轮载作用下正交异性钢桥面板构造细节受力特征及机理研究

祝志文, 李健朋, 汤琴

祝志文, 李健朋, 汤琴. 轮载作用下正交异性钢桥面板构造细节受力特征及机理研究[J]. 工程力学, 2023, 40(3): 163-174. DOI: 10.6052/j.issn.1000-4750.2021.09.0722
引用本文: 祝志文, 李健朋, 汤琴. 轮载作用下正交异性钢桥面板构造细节受力特征及机理研究[J]. 工程力学, 2023, 40(3): 163-174. DOI: 10.6052/j.issn.1000-4750.2021.09.0722
ZHU Zhi-wen, LI Jian-peng, TANG Qin. STRESS BEHAVIORS AND MECHANISM OF DETAILS OF ORTHOTROPIC STEEL DECK UNDER WHEEL LOADS[J]. Engineering Mechanics, 2023, 40(3): 163-174. DOI: 10.6052/j.issn.1000-4750.2021.09.0722
Citation: ZHU Zhi-wen, LI Jian-peng, TANG Qin. STRESS BEHAVIORS AND MECHANISM OF DETAILS OF ORTHOTROPIC STEEL DECK UNDER WHEEL LOADS[J]. Engineering Mechanics, 2023, 40(3): 163-174. DOI: 10.6052/j.issn.1000-4750.2021.09.0722

轮载作用下正交异性钢桥面板构造细节受力特征及机理研究

基金项目: 国家自然科学基金项目(51878269,52278509)
详细信息
    作者简介:

    李健朋(1993−),男,江苏人,博士生,主要从事钢桥疲劳研究(E-mail: jianpengli@hnu.edu.cn)

    汤 琴(1995−),女,湖南人,硕士生,主要从事钢结构桥梁研究(E-mail: 21qtang1@stu.edu.cn)

    通讯作者:

    祝志文(1968−),男,湖南人,教授,博士,主要从事钢结构桥梁研究(E-mail: zhuzw@stu.edu.cn)

  • 中图分类号: U441+.5

STRESS BEHAVIORS AND MECHANISM OF DETAILS OF ORTHOTROPIC STEEL DECK UNDER WHEEL LOADS

  • 摘要: 为明确正交异性钢桥面板(OSD)构造细节的轮载局部应力效应及受力特征,开展了横桥向3个典型工况的货车加载试验和有限元分析,记录了货车低速通行下OSD构造细节的应力时程,研究了构造细节轮载应力行为和机理。研究表明:OSD构造细节轮载局部应力效应显著,构造细节的明显加载效应局限在横桥向轮载中心两侧各1倍纵肋中心距范围,表明OSD疲劳研究无须考虑货车左右轮或相邻车道货车并行的叠加效应。在显著局部应力范围内,货车每个车轴在纵肋-面板(RD)构造细节产生一个应力循环;跨肋式是RD、纵肋-横隔板(RF)焊缝和弧形切口(Cutout)构造细节横桥向最不利轮载位置。轮载作用下沿横桥向,RD面板侧以面板受纵肋腹板支承的连续梁受力为机理,纵肋侧以RD两侧面板和纵肋的弯矩平衡受力为机理;纵肋-横隔板纵肋侧(RF-R)构造细节以横隔板支承的连续梁支点负弯矩受力为机理;纵肋-横隔板横隔板侧(RF-F)构造细节以位于横隔板腹板上方受压为机理;弧形切口细节以空腹桁架竖杆受压为机理。明确的轮载应力局部范围和机理,能简化OSD结构疲劳有限元分析,有助于改善OSD结构抗疲劳设计。
    Abstract: In order to clarify the stress local effects and stress behaviors at details of the orthotropic steel deck (OSD) under wheel loads, truck loading tests and finite element analysis were carried out at three typical transverse loading locations. Stress-time histories were recorded at the details of the OSD to investigate their stress behaviors and mechanism under the passage of a truck with a very low speed. The research finds that the details of the OSD impose significant stress local effects under wheel loads, which is limited to the range of one center-to-center rib space on both sides of wheel center in bridge transverse direction is limited in a zone of two center-to-center rib spaces in the transverse direction. Hence, the stress superimposition at the details, simultaneously produced by the left and right wheels of a truck or produced by trucks traveling side-by-side on adjacent lanes, can be ignored. For the area with significant stress local effects, one axle produces an individual stress cycle at the rib-to-deck (RD) detail. The riding-rib-wall loading is the most critical loading locations in bridge transverse direction for the RD, rib-to-floorbeam (RF) welds and cutout details. Under the wheel loads, the mechanism of stress at RD detail is that the deck plate acts as a continuous beam supported by the rib wall, and that the moment on the rib wall satisfies the moment equilibrium condition among both sides of deck plate and the rib wall. The mechanism of stress at the RF weld at the rib side (RF-R detail) is the negative moment acting on ribs at its supports provided by floorbeam. The mechanism of stress at the RF weld at the floorbeam side (RF-F detail) is due to its location at the upper portion of floorbeam web, while the mechanism of stress at cutout detail is the compressive force in the vertical element in the Vierendeel truss model. Understanding the stress local effects and their mechanism can simplify fatigue investigation of the OSD using the finite element analysis, which facilitates the design of the OSD against fatigue damage.
  • 图  1   钢箱梁和OSD布置  /mm

    Figure  1.   Layout of steel box girder and OSD

    图  2   各构造细节应变片布置

    Figure  2.   Strain gauge arrangement at details

    图  3   应变片安装位置和实景

    Figure  3.   Strain gauges location and installation on real bridge

    图  4   LC2工况轮载定位

    Figure  4.   Wheel loading position in LC2

    图  5   工况LC1之RD构造细节应变计应力读数时程

    Figure  5.   Strain gauge stress at RD detail in LC1

    图  6   工况LC1之RD构造细节应力时程

    Figure  6.   Stress at RD detail in LC1

    图  7   工况LC1之RF焊缝和Cutout的4个构造细节应力时程

    Figure  7.   Stress of four details at RF weld and Cutout in LC1

    图  8   工况LC2之RD构造细节应力时程

    Figure  8.   Stress at RD detail in LC2

    图  9   工况LC2之RF焊缝和Cutout共4个构造细节应力时程

    Figure  9.   Stress of four details at RF weld and Cutout in LC2

    图  10   工况LC3之RD构造细节应力时程

    Figure  10.   Stress of RD detail in LC3

    图  11   工况LC3之RF焊缝和Cutout共4个构造细节应力时程

    Figure  11.   Stress of four details at RF weld and Cutout in LC3

    图  12   三个工况构造细节应力幅随轮载中心距的变化

    Figure  12.   Variation of stress range at details versus its distance to wheel center under three loading cases

    图  13   轮载作用下OSD第一和第二体系

    Figure  13.   The first and second system of OSD under wheel loads

    图  14   有限元模型和网格划分

    Figure  14.   Finite element model and grid arrangement

    图  15   LC1工况典型构造细节计算时程曲线

    Figure  15.   Typical calculated stress at details in LC1

    图  16   RD构造细节轮载位置与局部受力

    Figure  16.   Local response of RD detail versus location of wheel loads

    图  17   LC1工况下各构造细节局部应力响应

    Figure  17.   Local stress response at details in LC1

    图  18   轮载作用下RF-R构造细节受力特征

    Figure  18.   Stress property of RF-R detail under wheel loads

    图  19   轮载下方纵肋的翘曲

    Figure  19.   Rib warping under wheel loads

    图  20   带弧形切口的横隔板的空腹桁架模型

    Figure  20.   Vierendeel truss model of floorbeam with cutout

    表  1   货车重量信息

    Table  1   Truck weight information

    前轴/t中轴/t后轴/t
    左轮右轮左轮右轮左轮右轮
    3.433.785.455.796.035.67
    下载: 导出CSV
  • [1] 张清华, 卜一之, 李乔. 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017, 30(3): 14 − 30. doi: 10.3969/j.issn.1001-7372.2017.03.002

    ZHANG Qinghua, BU Yizhi, LI Qiao. Review on fatigue problems of orthotropic steel bridge deck [J]. China Journal of Highway and Transport, 2017, 30(3): 14 − 30. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.03.002

    [2] 陈斌, 邵旭东, 曹君辉. 正交异性钢桥面疲劳开裂研究[J]. 工程力学, 2012, 29(17): 170 − 174. doi: 10.6052/j.issn.1000-4750.2011.04.0251

    CHEN Bin, SHAO Xudong, CAO Junhui. Study of fatigue cracking for orthotropic steel bridge deck [J]. Engineering Mechanics, 2012, 29(17): 170 − 174. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.04.0251

    [3]

    CONNOR R J, FISHER J W, GATTI W, et al. Manual for design, construction, and maintenance of orthotropic steel deck bridges [M]. Washington: FHWA, 2012.

    [4] 张清华, 金正凯, 刘益铭, 等. 钢桥面板纵肋与顶板焊接细节疲劳裂纹扩展三维模拟方法[J]. 中国公路学报, 2018, 31(1): 57 − 66. doi: 10.3969/j.issn.1001-7372.2018.01.007

    ZHANG Qinghua, JIN Zhengkai, LIU Yiming, et al. 3-D Simulation method for propagation in rib-to-deck welded joints of orthotropic steel deck [J]. China Journal of Highway and Transport, 2018, 31(1): 57 − 66. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.01.007

    [5] 王春生, 付炳宁, 张芹, 等. 正交异性钢桥面板足尺疲劳试验[J]. 中国公路学报, 2013, 26(2): 69 − 76. doi: 10.3969/j.issn.1001-7372.2013.02.011

    WANG Chunsheng, FU Bingning, ZHANG Qin, et al. Fatigue test on full-scale orthotropic steel bridge deck [J]. China Journal of Highway and Transport, 2013, 26(2): 69 − 76. (in Chinese) doi: 10.3969/j.issn.1001-7372.2013.02.011

    [6]

    CAO J H, SHAO X D, ZHANG Z, et al. Retrofit of an orthotropic steel deck with compact reinforced reactive powder concrete [J]. Structure and Infrastructure Engineering, 2015, 12(3): 411 − 429.

    [7] 张允士, 李法雄, 熊锋, 等. 正交异性钢桥面板疲劳裂纹成因分析及控制[J]. 公路交通科技, 2013, 30(8): 75 − 80. doi: 10.3969/j.issn.1002-0268.2013.08.013

    ZHANG Yunshi, LI Faxiong, XIONG Feng, et al. Cause analysis and control measures of fatigue cracks in orthotropic steel bridge deck [J]. Journal of Highway and Transportation Research and Development, 2013, 30(8): 75 − 80. (in Chinese) doi: 10.3969/j.issn.1002-0268.2013.08.013

    [8] 曾志斌. 正交异性钢桥面板典型疲劳裂纹分类及其原因分析[J]. 钢结构, 2011, 26(2): 9 − 15. doi: 10.3969/j.issn.1007-9963.2011.02.003

    ZENG Zhibin. Classification and reasons of typical fatigue cracks in orthotropic steel deck [J]. Steel Construction, 2011, 26(2): 9 − 15. (in Chinese) doi: 10.3969/j.issn.1007-9963.2011.02.003

    [9] 王春生, 翟慕赛, HOUANKPO T O N. 正交异性钢桥面板典型细节疲劳强度研究[J]. 工程力学, 2020, 37(8): 102 − 111. doi: 10.6052/j.issn.1000-4750.2019.09.0518

    WANG Chunsheng, ZHAI Musai, HOUANKPO T O N. Fatigue strength of typical details in orthotropic steel bridge deck [J]. Engineering Mechanics, 2020, 37(8): 102 − 111. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0518

    [10] 柯璐, 林继乔, 李传习, 等. 钢箱梁横隔板弧形切口疲劳性能及构造优化研究[J]. 桥梁建设, 2017, 47(5): 18 − 23.

    KE Lu, LIN Jiqiao, LI Chuanxi, et al. Fatigue performance and structural detail optimization of arc-shape cutouts in diaphragm of steel box girder [J]. Bridge Construction, 2017, 47(5): 18 − 23. (in Chinese)

    [11] 邵旭东, 曹君辉, 易笃韬. 正交异性钢板-薄层RPC组合桥面基本性能研究[J]. 中国公路学报, 2012, 25(2): 40 − 45. doi: 10.3969/j.issn.1001-7372.2012.02.007

    SHAO Xudong, CAO Junhui, YI Dutao, et al. Research on basic performance of composite bridge deck system with orthotropic steel deck and thin RPC layer [J]. China Journal of Highway and Transport, 2012, 25(2): 40 − 45. (in Chinese) doi: 10.3969/j.issn.1001-7372.2012.02.007

    [12]

    ZHI Y, YUAN Z, BO J, et al. Local stress variation in welded joints by ICR treatment [J]. Journal of Constructional Steel Research, 2016, 120(4): 45 − 51.

    [13] 张清华, 袁道云, 王宝州, 等. 纵肋与顶板新型双面焊构造细节疲劳性能研究[J]. 中国公路学报, 2020, 33(5): 79 − 91. doi: 10.3969/j.issn.1001-7372.2020.05.007

    ZHANG Qinghua, YUAN Daoyun, WANG Baozhou, et al. Fatigue performance of innovative both-side welded rib-to-deck joints [J]. China Journal of Highway and Transport, 2020, 33(5): 79 − 91. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.05.007

    [14] 王石磊, 齐法琳, 柯在田, 等. 环氧沥青铺装对钢桥面板受力影响试验研究[J]. 工程力学, 2020, 23(10): 145 − 154. doi: 10.6052/j.issn.1000-4750.2019.11.0690

    WANG Shilei, QI Falin, KE Zaitian, et al. Experimental study on the effect of an epoxy asphalt concrete pavement on an orthotropic steel deck [J]. Engineering Mechanics, 2020, 23(10): 145 − 154. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.11.0690

    [15] 吴冲, 刘海燕, 张志宏, 等. 桥面铺装温度对正交异性钢桥面板疲劳的影响[J]. 同济大学学报(自然科学版), 2013, 41(8): 1213 − 1218. doi: 10.3969/j.issn.0253-374x.2013.08.016

    WU Chong, LIU Haiyan, ZHANG Zhihong, et al. Influence of pavements temperature on fatigue life of orthotropic deck of steel bridge [J]. Journal of Tongji University (Natural Science), 2013, 41(8): 1213 − 1218. (in Chinese) doi: 10.3969/j.issn.0253-374x.2013.08.016

    [16]

    CONNOR R J, FISHER J W. Results of field measurements on the Williamsburg bridge orthotropic deck-final report [R]. Bethlehem PA: Lehigh University, 2001.

    [17] 祝志文, 黄炎, 向泽, 等. 货运繁重公路正交异性板钢桥弧形切口的疲劳性能[J]. 中国公路学报, 2017, 30(3): 104 − 112. doi: 10.3969/j.issn.1001-7372.2017.03.011

    ZHU Zhiwen, HUANG Yan, XIANG Ze, et al. Fatigue performance of floorbeam cutout of orthotropic steel bridge on heavy freight transportation highway [J]. China Journal of Highway and Transport, 2017, 30(3): 104 − 112. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.03.011

    [18]

    ZHU Zhiwen, XIANG Ze, LI Jianpeng. Fatigue damage investigation on diaphragm cutout detail on orthotropic bridge deck based on field measurement and FEM [J]. Thin-Walled Structures, 2020, 157: 107106.

    [19]

    CONNOR R. Influence of cutout geometry on stresses at welded rib-to-diaphragm connections in steel orthotropic bridge decks [J]. Transportation Research Record, 2004(1892): 78 − 87.

    [20]

    AASHTO LRFD. Bridge design specifications [S]. Washington DC: American Association of State Highway and Transportation Officials, 2017.

图(20)  /  表(1)
计量
  • 文章访问数:  378
  • HTML全文浏览量:  131
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-16
  • 修回日期:  2021-12-31
  • 录用日期:  2022-03-24
  • 网络出版日期:  2022-03-24
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回