J]. 石油钻探技术, 2021, 49(5): 46 − 50. doi: 10.11911/syztjs.2021040

    LIU Jianhua, LING Wenxue, WANG Heng. Study on rock breaking mechanism and field test of prismatic cutter [J]. Petroleum Drilling Techniques, 2021, 49(5): 46 − 50. (in Chinese) doi: 10.11911/syztjs.2021040

    [32] 巫刚. 基于混合布齿技术的新型PDC钻头设计与应用[J]. 西部探矿工程, 2016, 28(11): 30 − 33. doi: 10.3969/j.issn.1004-5716.2016.11.010

    WU Gang. Design and application of new PDC bit based on hybrid gear arrangement technology [J]. West-China Exploration Engineering, 2016, 28(11): 30 − 33. (in Chinese) doi: 10.3969/j.issn.1004-5716.2016.11.010

    [33] 刘忠, 胡伟, 尹卓, 等. PDC钻头混合布齿参数对破岩的影响研究[J]. 石油机械, 2020, 48(3): 51 − 57.

    LIU Zhong, HU Wei, YIN Zhuo, et al. The influence of mixed cutter arrangement parameters of PDC bit on rock breaking [J]. China Petroleum Machinery, 2020, 48(3): 51 − 57. (in Chinese)

    [34]

    CHEN P, MENG M, MISKA S, et al. Study on integrated effect of PDC double cutters [J]. Journal of Petroleum Science and Engineering, 2019, 178: 1128 − 1142. doi: 10.1016/j.petrol.2019.04.024

    [35] 姚池, 何忱, 蒋水华, 等. 脆性各向异性岩石破坏过程数值模拟[J]. 工程力学, 2019, 36(2): 96 − 103. doi: 10.6052/j.issn.1000-4750.2017.12.0915

    YAO Chi, HE Chen, JIANG Shuihua, et al. Numerical simulation of damage and failure process in anisotropic brittle rocks [J]. Engineering Mechanics, 2019, 36(2): 96 − 103. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.12.0915

    [36]

    LIU W, QIAN X, LI T, et al. Investigation of the tool-rock interaction using Drucker-Prager failure criterion [J]. Journal of Petroleum Science and Engineering, 2019, 173: 267 − 278.

    [37] 王晓峰, 吴飚, 刘晶波, 等. 花岗岩高压状态方程实验研究[J]. 工程力学, 2020, 37(增刊): 237 − 241. doi: 10.6052/j.issn.1000-4750.2019.04.S044

    WANG Xiaofeng, WU Biao, LIU Jingbo, et al. Experimental research on the equation of state of granite at high pressure [J]. Engineering Mechanics, 2020, 37(Suppl): 237 − 241. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S044

图(14)  /  表(4)
计量
  • 文章访问数:  573
  • HTML全文浏览量:  219
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-04
  • 修回日期:  2022-01-12
  • 网络出版日期:  2022-03-24
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回