ANALYSIS AND PREDICTION OF MECHANICAL BEHAVIOR OF STEEL MESH CONSIDERING THE WHOLE LOADING-FAILURE PROCESS
-
摘要: 考虑钢筋网承载-破坏全过程,探明锚网喷结构中钢筋网的力学行为,可切实指导钢筋网选型与参数设计。采用已有的试验结果对计算模型与参数的合理性进行验证,在此基础上完成承载-破坏全过程的钢筋网力学行为分析,并利用多元非线性回归和BP神经网络方法对钢筋网的最大应力和竖向位移进行预测与分析。研究发现:单一荷载作用下钢筋网的应力分布呈现分区现象,1区和2区特定范围的钢筋应力基本处于单轴拉伸状态,2区其余区域的应力处于拉-剪复合状态;钢筋网的力学行为受钢材型号影响显著:由HPB300、HPB400、HPB500钢筋制成的钢筋网存在流幅现象,由1650级、1770级高强不锈钢丝制成的钢筋网无流幅现象;BP神经网络模型预测精度明显优于多元非线性回归方法,对于最大应力和竖向位移两个指标,采用BP神经网络预测的平均相对误差分别为1.31%和1.67%,而多元非线性回归方法的预测误差为7.39%和8.19%。Abstract: Considering the whole loading-failure process of a steel mesh, the mechanical behavior of the steel mesh in the bolt-mesh-shotcrete structure can be verified, which can guide the selection and parameter design of the steel mesh practically. The existing experimental results were used to verify the rationality of the calculation model and parameters. On this basis, the mechanical behavior analysis of the steel mesh in the whole process of loading-failure was completed. The maximum stress and vertical displacement of the steel mesh were predicted and analyzed by multivariate nonlinear regression and BP neural network method. It is found that: The stress distribution of the steel mesh under a single load presents a zoning phenomenon. The steel stress in the specific range of area 1 and area 2 is basically in the uniaxial tensile state, and the stress in the other areas of area 2 is in a tensile-shear composite state. The mechanical behavior of the steel mesh is significantly affected by the steel type such as the steel mesh made of HPB300, HPB400 and HPB500 bars has plastic flow range phenomenon. There is no plastic flow range in the steel mesh made of 1650 grade and of 1770 grade high strength stainless steel wire. The prediction accuracy of BP neural network model is better than that of multivariate nonlinear regression method obviously. The average relative errors of maximum stress and vertical displacement predicted by BP neural network are 1.31% and 1.67%, respectively. The prediction errors of multivariate nonlinear regression method are 7.39% and 8.19%.
-
Keywords:
- tunnel engineering /
- combined support /
- steel mesh /
- bearing characteristics /
- stress partition
-
-
表 1 结构材料参数
Table 1 Structural material parameters
结构 材料类型 弹性模量/
MPa屈服强度/
MPa极限强度/
MPa泊松比 密度/
(kg·m−3)钢筋网 300 210 000 300 420 0.3 7800 400 200 000 400 540 500 200 000 500 630 1650 110 000 − 1650 1770 110 000 − 1770 千斤顶 钢材 210 000 − − A1 多元非线性回归模型检验结果
A1 Test results of multivariate nonlinear regression model
序号 钢筋等级/
MPa荷载/
kPa最大应力/
MPa竖向位移/
mm模型计算的
最大应力/MPa模型计算的
竖向位移/mm最大应力
相对误差/(%)竖向位移
相对误差/(%)1 300 49.51 254.60 18.45 219.77 15.91 13.68 13.78 2 300 53.76 285.60 18.97 225.63 16.55 21.00 12.74 3 300 99.03 303.70 23.63 283.35 23.26 6.70 1.56 4 300 780.00 455.70 116.70 486.72 95.51 6.81 18.16 5 400 282.94 427.50 39.60 442.74 46.87 3.56 18.37 6 400 495.15 471.20 64.21 516.97 68.91 9.71 7.32 7 400 565.88 484.00 71.80 524.34 75.33 8.33 4.91 8 400 990.30 581.00 109.80 545.18 108.15 6.17 1.50 9 500 84.88 293.90 22.06 255.94 21.72 12.92 1.55 10 500 565.88 567.40 60.45 546.28 73.47 3.72 21.54 11 500 1131.77 674.00 105.90 673.15 114.12 0.13 7.77 12 1650 14.15 59.70 14.99 63.80 18.25 6.87 21.72 13 1650 353.68 555.70 43.47 577.33 43.06 3.89 0.95 14 1650 424.41 629.60 46.14 655.21 46.52 4.07 0.83 15 1650 919.56 1311.00 59.53 1190.82 61.32 9.17 3.00 16 1650 1202.50 1658.00 64.75 1689.33 67.46 1.89 4.19 17 1770 28.29 97.44 18.98 83.10 20.22 14.72 6.52 18 1770 113.18 254.40 29.97 240.57 27.24 5.44 9.10 19 1770 282.94 477.00 40.40 497.04 38.33 4.20 5.13 20 1770 848.83 1101.00 57.97 1154.32 56.16 4.84 3.13 A2 BP神经网络模型检验结果
A2 Test results of BP neural network model
序号 钢筋等级/
MPa荷载/
kPa最大应力/
MPa竖向位移/
mm模型计算的
最大应力/MPa模型计算的
竖向位移/mm最大应力
相对误差/(%)竖向位移
相对误差/(%)1 300 49.51 254.60 18.45 251.18 18.76 1.34 1.66 2 300 53.76 285.60 18.97 267.17 19.29 6.45 1.68 3 300 99.03 303.70 23.63 301.02 23.85 0.88 0.95 4 300 780.00 455.70 116.70 444.90 113.22 2.37 2.98 5 400 282.94 427.50 39.60 425.77 39.32 0.40 0.70 6 400 495.15 471.20 64.21 468.39 64.22 0.60 0.02 7 400 565.88 484.00 71.80 478.16 72.05 1.21 0.35 8 400 990.30 581.00 109.80 585.25 113.28 0.73 3.17 9 500 84.88 293.90 22.06 311.91 22.41 6.13 1.58 10 500 565.88 567.40 60.45 571.77 60.50 0.77 0.09 11 500 1131.77 674.00 105.90 674.25 105.33 0.04 0.54 12 1650 14.15 59.70 14.99 58.32 13.46 2.30 10.18 13 1650 353.68 555.70 43.47 555.79 43.74 0.02 0.63 14 1650 424.41 629.60 46.14 629.96 46.67 0.06 1.14 15 1650 919.56 1311.00 59.53 1307.91 59.71 0.24 0.30 16 1650 1202.50 1658.00 64.75 1662.22 64.56 0.25 0.29 17 1770 28.29 97.44 18.98 95.40 19.90 2.10 4.83 18 1770 113.18 254.40 29.97 253.88 29.76 0.20 0.70 19 1770 282.94 477.00 40.40 477.16 40.61 0.03 0.51 20 1770 848.83 1101.00 57.97 1099.28 57.29 0.16 1.17 -
[1] LI S C, WANG Q, WANG H T, et al. Model test study on surrounding rock deformation and failure mechanisms of deep roadways with thick top coal [J]. Tunnelling and Underground Space Technology, 2015, 47: 52 − 63. doi: 10.1016/j.tust.2014.12.013
[2] 朱旻, 陈湘生, 王雪涛. 盾构隧道衬砌结构性能演化分析与思考[J]. 工程力学, 2022(3): 33 − 50. doi: 10.6052/j.issn.1000-4750.2021.07.ST05 ZHU Min, CHEN Xiangsheng, WANG Xuetao. Analysis and thinking on structural performance evolution of shield tunnel lining [J]. Engineering Mechanics, 2022(3): 33 − 50. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.07.ST05
[3] 何满潮, 景海河, 孙晓明. 软岩工程力学[M]. 北京: 科学出版社, 2002. HE Manchao, JING Haihe, SUN Xiaoming. Mechanics of Soft Rock Engineering [M]. Beijing: Science Press, 2002. (in Chinese)
[4] 吴奎, 邵珠山, 秦溯. 挤压隧道中围岩与内置高压缩性元件衬砌相互作用机制研究[J]. 工程力学, 2020, 37(11): 185 − 194. doi: 10.6052/j.issn.1000-4750.2020.01.0013 WU Kui, SHAO Zhushan, QIN Su. Study on the interaction mechanism between surrounding rock and liner with highly deformable elements in squeezing tunnels [J]. Eng-ineering Mechanics, 2020, 37(11): 185 − 194. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0013
[5] HEBBLEWHITE B K, LU T. Geomechanical behaviour of laminated, weak coal mine roof strata and the implications for a ground reinforcement strategy [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(1): 147 − 157. doi: 10.1016/j.ijrmms.2003.08.003
[6] 苟晓梅, 苏华友, 杜旭东. 隧道支护结构钢筋网力学性能试验分析[J]. 公路, 2016, 61(1): 224 − 227. GOU Xiaomei, SU Huayou, DU Xudong. Analysis of mechanical properties of welded steel mesh for tunnel supporting [J]. Highway, 2016, 61(1): 224 − 227. (in Chinese)
[7] SUN K, HONG Y, XU W, et al. Analysis and prediction of mechanical characteristics of corrugated plate as primary support in tunnels [J]. Tunnelling and Underground Space Technology, 2021, 111: 103845. doi: 10.1016/j.tust.2021.103845
[8] 汪波, 喻炜, 刘锦超, 等. 交通/水工隧道中基于预应力锚固系统的及时主动支护理念及其技术实现[J]. 中国公路学报, 2020, 33(12): 118 − 129. doi: 10.3969/j.issn.1001-7372.2020.12.009 WANG Bo, YU Wei, LIU Jinchao, et al. Timely-active support theory and its application in transportation/hydraulic tunnels based on pre-stressed anchorage system [J]. China Journal of Highway and Transport, 2020, 33(12): 118 − 129. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.12.009
[9] 朱永全, 宋玉香. 隧道工程. 第3版[M]. 北京: 中国铁道出版社, 2015. ZHU Yongquan, SONG Yuxiang. Tunneling engineering. 3th ed. [M]. Beijing: China Railway Publishing House, 2015. (in Chinese)
[10] 翟莉. 矿用金属网气动联接装置的研究[D]. 太原: 太原理工大学, 2008. ZHAI Li. Research on mine metal-net pneumatic tying machine [D]. Taiyuan: Taiyuan University of Technology, 2008.
[11] WANG Fangtian, ZHANG Cun, WEI Shuaifeng, et al. Whole section anchor–grouting reinforcement technology and its application in underground roadways with loose and fractured surrounding rock [J]. Tunnelling and Underground Space Technology, 2016, 51: 133 − 143. doi: 10.1016/j.tust.2015.10.029
[12] KANG Hongpu, YUAN Guiyang, GAO Fuqiang, et al. Experimental Study on the Performance of Different Meshes Under Quasi-Static Loading [J]. Rock Mechanics and Rock Engineering, 2022, 55(1): 249 − 258. doi: 10.1007/s00603-021-02651-4
[13] 孙志勇, 林健. 锚杆支护焊接钢筋网力学性能研究[J]. 煤矿开采, 2011, 16(1): 14 − 16. doi: 10.3969/j.issn.1006-6225.2011.01.005 SUN Zhiyong, LIN Jian. Research on mechanical properties of welded wire mesh in bolt support [J]. Coal Mining Technology, 2011, 16(1): 14 − 16. (in Chinese) doi: 10.3969/j.issn.1006-6225.2011.01.005
[14] ORTLEPP W D, STACEY T R, KIRSTEN H A D. Containment support for large static and dynamic deformations in mines [C]// Ernesto Villaescusa, Christopher R. Windsor. Rock Support and Reinforcement Practice in Mining. London England: Routledge, 2018: 359 − 364.
[15] TANNANT D D. Load capacity and stiffness of welded-wire mesh [C]// Proceedings of the 48th Canadian Geotechnical Conference. Vancouver Canada: Canadian Geotechnical Society, 1995: 729 −736.
[16] THOMPSON A G, WINDSOR C R, CADBY G W. Performance assessment of mesh for ground control applications [M]// Rock support and reinforcement practice in mining. London England: Routledge, 2018: 119 − 130.
[17] MORTON E C, THOMPSON A G, VILLAESCUSA E, et al. Testing and analysis of steel wire mesh for mining applications of rock surface support [C]// 11th ISRM Congress. London England: Taylor and Francis, 2007: 1061 − 1064.
[18] 康红普, 王金华, 林健. 高预应力强力支护系统及其在深部巷道中的应用[J]. 煤炭学报, 2007(12): 1233 − 1238. doi: 10.3321/j.issn:0253-9993.2007.12.001 KANG Hongpu, WANG Jinhua, LIN Jian. High pretensioned stress and intensive bolting system and its application to deep roadways [J]. Journal of China Coal Society, 2007(12): 1233 − 1238. (in Chinese) doi: 10.3321/j.issn:0253-9993.2007.12.001
[19] 姜彦军, 冉辉, 王隆. 赵家寨矿“三软”煤层巷道锚网支护技术研究[J]. 煤炭技术, 2016, 35(6): 28 − 30. JIANG Yanjun, RAN Hui, WANG Long. Research on bolt mash supporting technology for “three soft” coal seam roadway in Zhaojiazhai mine [J]. Coal Technology, 2016, 35(6): 28 − 30. (in Chinese)
[20] 林健, 孙志勇. 锚杆支护金属网力学性能与支护效果实验室研究[J]. 煤炭学报, 2013, 38(9): 1542 − 1548. LIN Jian, SUN Zhiyong. Laboratory studies on mechanical performance and supporting function of bolt metal meshes [J]. Journal of China Coal Society, 2013, 38(9): 1542 − 1548. (in Chinese)
[21] KARAMPINOS E, HADJIGEORGIOU J. Quantifying the impact of bolting patterns on the performance of welded wire mesh [J]. Geotechnical and Geological Engineering, 2021, 39(1): 359 − 376. doi: 10.1007/s10706-020-01497-x
[22] SHAN Z, PORTER I, NEMCIK J. Performance of full scale welded steel mesh for surface control in underground coal mines [C]// B. I. Morsi. Proceedings of the 31st Annual International Pittsburgh Coal Conference: Coal – Energy, Environment and Sustainable Development. Pittsburgh America: University of Pittsburgh, 2014: 1 − 10.
[23] ROTH A, CALA M, BRÄNDLE R, et al. Analysis and numerical modelling of dynamic ground support based on instrumented full-scale tests [C]// Hudyma, Y Potvin. Deep Mining 2014: Proceedings of the Seventh International Conference on Deep and High Stress Mining. Perth Australian: Australian Centre for Geomechanics, 2014: 151 − 163.
[24] KARAMPINOS E, BAEK B, HADJIGEORGIOU J. Discrete element modelling of a laboratory static test on welded wire mesh [C]// Y Potvin, J Jakubec. Caving 2018: Proceedings of the Fourth International Symposium on Block and Sublevel Caving. Perth Australian: Australian Centre for Geomechanics, 2018: 735 − 746.
[25] XU C, TANNANT D D, ZHENG W. Discrete element analysis of the influence of bolt pattern and spacing on the force‐displacement response of bolted steel mesh [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(12): 2106 − 2125. doi: 10.1002/nag.2974
[26] XU C, TANNANT D D, ZHENG W, et al. Discrete element method and support vector machine applied to the analysis of steel mesh pinned by rock bolts [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 125: 104163. doi: 10.1016/j.ijrmms.2019.104163
[27] 孙克国, 赵旭伟, 袁子义, 等. 一种隧道主动支护结构[P]. 四川省: CN212296395U, 2021-01-05. SUN Keguo, ZHAO Xuwei, YUAN Ziyi, et al. A tunnel active support structure [P]. Sichuan province: CN212296395U, 2021-01-05. (in Chinese)
[28] FENG S, CHEN Z, LUO H, et al. Tunnel boring machines (TBM) performance prediction: A case study using big data and deep learning [J]. Tunnelling and Underground Space Technology, 2021, 110: 103636. doi: 10.1016/j.tust.2020.103636
[29] BAEK B, KARAMPINOS E, HADJIGEORGIOU J. Understanding the Impact of Test Configuration on Welded-Wire Mesh Laboratory Test Results [J]. Rock Mechanics and Rock Engineering, 2020, 53(11): 4873 − 4892. doi: 10.1007/s00603-020-02198-w
[30] 庄茁, 由小川, 廖剑辉, 等. 基于ABAQUS的有限元分析和应用[M]. 北京: 清华大学出版社, 2009. ZHUANG Zhuo, YOU Xiaochuan, LIAO Jianhui, et al. Finite element analysis and applications based on ABAQUS [M]. Beijing: Tsinghua University Press, 2009. (in Chinese)
[31] WANG B, XIAO X, ASTAKHOV V P, et al. The effects of stress triaxiality and strain rate on the fracture strain of Ti6Al4V [J]. Engineering Fracture Mechanics, 2019, 219: 106627. doi: 10.1016/j.engfracmech.2019.106627
[32] WANG Y Z, LI G Q, WANG Y B, et al. Simplified method to identify full von Mises stress-strain curve of structural metals [J]. Journal of Constructional Steel Research, 2021, 181: 106624. doi: 10.1016/j.jcsr.2021.106624
[33] 许泽坤, 陈隽. 非线性结构地震响应的神经网络算法[J]. 工程力学, 2021, 38(9): 133 − 145. doi: 10.6052/j.issn.1000-4750.2020.09.0645 XU Zekun, CHEN Jun. Neural network algorithm for nonlinear structural seismic response [J]. Engineering Mechanics, 2021, 38(9): 133 − 145. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.09.0645
[34] 陈硕, 赵玉良, 董胜. 导管架型靠船墩的系统可靠性分析[J]. 工程力学, 2020, 37(增刊 1): 340 − 346. doi: 10.6052/j.issn.1000-4750.2019.04.S040 CHEN Shuo, ZHAO Yuliang, DONG Sheng. System reli-ability analysis of jacket structured dolphin [J]. Engi-neering Mechanics, 2020, 37(Suppl 1): 340 − 346. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S040
[35] KHASHEI M, BIJARI M. An artificial neural network (p, d, q) model for timeseries forecasting [J]. Expert Systems with applications, 2010, 37(1): 479 − 489. doi: 10.1016/j.eswa.2009.05.044
[36] RUAN X, ZHU Y, LI J, et al. Predicting the citation counts of individual papers via a BP neural network [J]. Journal of Informetrics, 2020, 14(3): 101039. doi: 10.1016/j.joi.2020.101039
[37] 程诗焱, 韩建平, 于晓辉, 等. 基于BP神经网络的RC框架结构地震易损性曲面分析: 考虑地震动强度和持时的影响[J]. 工程力学, 2021, 38(12): 107 − 117. doi: 10.6052/j.issn.1000-4750.2020.11.0837 CHENG Shiyan, HAN Jianping, YU Xiaohui, et al. Seismic fragility surface analysis of RC frame structures based on BP neural networks: accounting for the effects of ground motion intensity and duration [J]. Engineering Mechanics, 2021, 38(12): 107 − 117. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0837
[38] DING S, SU C, YU J. An optimizing BP neural network algorithm based on genetic algorithm [J]. Artificial intelligence review, 2011, 36(2): 153 − 162. doi: 10.1007/s10462-011-9208-z
[39] 邓露, 钟玉婷, 杨远亮, 等. 冷弯薄壁型钢受弯构件承载力与延性优化研究[J]. 工程力学, 2021, 38(4): 93 − 101. doi: 10.6052/j.issn.1000-4750.2020.05.0327 DENG Lu, ZHONG Yuting, YANG Yuanliang, et al. Optimization on bearing capacity and ductility of cold-formed thin-walled steel flexural member [J]. Engineering Mechanics, 2021, 38(4): 93 − 101. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.0327
[40] 王仁华, 赵沙沙. 随机点蚀损伤钢板的极限强度预测[J]. 工程力学, 2018, 35(12): 248 − 256. doi: 10.6052/j.issn.1000-4750.2017.11.0796 WANG Renhua, ZHAO Shasha. Ultimate strength prediction of steel plate with random pitting corrosion damage [J]. Engineering Mechanics, 2018, 35(12): 248 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.11.0796
[41] LI J, CHENG J, SHI J, et al. Brief introduction of back propagation(BP) neural network algorithm and its improvement [M]. Advances in computer science and information engineering. Springer, Berlin, Heidelberg, 2012: 553 − 558.
-
期刊类型引用(5)
1. 张志义,赵博,管伟明,储春妹,钱德雨. 风积沙充填网箱承载性能的数值模拟分析. 煤炭科学技术. 2025(04): 220-232 . 百度学术
2. 李得睿,周焕新,程斌. 基于二阶链式子区的金属拉伸试验DIC辅助测试方法. 工程力学. 2024(04): 237-246 . 本站查看
3. 张政. 相山隧道围岩变形风险评估及控制对策研究. 重庆建筑. 2024(04): 66-68 . 百度学术
4. SUN Keguo,JIA Jinglong,XU Weiping,ZHANG Yu,WANG Jinjin,WANG Yichao,LIU Yongkui. Mechanical properties of steel mesh in anchor-mesh support for rocky tunnels. Journal of Mountain Science. 2024(10): 3487-3502 . 必应学术
5. 黄祺临,汪敏,陈辉国,周帅. 金属网在刚性弹头静压下的力学性能分析. 工程力学. 2023(11): 227-235 . 本站查看
其他类型引用(3)