Processing math: 0%

设计基准期内地震活动区域既有结构寿命模型

高珺, 姚继涛, 程正杰

高珺, 姚继涛, 程正杰. 设计基准期内地震活动区域既有结构寿命模型[J]. 工程力学, 2023, 40(12): 124-132. DOI: 10.6052/j.issn.1000-4750.2022.02.0160
引用本文: 高珺, 姚继涛, 程正杰. 设计基准期内地震活动区域既有结构寿命模型[J]. 工程力学, 2023, 40(12): 124-132. DOI: 10.6052/j.issn.1000-4750.2022.02.0160
GAO Jun, YAO Ji-tao, CHENG Zheng-jie. LIFETIME MODEL FOR EXISTING STRUCTURES DURING DESIGN REFERENCE PERIOD OF EARTHQUAKE ACTIVITY AREA[J]. Engineering Mechanics, 2023, 40(12): 124-132. DOI: 10.6052/j.issn.1000-4750.2022.02.0160
Citation: GAO Jun, YAO Ji-tao, CHENG Zheng-jie. LIFETIME MODEL FOR EXISTING STRUCTURES DURING DESIGN REFERENCE PERIOD OF EARTHQUAKE ACTIVITY AREA[J]. Engineering Mechanics, 2023, 40(12): 124-132. DOI: 10.6052/j.issn.1000-4750.2022.02.0160

设计基准期内地震活动区域既有结构寿命模型

基金项目: 国家自然科学基金项目(51278401)
详细信息
    作者简介:

    高 珺(1991−),女,甘肃天水人,博士,主要从事混凝土框架结构抗震可靠度研究(E-mail: gjtianshui@163.com)

    程正杰(1995−),男,甘肃天水人,博士生,主要从事钢筋混凝土结构可靠度研究(E-mail: chengzhengjie_1995@163.com)

    通讯作者:

    姚继涛(1963−),男,陕西白水人,教授,博士,博导,主要从事可靠度研究(E-mail: yaojitao1224@163.com)

  • 中图分类号: TU375.4

LIFETIME MODEL FOR EXISTING STRUCTURES DURING DESIGN REFERENCE PERIOD OF EARTHQUAKE ACTIVITY AREA

  • 摘要:

    在时变条件下,考虑结构的累积损伤是风险决策的关键点,对结构性能评估及寿命估算有重要意义。但是,结构累积损伤的计算通常涉及复杂的数学运算。基于此,该文的主要目的是在地震高发区,提出一种简化的估算结构寿命分布的模型。该模型假设给定结构的累积损伤仅由设计基准期内可能发生的一系列地震作用产生,此方法的优点在于可以通过简单的数学运算实现结构寿命估算。对所提出的简化结构寿命模型进行实例应用,以验证该方法的可行性。

    Abstract:

    Under time-varying conditions, the key points of risk decision-making are important for structural performance assessment and lifetime estimation when considering structural accumulation damage. However, the calculation of structural cumulative damage is usually involved in complex mathematical operations. Based on this, the main purpose of this paper is to propose a simplified model for estimating the structural lifetime distribution in the seismic high-incidence region. The model assumes that the cumulative damage of an existing structure is only caused by a series of earthquake actions that may occur during the design reference period. And the advantage of this method is that the structural life can be estimated by simple mathematical operation. An example application is performed on the proposed simplified structural lifetime model to verify the feasibility of the method.

  • 图  1   损伤构件的建模和修改参数示例

    Figure  1.   Modeling and modification parameter example of injury components

    图  2   RC框架结构平面 /mm

    Figure  2.   RC frame structure plan

    图  3   材料本构模型

    Figure  3.   Constitutive model of materials

    图  4   结构响应均值的累积损伤概率分布函数

    Figure  4.   Cumulative damage probability distribution function of the structure response average value

    图  5   结构失效概率

    Figure  5.   Structural failure probability

    图  6   结构生存曲线

    Figure  6.   Structure survival curve

    表  1   西北地区各震源地震次数

    Table  1   Number of earthquakes from each source in the northwest

    震源号震中烈度/级总次
    数/次
    统计
    年数/年
    5.5~6.46.5~7.47.5~8.48.5~9.49.5~10.410.5~11.0
    西北117511112650
    西北26410001150
    西北37411001350
    西北
    背景
    201141103750
    下载: 导出CSV

    表  2   损伤状态界限

    Table  2   Damage state limit

    性能状态 最大层间位移角θmax/(%)[21] 顶点最大位移 {\delta _{\max }} /mm[22]
    轻微破坏 0.18 43.8
    中等破坏 1.00 109.5
    严重破坏 2.00 328.5
    完全破坏 4.00 547.5
    下载: 导出CSV

    表  3   {\theta _{\max }} 为评估指标的累积生存率计算

    Table  3   Cumulative survival rate calculated by {\theta _{\max }} as an evaluation index

    ti次地震
    作用ti
    结构未出现
    损伤的地震
    数量ni/次
    结构出现
    损伤的地震
    数量di
    结构累积生存率 S({t_i}) /(%)
    {t_0} 195 S({t_0}) = 1
    {t_1} 1941 S({t_1}) = S({t_0})\left(1 - \dfrac{1}{{194}}\right) = 0.995
    {t_2} 1904 S({t_2}) = S({t_1})\left(1 - \dfrac{4}{{190}}\right) = 0.974
    {t_3} 1855 S({t_3}) = S({t_2})\left(1 - \dfrac{5}{{185}}\right) = 0.948
    {t_4} 1796 S({t_4}) = S({t_3})\left(1 - \dfrac{6}{{179}}\right) = 0.916
    {t_5} 1727 S({t_5}) = S({t_4})\left(1 - \dfrac{7}{{172}}\right) = 0.879
    {t_6} 16111 S({t_6}) = S({t_5})\left(1 - \dfrac{{11}}{{161}}\right) = 0.819
    {t_7} 14813 S({t_7}) = S({t_6})\left(1 - \dfrac{{13}}{{148}}\right) = 0.747
    {t_8} 13315 S({t_8}) = S({t_7})\left(1 - \dfrac{{15}}{{133}}\right) = 0.662
    {t_9} 11815 S({t_9}) = S({t_8})\left(1 - \dfrac{{15}}{{118}}\right) = 0.578
    {t_{10}} 10315 S({t_{10}}) = S({t_9})\left(1 - \dfrac{{15}}{{103}}\right) = 0.494
    {t_{11}} 8815 S({t_{11}}) = S({t_{10}})\left(1 - \dfrac{{15}}{{88}}\right) = 0.410
    {t_{12}} 7315 S({t_{12}}) = S({t_{11}})\left(1 - \dfrac{{15}}{{73}}\right) = 0.326
    {t_{13}} 5815 S({t_{13}}) = S({t_{12}})\left(1 - \dfrac{{15}}{{58}}\right) = 0.241
    下载: 导出CSV

    表  4   {\delta _{\max }} 为评估指标的累积生存率计算

    Table  4   Cumulative survival rate calculated by {\delta _{\max }} as an evaluation index

    ti次地震
    作用ti
    结构未出现
    损伤的地震
    数量ni/次
    结构出现
    损伤的地震
    数量di
    结构累积生存率 S({t_i}) /(%)
    {t_0} 195 S({t_0}) = 1
    {t_1} 195 S({t_1}) = 1
    {t_2} 195 S({t_2}) = 1
    {t_3} 195 S({t_3}) = 1
    {t_4} 195 S({t_4}) = 1
    {t_5} 1941 S({t_5}) = S({t_4})\left(1 - \dfrac{1}{{194}}\right) = 0.995
    {t_6} 1877 S({t_6}) = S({t_5})\left(1 - \dfrac{7}{{187}}\right) = 0.958
    {t_7} 1798 S({t_7}) = S({t_6})\left(1 - \dfrac{8}{{179}}\right) = 0.915
    {t_8} 16613 S({t_8}) = S({t_7})\left(1 - \dfrac{{13}}{{166}}\right) = 0.843
    {t_9} 15214 S({t_9}) = S({t_8})\left(1 - \dfrac{{14}}{{152}}\right) = 0.766
    {t_{10}} 13814 S({t_{10}}) = S({t_9})\left(1 - \dfrac{{14}}{{138}}\right) = 0.688
    {t_{11}} 12315 S({t_{11}}) = S({t_{10}})\left(1 - \dfrac{{15}}{{123}}\right) = 0.604
    {t_{12}} 10815 S({t_{12}}) = S({t_{11}})\left(1 - \dfrac{{15}}{{108}}\right) = 0.520
    {t_{13}} 9315 S({t_{13}}) = S({t_{12}})(1 - \dfrac{{15}}{{93}}) = 0.436
    下载: 导出CSV

    表  5   拟合参数

    Table  5   Fitting parameters

    拟合参数最大层间位移角 {\theta _{\max }} /(%)顶点最大位移 {\delta _{\max }} /mm
    a−0.810.14
    b57.3543.44
    c2.414.43
    下载: 导出CSV
  • [1] GB 50068−2018, 建筑结构可靠性设计统一标准[S]. 北京: 中国建筑工业出版社, 2018.

    GB 50068−2018, Unified standard for reliability design of building structures [S]. Beijing: China Architecture & Building Press, 2018. (in Chinese)

    [2] 于晓辉, 马富梓, 吕大刚. 考虑多次余震的钢筋混凝土框架结构地震损伤分析[J]. 建筑结构学报, 2020, 41(增刊 2): 19 − 26.

    YU Xiaohui, MA Fuzi, LYU Dagang. Seismic damage analyses of reinforced concrete frame structures considering multiple aftershocks [J]. Journal of Building Structure, 2020, 41(Suppl 2): 19 − 26. (in Chinese)

    [3] 李洪泉, 贲庆国, 于之绰, 等. 钢框架结构在地震作用下累积损伤分析及试验研究[J]. 建筑结构学报, 2004, 25(3): 69 − 74. doi: 10.3321/j.issn:1000-6869.2004.03.011

    LI Hongquan, BEN Qingguo, YU Zhichuo, et al. Analysis and experiment of cumulated damage of steel frame structures under earthquake action [J]. Journal of Building Structure, 2004, 25(3): 69 − 74. (in Chinese) doi: 10.3321/j.issn:1000-6869.2004.03.011

    [4] 于晓辉, 代旷宇, 周洲, 等. 主余震序列作用下钢筋混凝土框架结构损伤分析[J]. 建筑结构学报, 2019, 40(3): 127 − 133.

    YU Xiaohui, DAI Kuangyu, ZHOU Zhou, et al. Damage assessment of a reinforced concrete structure subjected to mainshock-aftershock sequence [J]. Journal of Building Structure, 2019, 40(3): 127 − 133. (in Chinese)

    [5] 于晓辉, 李越然, 宋鹏彦, 等. 极限状态模糊性对地震易损性分析的影响研究: 以钢筋混凝土框架结构为例[J]. 工程力学, 2021, 38(9): 89 − 99, 109. doi: 10.6052/j.issn.1000-4750.2020.08.0604

    YU Xiaohui, LI Yueran, SONG Pengyan, et al. Effect of fussiness at limit states on seismic fragility analysis: reinforced concrete frame cases [J]. Engineering Mechanics, 2021, 38(9): 89 − 99, 109. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0604

    [6]

    ZHOU Y, ZHENG S S, CHEN L Z, et al. Experimental investigation into the seismic behavior of squat reinforced concrete walls subjected to acid rain erosion [J]. Journal of Building Engineering, 2021, 44: 102899. doi: 10.1016/j.jobe.2021.102899

    [7] 杜轲, 燕登, 高嘉伟, 等. 基于FEMA P-58的RC框架结构抗震及减隔震性能评估[J]. 工程力学, 2020, 37(8): 134 − 147. doi: 10.6052/j.issn.1000-4750.2019.09.0551

    DU Ke, YAN Deng, GAO Jiawei, et al. Seismic performance assessment of RC frame structures with energy dissipation and isolation devices based on FEMA P-58 [J]. Engineering Mechanics, 2020, 37(8): 134 − 147. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0551

    [8]

    SÁNCHEZ-SILVA M, KLUTKE G A. Reliability and life-cycle analysis of deteriorating systems [M]. Piscataway, USA: Springer International Publishing, 2016.

    [9] 秦琪, 张玄一, 卢朝辉, 等. 简化三阶矩拟正态变换及其在结构可靠度分析中的应用[J]. 工程力学, 2020, 37(12): 78 − 86, 113. doi: 10.6052/j.issn.1000-4750.2020.01.0015

    QIN Qi, ZHANG Xuanyi, LU Zhaohui, et al. Simplified third-order normal transformation and its application in structural reliability analysis [J]. Engineering Mechanics, 2020, 37(12): 78 − 86, 113. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0015

    [10] 程绍革, 朱毅秀, 杨欣, 等. 既有框架性能化抗震鉴定方法研究及工程应用[J]. 工程力学, 2021, 38(8): 154 − 165. doi: 10.6052/j.issn.1000-4750.2020.08.0559

    CHENG Shaoge, ZHU Yixiu, YANG Xin, et al. Seismic evaluation method based on seismic performance and its application for existing RC frames [J]. Engineering Mechanics, 2021, 38(8): 154 − 165. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0559

    [11]

    TIWARI A K, GUPTA V K. Scaling of ductility and damage‐based strength reduction factors for horizontal motions [J]. Earthquake Engineering & Structural Dynamics, 2015, 29(7): 969 − 987.

    [12]

    SUMITA U, SHANTHIKUMAR J G. A class of correlated cumulative shock models [J]. Advances in Applied Probability, 1985, 17(2): 347 − 366. doi: 10.2307/1427145

    [13]

    WORTMAN M A, KLUTKE G A, AYHAN H. A maintenance strategy for systems subjected to deterioration governed by random shocks [J]. IEEE Transactions on Reliability, 1994, 43(3): 439 − 445. doi: 10.1109/24.326441

    [14]

    MONTORO-CAZORLA D, PEREZ-OCON R. A shock and wear system under environmental conditions subject to internal failures, repair, and replacement [J]. Reliability Engineering & System Safety, 2012, 99: 55 − 61.

    [15]

    RIASCOS-OCHOA J, SÁNCHEZ-SILVA M, KLUTKE G A. Modeling and reliability analysis of systems subject to multiple sources of degradation based on Levy processes [J]. Probabilistic Engineering Mechanics, 2016, 45: 164 − 176. doi: 10.1016/j.probengmech.2016.05.002

    [16]

    VARAEE H, SHISHEGARAN A, GHASEMI M R. The life-cycle cost analysis based on probabilistic optimization using a novel algorithm [J]. Journal of Building Engineering, 2021, 43: 103032. doi: 10.1016/j.jobe.2021.103032

    [17] 鲍霭斌, 李中锡, 高小旺, 等. 我国部分地区基本烈度的概率标定[J]. 地震学报, 1985, 7(1): 100 − 109.

    BAO AIbin, LI Zhongxi, GAO Xiaowang, et al. Probability calibration of basic intensity in some areas of China [J]. Acta Seismologica Sinica, 1985, 7(1): 100 − 109. (in Chinese)

    [18] 喻畑, 李小军. 四川、甘肃地区VS30经验估计研究[J]. 地震工程学报, 2015, 37(2): 525 − 533. doi: 10.3969/j.issn.1000-0844.2015.02.0525

    YU Tian, LI Xiaojun. Empirical estimation of VS30 in the Sichuan and Gansu provinces [J]. China Earthquake Engineering Journal, 2015, 37(2): 525 − 533. (in Chinese) doi: 10.3969/j.issn.1000-0844.2015.02.0525

    [19]

    JOYNER W B, BOORE D M. Peak horizontal acceleration and velocity from strong-motion records including records from the 1979 imperial valley, California, earthquake [J]. Bulletin of the Seismological Society of America, 1981, 71(6): 2011 − 2038. doi: 10.1785/BSSA0710062011

    [20]

    GAO J, YAO J, CHEN L, et al. Optimized scheme for ground motion selection based on fuzzy synthesis decision-making [J]. Soil Dynamics and Earthquake Engineering, 2021, 142(3): 106580.

    [21]

    YU X H, LYU D G, LI B. Relating seismic design level and seismic performance: A fragility-based investigation of RC moment-resisting frame buildings in China [J]. ASCE Journal of Performance of Constructed Facilities, 2017, 31(5): 04017075. doi: 10.1061/(ASCE)CF.1943-5509.0001069

    [22]

    VISION S. Performance based seismic engineering of buildings [R]. Sacramento, California: Structural Engineers Association of California, 2000.

图(6)  /  表(5)
计量
  • 文章访问数:  244
  • HTML全文浏览量:  75
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-18
  • 修回日期:  2022-04-27
  • 网络出版日期:  2022-05-11
  • 刊出日期:  2023-12-24

目录

    CHENG Zheng-jie, chengzhengjie_1995@163.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回