城市土木工程基础设施韧性提升理论与方法

顾祥林, 余倩倩, 姜超, 刘凌瀚, 卢晨琛

顾祥林, 余倩倩, 姜超, 刘凌瀚, 卢晨琛. 城市土木工程基础设施韧性提升理论与方法[J]. 工程力学, 2023, 40(3): 1-13. DOI: 10.6052/j.issn.1000-4750.2022.11.ST08
引用本文: 顾祥林, 余倩倩, 姜超, 刘凌瀚, 卢晨琛. 城市土木工程基础设施韧性提升理论与方法[J]. 工程力学, 2023, 40(3): 1-13. DOI: 10.6052/j.issn.1000-4750.2022.11.ST08
GU Xiang-lin, YU Qian-qian, JIANG Chao, LIU Ling-han, LU Chen-chen. THEORY AND METHOD OF RESILIENCE ENHANCEMENT OF URBAN CIVIL ENGINEERING INFRASTRUCTURES[J]. Engineering Mechanics, 2023, 40(3): 1-13. DOI: 10.6052/j.issn.1000-4750.2022.11.ST08
Citation: GU Xiang-lin, YU Qian-qian, JIANG Chao, LIU Ling-han, LU Chen-chen. THEORY AND METHOD OF RESILIENCE ENHANCEMENT OF URBAN CIVIL ENGINEERING INFRASTRUCTURES[J]. Engineering Mechanics, 2023, 40(3): 1-13. DOI: 10.6052/j.issn.1000-4750.2022.11.ST08

城市土木工程基础设施韧性提升理论与方法

基金项目: 国家自然科学基金重点项目(51938013);国家重点研发计划项目(2022YFC3803000)
详细信息
    作者简介:

    余倩倩(1987−),女,浙江人,副教授,博士,主要从事结构性能演化与控制研究(E-mail: qianqian.yu@tongji.edu.cn)

    姜 超(1989−),男,湖南人,副研究员,博士,主要从事结构性能演化与控制研究(E-mail: cjiang@tongji.edu.cn)

    刘凌瀚(1996−),男,江西人,博士生,主要从事多灾害概率特性研究(E-mail: 1810725@tongji.edu.cn)

    卢晨琛(1999−),男,福建人,博士生,主要从事多灾害作用下建筑群响应研究(E-mail: 2111005@tongji.edu.cn)

    通讯作者:

    顾祥林(1963−),男,安徽人,教授,博士,主要从事结构性能演化与控制研究(E-mail: gxl@tongji.edu.cn)

  • 中图分类号: TU3

THEORY AND METHOD OF RESILIENCE ENHANCEMENT OF URBAN CIVIL ENGINEERING INFRASTRUCTURES

  • 摘要: 保证城市土木工程基础设施的功能是建设韧性城市的关键。以“灾害/环境作用-结构响应-灾变控制-韧性提升”为主线,从材料、结构、系统等不同尺度,对相关研究成果进行回顾与分析。结果表明:对单一灾害或单一环境作用机制、单一环境作用下结构材料性能退化机理及其恢复方法、单一灾害作用下单体结构的灾变响应与控制等方面有了清晰的认识和技术应对措施。但是,多重灾害和复杂环境作用下城市土木工程基础设施的灾变机理更加复杂、韧性提升难度更大。未来需进一步深入研究多重灾害触发及复杂环境作用机制、复杂环境作用下结构材料性能退化机理及其恢复方法、多灾害与复杂环境作用下单体结构灾变机理与控制方法以及城市土木工程基础设施系统的灾变机理与韧性提升方法。
    Abstract: It is the foundation to ensure functions of civil engineering infrastructures for building resilient cities. This paper critically reviewed and analyzed the state-of-the-art on 'hazard/environmental action-structural response-hazard control-resilience enhancement' for materials, structures, and systems of civil engineering infrastructures. It was found that mechanisms of a single hazard or a single environmental action, degradation mechanisms and recovery methods of structural materials under a single environmental action, and hazard response analysis and control of a single structure under a single hazard action have been clearly understood. However, failure mechanisms of civil engineering infrastructures under multiple hazards and complex environmental actions are more complicated, and it is more difficult to enhance resilience of urban civil engineering infrastructures considering multiple hazards and complex environmental actions. It is suggested to further identify trigger mechanisms of multiple hazards and action mechanisms of complex environmental conditions, degradation mechanisms and repair methods of structural materials under complex environmental actions, failure mechanisms and control/resilience enhancement methods for a single structure and civil engineering infrastructural systems under multiple hazards and complex environmental actions.
  • 图  1   多灾害和环境作用下土木工程基础设施性能退化与恢复、提升

    Figure  1.   Degradation, recovery and enhancement of performance of civil engineering infrastructures under multiple hazards and environmental effects

    图  2   地震-强风相遇概率计算(中国台湾花莲地区)

    Figure  2.   Encounter probability of concurrent earthquakes and strong winds (Hualian, Taiwan, China)

    图  3   基于Copula函数的震级-风速联合概率分布(中国台湾花莲地区)

    Figure  3.   Copula-based joint probability density function of earthquake magnitude and wind speed (Hualian, Taiwan, China)

    图  4   海洋大气环境下某服役10年混凝土结构的碳化深度和氯离子含量

    Figure  4.   Carbonation depth and chloride ion content of a concrete structure subjected to marine atmospheric environment for 10 years

    图  5   不同平均锈蚀率ηs下锈蚀钢筋的应力-应变关系

    Figure  5.   Stress-strain relationship of corroded steel bars and tendons with different corrosion degrees

    图  6   钢筋混凝土框架结构倒塌过程试验结果与基于离散单元法的仿真分析结果

    Figure  6.   Results of shaking table tests and numerical simulation of collapse process of an RC frame structure based on the discrete element method

    图  7   地震作用下混凝土结构大型冷却塔倒塌过程试验结果和模拟分析结果

    Figure  7.   Experimental investigation and numerical simulation of collapse process of a reinforced concrete super-large cooling tower under earthquake

    图  8   英国渡桥电厂冷却塔倒塌模拟

    Figure  8.   Collapse simulation of cooling towers in the Ferrybridge Power Plant, UK

    图  9   上海地铁网络站点关键程度的空间分布

    Figure  9.   Spatial distribution of station criticality of Shanghai metro network

    图  10   电化学修复混凝土结构技术示意图

    Figure  10.   Schematic diagram of the electrochemical repairing technology of concrete structures

    图  11   可恢复功能结构

    Figure  11.   Earthquake resilient structures

    图  12   结构倒塌瓦砾分布

    Figure  12.   Distribution of structural collapse rubbles

  • [1]

    KAPPES M S, KEILER M, VON ELVERFELDT K, et al. Challenges of analyzing multi-hazard risk: A review [J]. Natural Hazards, 2012, 64(2): 1925 − 1958. doi: 10.1007/s11069-012-0294-2

    [2]

    BARBATO M, LI Y, PADGETT J. Recent advances in assessment and mitigation of multiple hazards [J]. Journal of Structural Engineering, 2017, 143(9): 02017001. doi: 10.1061/(ASCE)ST.1943-541X.0001862

    [3]

    BRUNEAU M, BARBATO M, PADGETT J E, et al. State of the art of multihazard design [J]. Journal of Structural Engineering, 2017, 143(10): 03117002. doi: 10.1061/(ASCE)ST.1943-541X.0001893

    [4]

    LI Y, AHUJA A, PADGETT J E. Review of methods to assess, design for, and mitigate multiple hazards [J]. Journal of Performance of Constructed Facilities, 2012, 26(1): 104 − 117. doi: 10.1061/(ASCE)CF.1943-5509.0000279

    [5]

    GARDONI P, LAFAVE J M. Multi-hazard approaches to civil infrastructure engineering [M]. Cham: Springer, 2016: 41 − 58.

    [6]

    HIDA S E. Statistical significance of less common load combinations [J]. Journal of Bridge Engineering, 2007, 12(3): 389 − 393. doi: 10.1061/(ASCE)1084-0702(2007)12:3(389)

    [7]

    LIANG Z, LEE G C. Towards multiple hazard resilient bridges: A methodology for modeling frequent and infrequent time-varying loads Part I, Comprehensive reliability and partial failure probabilities [J]. Earthquake Engineering and Engineering Vibration, 2012, 11(3): 293 − 301. doi: 10.1007/s11803-012-0122-4

    [8]

    LI H N, ZHENG X W, LI C. Copula-based approach to construct a joint probabilistic model of earthquakes and strong winds [J]. International Journal of Structural Stability and Dynamics, 2019, 19(4): 1950046. doi: 10.1142/S0219455419500469

    [9]

    Federal Emergency Management Agency (FEMA). HAZUS earthquake model technical manual [M]. Washington, DC: National Institute of Building Sciences, 2020: 339 − 359.

    [10]

    ZOLFAGHARI M R, PEYGHALEH E, NASIRZADEH G. Fire following earthquake, intra-structure ignition modeling [J]. Journal of Fire Sciences, 2009, 27(1): 45 − 79. doi: 10.1177/0734904108094516

    [11] 缪昌文, 顾祥林, 张伟平, 等. 环境作用下混凝土结构性能演化与控制研究进展[J]. 建筑结构学报, 2019, 40(1): 1 − 10. doi: 10.14006/j.jzjgxb.2019.01.001

    MIAO Changwen, GU Xianglin, ZHANG Weiping, et al. State-of-the-art on performance evolution and control of concrete structures subjected to environmental actions [J]. Journal of Building Structures, 2019, 40(1): 1 − 10. (in Chinese) doi: 10.14006/j.jzjgxb.2019.01.001

    [12] 顾祥林, 张伟平, 姜超, 等. 混凝土结构的环境作用[M]. 北京: 科学出版社, 2021: 113 − 164.

    GU Xianglin, ZHANG Weiping, JIANG Chao, et al. Environmental effects of concrete structures [M]. Beijing: Science Press, 2021: 113 − 164. (in Chinese)

    [13]

    ZHANG W P, MIN H G, GU X L. Temperature response and moisture transport in damaged concrete under an atmospheric environment [J]. Construction and Building Materials, 2016, 123: 290 − 299. doi: 10.1016/j.conbuildmat.2016.07.004

    [14]

    JIANG Z L, XI Y P, GU X L, et al. Modelling of water vapour sorption hysteresis of cement-based materials based on pore size distribution [J]. Cement and Concrete Research, 2019, 115: 8 − 19. doi: 10.1016/j.cemconres.2018.09.015

    [15]

    HUANG Q H, JIANG Z L, GU X L, et al. Numerical simulation of moisture transport in concrete based on a pore size distribution model [J]. Cement and Concrete Research, 2015, 67: 31 − 43. doi: 10.1016/j.cemconres.2014.08.003

    [16]

    MIN H G, ZHANG W P, GU X L, et al. Coupled heat and moisture transport in damaged concrete under an atmospheric environment [J]. Construction and Building Materials, 2017, 143: 607 − 620. doi: 10.1016/j.conbuildmat.2017.03.163

    [17]

    PAPADAKIS V G, VAYENAS C G, FARDIS M N. Experimental investigation and mathematical modeling of the concrete carbonation problem [J]. Chemical Engineering Science, 1991, 46(5/6): 1333 − 1338.

    [18]

    HUANG Q H, JIANG Z L, ZHANG W P, et al. Numerical analysis of the effect of coarse aggregate distribution on concrete carbonation [J]. Construction and Building Materials, 2012, 37: 27 − 35. doi: 10.1016/j.conbuildmat.2012.06.074

    [19]

    ZHANG Q Z, GU X L, JIANG Z L, et al. Similarities in accelerated chloride ion transport tests for concrete in tidal zones [J]. ACI Materials Journal, 2018, 115(4): 499 − 507.

    [20]

    JIANG C, HUANG Q H, GU X L, et al. Experimental investigation on carbonation in fatigue-damaged concrete [J]. Cement and Concrete Research, 2017, 99: 38 − 52. doi: 10.1016/j.cemconres.2017.04.019

    [21] 顾祥林. 混凝土结构破坏过程仿真分析[M]. 北京: 科学出版社, 2020: 445 − 482.

    GU Xianglin. Simulation analysis of failure process of concrete structures [M]. Beijing: Science Press, 2020: 445 − 482. (in Chinese)

    [22]

    ZHENG X W, LI H N, YANG Y B, et al. Damage risk assessment of a high-rise building against multihazard of earthquake and strong wind with recorded data [J]. Engineering Structures, 2019, 200: 109697. doi: 10.1016/j.engstruct.2019.109697

    [23]

    VENANZI I, LAVAN O, IERIMONTI L, et al. Multi-hazard loss analysis of tall buildings under wind and seismic loads [J]. Structure and Infrastructure Engineering, 2018, 14(10): 1295 − 1311. doi: 10.1080/15732479.2018.1442482

    [24]

    ALY A M, ABBURU S. On the design of high-rise buildings for multihazard: Fundamental differences between wind and earthquake demand [J]. Shock and Vibration, 2015, 2015: 148681.

    [25] 苗吉军, 王俊富, 刘才玮, 等. 损伤后混凝土框架结构火灾试验研究[J]. 建筑结构学报, 2012, 33(2): 1 − 9. doi: 10.14006/j.jzjgxb.2012.02.002

    MIAO Jijun, WANG Junfu, LIU Caiwei, et al. Experimental research on RC frame structure with damages due to elevated temperature [J]. Journal of Building Structures, 2012, 33(2): 1 − 9. (in Chinese) doi: 10.14006/j.jzjgxb.2012.02.002

    [26] 王广勇, 张超, 李玉梅, 等. 受火后型钢混凝土框架结构抗震性能研究[J]. 建筑结构学报, 2017, 38(12): 78 − 87. doi: 10.14006/j.jzjgxb.2017.12.009

    WANG Guangyong, ZHANG Chao, LI Yumei, et al. Post-fire seismic performance of steel reinforced concrete frame structures [J]. Journal of Building Structures, 2017, 38(12): 78 − 87. (in Chinese) doi: 10.14006/j.jzjgxb.2017.12.009

    [27]

    LI Y, LIN F, GU X L, et al. Numerical research of a super-large cooling tower subjected to accidental loads [J]. Nuclear Engineering and Design, 2014, 269: 184 − 192. doi: 10.1016/j.nucengdes.2013.08.028

    [28]

    GU X L, YU Q Q, LI Y, et al. Collapse process analysis of reinforced concrete super-large cooling towers induced by failure of columns [J]. Journal of Performance of Constructed Facilities, 2017, 31(5): 04017037. doi: 10.1061/(ASCE)CF.1943-5509.0001023

    [29]

    YU Q Q, GU X L, LI Y, et al. Collapse-resistant performance of super-large cooling towers subjected to seismic actions [J]. Engineering Structures, 2016, 108: 77 − 89. doi: 10.1016/j.engstruct.2015.11.023

    [30]

    CHOPRA A K, GOEL R K. A modal pushover analysis procedure for estimating seismic demands for buildings [J]. Earthquake Engineering & Structural Dynamics, 2002, 31(3): 561 − 582.

    [31]

    PINHO R, ANTONIOU S, CASAROTTI C, et al. A displacement-based adaptive pushover for assessment of buildings and bridges [C]// Proceedings of the NATO Science for Peace Workshop on Advances in Earthquake Engineering for Urban Risk Reduction. Dordrecht: Springer, 2006: 79 − 94.

    [32]

    BIRZHANDI M S, HALABIAN A M. Fast fragility analysis of plan-asymmetric structures considering soil-structure interaction using flexible base 2 degrees of freedom Modal Pushover Analysis (F2MPA) [J]. Soil Dynamics and Earthquake Engineering, 2020, 138: 106270. doi: 10.1016/j.soildyn.2020.106270

    [33]

    CORNELL C A, JALAYER F, HAMBURGER R O, et al. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guideline [J]. Journal of Structural Engineering, 2002, 128(4): 526 − 533. doi: 10.1061/(ASCE)0733-9445(2002)128:4(526)

    [34]

    MOSCHONAS I F, KAPPOS A J, PANETSOS P, et al. Seismic fragility curves for Greek bridges: Methodology and case studies [J]. Bulletin of Earthquake Engineering, 2009, 7(2): 439 − 468. doi: 10.1007/s10518-008-9077-2

    [35]

    WANG Z H, DUEÑAS-OSORIO L, PADGETT J E. Influence of scour effects on the seismic response of reinforced concrete bridges [J]. Engineering Structures, 2014, 76: 202 − 214. doi: 10.1016/j.engstruct.2014.06.026

    [36] 李忠献, 黄信. 地震和波浪联合作用下深水桥梁的动力响应[J]. 土木工程学报, 2012, 45(11): 134 − 140. doi: 10.15951/j.tmgcxb.2012.11.002

    LI Zhongxian, HUANG Xin. Dynamic responses of bridges in deep water under combined earthquake and wave actions [J]. China Civil Engineering Journal, 2012, 45(11): 134 − 140. (in Chinese) doi: 10.15951/j.tmgcxb.2012.11.002

    [37]

    WIBOWO H, SANFORD D M, BUCKLE I G, et al. Effects of live load on seismic response of bridges: A preliminary study [J]. Civil Engineering Dimension, 2012, 14(3): 166 − 172.

    [38]

    CROSTI C, OLMATI P, GENTILI F. Structural response of bridges to fire after explosion [C]// Proceedings of the Sixth International Conference on Bridge Maintenance, Safety and Management. Lake Maggiore, London: CRC Press, 2012: 2017 − 2023.

    [39] 何庆祥, 沈祖炎. 结构地震行波效应分析综述[J]. 地震工程与工程振动, 2009, 29(1): 50 − 57. doi: 10.13197/j.eeev.2009.01.005

    HE Qingxiang, SHEN Zuyan. Review of structural seismic analysis of travelling wave effects [J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(1): 50 − 57. (in Chinese) doi: 10.13197/j.eeev.2009.01.005

    [40] 罗尧治, 王荣. 索穹顶结构动力特性及多维多点抗震性能研究[J]. 浙江大学学报(工学版), 2005, 39(1): 39 − 45. doi: 10.3785/j.issn.1008-973X.2005.01.008

    LUO Yaozhi, WANG Rong. Study on dynamic characteristics and behavior of cable dome subjected to multi-dimensional and multi-point seismic excitations [J]. Journal of Zhejiang University (Engineering Science), 2005, 39(1): 39 − 45. (in Chinese) doi: 10.3785/j.issn.1008-973X.2005.01.008

    [41] 刘枫, 肖从真, 徐自国, 等. 首都机场3号航站楼多维多点输入时程地震反应分析[J]. 建筑结构学报, 2006, 27(5): 56 − 63.

    LIU Feng, XIAO Congzhen, XU Ziguo, et al. Time-history analysis of terminal 3 of the Capital Airport under multi-support and multi-dimension seismic excitation [J]. Journal of Building Structures, 2006, 27(5): 56 − 63. (in Chinese)

    [42]

    DEODATIS G. Simulation of ergodic multivariate stochastic processes [J]. Journal of Engineering Mechanics, 1996, 122(8): 778 − 787. doi: 10.1061/(ASCE)0733-9399(1996)122:8(778)

    [43] 方平治, 史军, 王强, 等. 上海陆家嘴区域建筑群风环境数值模拟研究[J]. 建筑结构学报, 2013, 34(9): 104 − 111. doi: 10.14006/j.jzjgxb.2013.09.013

    FANG Pingzhi, SHI Jun, WANG Qiang, et al. Numerical study on wind environment among tall buildings in Shanghai Lujiazui Zone [J]. Journal of Building Structures, 2013, 34(9): 104 − 111. (in Chinese) doi: 10.14006/j.jzjgxb.2013.09.013

    [44]

    ZAHID IQBAL Q M, CHAN A L S. Pedestrian level wind environment assessment around group of high-rise cross-shaped buildings: Effect of building shape, separation and orientation [J]. Building and Environment, 2016, 101: 45 − 63. doi: 10.1016/j.buildenv.2016.02.015

    [45] 应小宇, 朱炜, 外尾一则. 高层建筑群平面布局类型对室外风环境影响的对比研究[J]. 地理科学, 2013, 33(9): 1097 − 1103. doi: 10.13249/j.cnki.sgs.2013.09.010

    YING Xiaoyu, ZHU Wei, HOKAO K. Comparative study of the effect on outdoor wind environment by high-rise buildings layout types [J]. Scientia Geographica Sinica, 2013, 33(9): 1097 − 1103. (in Chinese) doi: 10.13249/j.cnki.sgs.2013.09.010

    [46]

    YING X Y, ZHU W, HOKAO K, et al. Numerical research of layout effect on wind environment around high-rise buildings [J]. Architectural Science Review, 2013, 56(4): 272 − 278. doi: 10.1080/00038628.2012.708165

    [47]

    EMMONS H W. Scientific progress on fire [J]. Annual Review of Fluid Mechanics, 1980, 12: 223 − 236. doi: 10.1146/annurev.fl.12.010180.001255

    [48] 范维澄, 崔锷, 陈莉, 等. 建筑火灾综合模拟评估在大空间建筑火灾中的初步应用[J]. 中国科学技术大学学报, 1995, 25(4): 479 − 485.

    FAN Weicheng, CUI E, CHEN Li, et al. Tentative comprehensive simulation analysis of building fires on atriums [J]. Journal of China University of Science and Technology, 1995, 25(4): 479 − 485. (in Chinese)

    [49]

    COUSINS J, THOMAS G, HERON D, et al. Probabilistic modeling of post-earthquake fire in Wellington, New Zealand [J]. Earthquake Spectra, 2012, 28(2): 553 − 571. doi: 10.1193/1.4000002

    [50]

    THOMAS G, HERON D, COUSINS J, et al. Modeling and estimating post-earthquake fire spread [J]. Earthquake Spectra, 2012, 28(2): 795 − 810. doi: 10.1193/1.4000009

    [51]

    ZHAO S J. GisFFE-an integrated software system for the dynamic simulation of fires following an earthquake based on GIS [J]. Fire Safety Journal, 2010, 45(2): 83 − 97. doi: 10.1016/j.firesaf.2009.11.001

    [52]

    HIMOTO K, TANAKA T. Development and validation of a physics-based urban fire spread model [J]. Fire Safety Journal, 2008, 43(7): 477 − 494. doi: 10.1016/j.firesaf.2007.12.008

    [53] 熊峰, 雷鹏, 葛琪, 等. 建筑数量对土-剪力墙结构建筑群动力相互作用的影响[J]. 振动工程学报, 2021, 34(3): 539 − 551. doi: 10.16385/j.cnki.issn.1004-4523.2021.03.011

    XIONG Feng, LEI Peng, GE Qi, et al. The influence of the number of buildings on the dynamic interaction of soil-shear wall structures [J]. Journal of Vibration Engineering, 2021, 34(3): 539 − 551. (in Chinese) doi: 10.16385/j.cnki.issn.1004-4523.2021.03.011

    [54]

    TIAN Y, SUN C J, LU X Z, et al. Quantitative analysis of site-city interaction effects on regional seismic damage of buildings [J]. Journal of Earthquake Engineering, 2022, 26(8): 4365 − 4385. doi: 10.1080/13632469.2020.1828199

    [55]

    GROBY J P, WIRGIN A. Seismic motion in urban sites consisting of blocks in welded contact with a soft layer overlying a hard half-space [J]. Geophysical Journal International, 2008, 172(2): 725 − 758. doi: 10.1111/j.1365-246X.2007.03678.x

    [56]

    GUÉGUEN P, BARD P Y, CHÁVEZ-GARCÍA F J. Site-city seismic interaction in Mexico city-like environments: An analytical study [J]. Bulletin of the Seismological Society of America, 2002, 92(2): 794 − 811. doi: 10.1785/0120000306

    [57]

    LOMBAERT G, CLOUTEAU D. Resonant multiple wave scattering in the seismic response of a city [J]. Waves in Random and Complex Media, 2006, 16(3): 205 − 230. doi: 10.1080/17455030600703574

    [58]

    SHINOZUKA M, FENG M Q, KIM H K, et al. Nonlinear static procedure for fragility curve development [J]. Journal of Engineering Mechanics, 2000, 126(12): 1287 − 1295. doi: 10.1061/(ASCE)0733-9399(2000)126:12(1287)

    [59]

    FEMA. Multi-hazard loss estimation methodology, earthquake model, Hazus-MH 2.1 technical manual [R]. Washington, DC: Federal Emergency Management Agency, 2012.

    [60] 程庆乐, 许镇, 顾栋炼, 等. 基于城市抗震弹塑性分析的我国主要城市建筑地震风险评估[J]. 地震工程学报, 2019, 41(2): 299 − 306. doi: 10.3969/j.issn.1000-0844.2019.02.299

    CHENG Qingle, XU Zhen, GU Donglian, et al. Seismic risk assessment of buildings in major Chinese cities based on the nonlinear time-history analysis of cities [J]. China Earthquake Engineering Journal, 2019, 41(2): 299 − 306. (in Chinese) doi: 10.3969/j.issn.1000-0844.2019.02.299

    [61]

    LU X, LU X Z, GUAN H, et al. Collapse simulation of reinforced concrete high-rise building induced by extreme earthquakes [J]. Earthquake Engineering & Structural Dynamics, 2013, 42(5): 705 − 723.

    [62]

    ANELLI A, MORI F, VONA M. Fragility curves of the urban road network based on the debris distributions of interfering buildings [J]. Applied Sciences, 2020, 10(4): 1289. doi: 10.3390/app10041289

    [63]

    LU X Z, YANG Z B, CIMELLARO G P, et al. Pedestrian evacuation simulation under the scenario with earthquake-induced falling debris [J]. Safety Science, 2019, 114: 61 − 71. doi: 10.1016/j.ssci.2018.12.028

    [64]

    CIMELLARO G P, PIQUÉ M. Resilience of a hospital emergency department under seismic event [J]. Advances in Structural Engineering, 2016, 19(5): 825 − 836. doi: 10.1177/1369433216630441

    [65] 任旭, 徐哲, 林峰. 地震下RC框架结构倒塌瓦砾分布及灾害链研究[C]//第十七届中国CAE工程分析技术年会论文集. 海口, 中国: 中国力学学会产学研工作委员会, 2021: 190 − 196.

    REN Xu, XU Zhe, LIN Feng. Study on the distribution of collapsed debris of RC frame structures and disaster chain under earthquakes [C]// Proceedings of the 17th China CAE Annual Conference. Haikou, China: Production, Teaching and Research Committee of China Mechanical Society, 2021: 190 − 196. (in Chinese)

    [66]

    MURRAY A T, MATISZIW T C, GRUBESIC T H. A methodological overview of network vulnerability analysis [J]. Growth and Change, 2008, 39(4): 573 − 592. doi: 10.1111/j.1468-2257.2008.00447.x

    [67]

    TRAN V Q, SOIVE A, BAROGHEL-BOUNY V. Modelisation of chloride reactive transport in concrete including thermodynamic equilibrium, kinetic control and surface complexation [J]. Cement and Concrete Research, 2018, 110: 70 − 85. doi: 10.1016/j.cemconres.2018.05.007

    [68] 周颖, 吴浩, 顾安琪. 地震工程: 从抗震、减隔震到可恢复性[J]. 工程力学, 2019, 36(6): 1 − 12. doi: 10.6052/j.issn.1000-4750.2018.07.ST09

    ZHOU Ying, WU Hao, GU Anqi. Earthquake engineering: From earthquake resistance, energy dissipation, and isolation, to resilience [J]. Engineering Mechanics, 2019, 36(6): 1 − 12. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.ST09

    [69] 甄伟, 邱意坤, 杨青顺, 等. 高层建筑中伸臂桁架的耗能性能研究[J]. 工程力学, 2021, 38(2): 36 − 43. doi: 10.6052/j.issn.1000-4750.2020.10.ST08

    ZHEN Wei, QIU Yikun, YANG Qingshun, et al. Energy dissipation performance of outrigger in tall buildings [J]. Engineering Mechanics, 2021, 38(2): 36 − 43. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.10.ST08

    [70] 尹曜, 朱翔, 王蕊. 防撞击X型阻尼器及新型耗能减撞站房柱力学性能研究[J]. 工程力学, 2022, 39(9): 95 − 109. doi: 10.6052/j.issn.1000-4750.2021.05.0358

    YIN Yao, ZHU Xiang, WANG Rui. Mechanical properties of anti-collision X-type damper and a new station column with energy dissipation and collision reduction functions [J]. Engineering Mechanics, 2022, 39(9): 95 − 109. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.0358

    [71] 苏宁, 彭士涛, 洪宁宁. 高耸烟囱结构调谐质量惯容阻尼器(TMDI)风振控制方法及效果研究[J]. 工程力学, 2022, 39(11): 143 − 156. doi: 10.6052/j.issn.1000-4750.2021.06.0490

    SU Ning, PENG Shitao, HONG Ningning. The wind-induced vibration control of high-rise chimneys by a tuned mass damper inerter (TMDI) [J]. Engineering Mechanics, 2022, 39(11): 143 − 156. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.06.0490

    [72]

    LIN K Q, LU X Z, LI Y, et al. A novel structural detailing for the improvement of seismic and progressive collapse performances of RC frames [J]. Earthquake Engineering & Structural Dynamics, 2019, 48(13): 1451 − 1470.

    [73]

    YANG X J, LIN F, GU X L. Experimental study on a novel method to improve progressive collapse resistance of RC frames using locally debonded rebars [J]. Journal of Building Engineering, 2021, 41: 102428. doi: 10.1016/j.jobe.2021.102428

    [74]

    HADI M N S, ALRUDAINI T M S. New building scheme to resist progressive collapse [J]. Journal of Architectural Engineering, 2012, 18(4): 324 − 331. doi: 10.1061/(ASCE)AE.1943-5568.0000088

    [75]

    ELKOLY S, EL-ARISS B. Progressive collapse evaluation of externally mitigated reinforced concrete beams [J]. Engineering Failure Analysis, 2014, 40: 33 − 47. doi: 10.1016/j.engfailanal.2014.02.002

    [76]

    QIU L, LIN F, WU K C. Improving progressive collapse resistance of RC beam-column subassemblages using external steel cables [J]. Journal of Performance of Constructed Facilities, 2020, 34(1): 04019079. doi: 10.1061/(ASCE)CF.1943-5509.0001360

图(12)
计量
  • 文章访问数:  1031
  • HTML全文浏览量:  133
  • PDF下载量:  426
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-05
  • 修回日期:  2022-11-20
  • 网络出版日期:  2022-12-06
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回