LIFETIME MODEL FOR EXISTING STRUCTURES DURING DESIGN REFERENCE PERIOD OF EARTHQUAKE ACTIVITY AREA
-
摘要:
在时变条件下,考虑结构的累积损伤是风险决策的关键点,对结构性能评估及寿命估算有重要意义。但是,结构累积损伤的计算通常涉及复杂的数学运算。基于此,该文的主要目的是在地震高发区,提出一种简化的估算结构寿命分布的模型。该模型假设给定结构的累积损伤仅由设计基准期内可能发生的一系列地震作用产生,此方法的优点在于可以通过简单的数学运算实现结构寿命估算。对所提出的简化结构寿命模型进行实例应用,以验证该方法的可行性。
Abstract:Under time-varying conditions, the key points of risk decision-making are important for structural performance assessment and lifetime estimation when considering structural accumulation damage. However, the calculation of structural cumulative damage is usually involved in complex mathematical operations. Based on this, the main purpose of this paper is to propose a simplified model for estimating the structural lifetime distribution in the seismic high-incidence region. The model assumes that the cumulative damage of an existing structure is only caused by a series of earthquake actions that may occur during the design reference period. And the advantage of this method is that the structural life can be estimated by simple mathematical operation. An example application is performed on the proposed simplified structural lifetime model to verify the feasibility of the method.
-
Keywords:
- reinforced concrete frame /
- cumulative damage /
- seismic sequence /
- structural lifetime /
- reliability
-
-
表 1 西北地区各震源地震次数
Table 1 Number of earthquakes from each source in the northwest
震源号 震中烈度/级 总次
数/次统计
年数/年5.5~6.4 6.5~7.4 7.5~8.4 8.5~9.4 9.5~10.4 10.5~11.0 西北1 17 5 1 1 1 1 26 50 西北2 6 4 1 0 0 0 11 50 西北3 7 4 1 1 0 0 13 50 西北
背景20 11 4 1 1 0 37 50 表 2 损伤状态界限
Table 2 Damage state limit
表 3 以 {\theta _{\max }} 为评估指标的累积生存率计算
Table 3 Cumulative survival rate calculated by {\theta _{\max }} as an evaluation index
第ti次地震
作用ti结构未出现
损伤的地震
数量ni/次结构出现
损伤的地震
数量di结构累积生存率 S({t_i}) /(%) {t_0} 195 − S({t_0}) = 1 {t_1} 194 1 S({t_1}) = S({t_0})\left(1 - \dfrac{1}{{194}}\right) = 0.995 {t_2} 190 4 S({t_2}) = S({t_1})\left(1 - \dfrac{4}{{190}}\right) = 0.974 {t_3} 185 5 S({t_3}) = S({t_2})\left(1 - \dfrac{5}{{185}}\right) = 0.948 {t_4} 179 6 S({t_4}) = S({t_3})\left(1 - \dfrac{6}{{179}}\right) = 0.916 {t_5} 172 7 S({t_5}) = S({t_4})\left(1 - \dfrac{7}{{172}}\right) = 0.879 {t_6} 161 11 S({t_6}) = S({t_5})\left(1 - \dfrac{{11}}{{161}}\right) = 0.819 {t_7} 148 13 S({t_7}) = S({t_6})\left(1 - \dfrac{{13}}{{148}}\right) = 0.747 {t_8} 133 15 S({t_8}) = S({t_7})\left(1 - \dfrac{{15}}{{133}}\right) = 0.662 {t_9} 118 15 S({t_9}) = S({t_8})\left(1 - \dfrac{{15}}{{118}}\right) = 0.578 {t_{10}} 103 15 S({t_{10}}) = S({t_9})\left(1 - \dfrac{{15}}{{103}}\right) = 0.494 {t_{11}} 88 15 S({t_{11}}) = S({t_{10}})\left(1 - \dfrac{{15}}{{88}}\right) = 0.410 {t_{12}} 73 15 S({t_{12}}) = S({t_{11}})\left(1 - \dfrac{{15}}{{73}}\right) = 0.326 {t_{13}} 58 15 S({t_{13}}) = S({t_{12}})\left(1 - \dfrac{{15}}{{58}}\right) = 0.241 表 4 以 {\delta _{\max }} 为评估指标的累积生存率计算
Table 4 Cumulative survival rate calculated by {\delta _{\max }} as an evaluation index
第ti次地震
作用ti结构未出现
损伤的地震
数量ni/次结构出现
损伤的地震
数量di结构累积生存率 S({t_i}) /(%) {t_0} 195 − S({t_0}) = 1 {t_1} 195 − S({t_1}) = 1 {t_2} 195 − S({t_2}) = 1 {t_3} 195 − S({t_3}) = 1 {t_4} 195 − S({t_4}) = 1 {t_5} 194 1 S({t_5}) = S({t_4})\left(1 - \dfrac{1}{{194}}\right) = 0.995 {t_6} 187 7 S({t_6}) = S({t_5})\left(1 - \dfrac{7}{{187}}\right) = 0.958 {t_7} 179 8 S({t_7}) = S({t_6})\left(1 - \dfrac{8}{{179}}\right) = 0.915 {t_8} 166 13 S({t_8}) = S({t_7})\left(1 - \dfrac{{13}}{{166}}\right) = 0.843 {t_9} 152 14 S({t_9}) = S({t_8})\left(1 - \dfrac{{14}}{{152}}\right) = 0.766 {t_{10}} 138 14 S({t_{10}}) = S({t_9})\left(1 - \dfrac{{14}}{{138}}\right) = 0.688 {t_{11}} 123 15 S({t_{11}}) = S({t_{10}})\left(1 - \dfrac{{15}}{{123}}\right) = 0.604 {t_{12}} 108 15 S({t_{12}}) = S({t_{11}})\left(1 - \dfrac{{15}}{{108}}\right) = 0.520 {t_{13}} 93 15 S({t_{13}}) = S({t_{12}})(1 - \dfrac{{15}}{{93}}) = 0.436 表 5 拟合参数
Table 5 Fitting parameters
拟合参数 最大层间位移角 {\theta _{\max }} /(%) 顶点最大位移 {\delta _{\max }} /mm a −0.81 0.14 b 57.35 43.44 c 2.41 4.43 -
[1] GB 50068−2018, 建筑结构可靠性设计统一标准[S]. 北京: 中国建筑工业出版社, 2018. GB 50068−2018, Unified standard for reliability design of building structures [S]. Beijing: China Architecture & Building Press, 2018. (in Chinese)
[2] 于晓辉, 马富梓, 吕大刚. 考虑多次余震的钢筋混凝土框架结构地震损伤分析[J]. 建筑结构学报, 2020, 41(增刊 2): 19 − 26. YU Xiaohui, MA Fuzi, LYU Dagang. Seismic damage analyses of reinforced concrete frame structures considering multiple aftershocks [J]. Journal of Building Structure, 2020, 41(Suppl 2): 19 − 26. (in Chinese)
[3] 李洪泉, 贲庆国, 于之绰, 等. 钢框架结构在地震作用下累积损伤分析及试验研究[J]. 建筑结构学报, 2004, 25(3): 69 − 74. doi: 10.3321/j.issn:1000-6869.2004.03.011 LI Hongquan, BEN Qingguo, YU Zhichuo, et al. Analysis and experiment of cumulated damage of steel frame structures under earthquake action [J]. Journal of Building Structure, 2004, 25(3): 69 − 74. (in Chinese) doi: 10.3321/j.issn:1000-6869.2004.03.011
[4] 于晓辉, 代旷宇, 周洲, 等. 主余震序列作用下钢筋混凝土框架结构损伤分析[J]. 建筑结构学报, 2019, 40(3): 127 − 133. YU Xiaohui, DAI Kuangyu, ZHOU Zhou, et al. Damage assessment of a reinforced concrete structure subjected to mainshock-aftershock sequence [J]. Journal of Building Structure, 2019, 40(3): 127 − 133. (in Chinese)
[5] 于晓辉, 李越然, 宋鹏彦, 等. 极限状态模糊性对地震易损性分析的影响研究: 以钢筋混凝土框架结构为例[J]. 工程力学, 2021, 38(9): 89 − 99, 109. doi: 10.6052/j.issn.1000-4750.2020.08.0604 YU Xiaohui, LI Yueran, SONG Pengyan, et al. Effect of fussiness at limit states on seismic fragility analysis: reinforced concrete frame cases [J]. Engineering Mechanics, 2021, 38(9): 89 − 99, 109. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0604
[6] ZHOU Y, ZHENG S S, CHEN L Z, et al. Experimental investigation into the seismic behavior of squat reinforced concrete walls subjected to acid rain erosion [J]. Journal of Building Engineering, 2021, 44: 102899. doi: 10.1016/j.jobe.2021.102899
[7] 杜轲, 燕登, 高嘉伟, 等. 基于FEMA P-58的RC框架结构抗震及减隔震性能评估[J]. 工程力学, 2020, 37(8): 134 − 147. doi: 10.6052/j.issn.1000-4750.2019.09.0551 DU Ke, YAN Deng, GAO Jiawei, et al. Seismic performance assessment of RC frame structures with energy dissipation and isolation devices based on FEMA P-58 [J]. Engineering Mechanics, 2020, 37(8): 134 − 147. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0551
[8] SÁNCHEZ-SILVA M, KLUTKE G A. Reliability and life-cycle analysis of deteriorating systems [M]. Piscataway, USA: Springer International Publishing, 2016.
[9] 秦琪, 张玄一, 卢朝辉, 等. 简化三阶矩拟正态变换及其在结构可靠度分析中的应用[J]. 工程力学, 2020, 37(12): 78 − 86, 113. doi: 10.6052/j.issn.1000-4750.2020.01.0015 QIN Qi, ZHANG Xuanyi, LU Zhaohui, et al. Simplified third-order normal transformation and its application in structural reliability analysis [J]. Engineering Mechanics, 2020, 37(12): 78 − 86, 113. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0015
[10] 程绍革, 朱毅秀, 杨欣, 等. 既有框架性能化抗震鉴定方法研究及工程应用[J]. 工程力学, 2021, 38(8): 154 − 165. doi: 10.6052/j.issn.1000-4750.2020.08.0559 CHENG Shaoge, ZHU Yixiu, YANG Xin, et al. Seismic evaluation method based on seismic performance and its application for existing RC frames [J]. Engineering Mechanics, 2021, 38(8): 154 − 165. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0559
[11] TIWARI A K, GUPTA V K. Scaling of ductility and damage‐based strength reduction factors for horizontal motions [J]. Earthquake Engineering & Structural Dynamics, 2015, 29(7): 969 − 987.
[12] SUMITA U, SHANTHIKUMAR J G. A class of correlated cumulative shock models [J]. Advances in Applied Probability, 1985, 17(2): 347 − 366. doi: 10.2307/1427145
[13] WORTMAN M A, KLUTKE G A, AYHAN H. A maintenance strategy for systems subjected to deterioration governed by random shocks [J]. IEEE Transactions on Reliability, 1994, 43(3): 439 − 445. doi: 10.1109/24.326441
[14] MONTORO-CAZORLA D, PEREZ-OCON R. A shock and wear system under environmental conditions subject to internal failures, repair, and replacement [J]. Reliability Engineering & System Safety, 2012, 99: 55 − 61.
[15] RIASCOS-OCHOA J, SÁNCHEZ-SILVA M, KLUTKE G A. Modeling and reliability analysis of systems subject to multiple sources of degradation based on Levy processes [J]. Probabilistic Engineering Mechanics, 2016, 45: 164 − 176. doi: 10.1016/j.probengmech.2016.05.002
[16] VARAEE H, SHISHEGARAN A, GHASEMI M R. The life-cycle cost analysis based on probabilistic optimization using a novel algorithm [J]. Journal of Building Engineering, 2021, 43: 103032. doi: 10.1016/j.jobe.2021.103032
[17] 鲍霭斌, 李中锡, 高小旺, 等. 我国部分地区基本烈度的概率标定[J]. 地震学报, 1985, 7(1): 100 − 109. BAO AIbin, LI Zhongxi, GAO Xiaowang, et al. Probability calibration of basic intensity in some areas of China [J]. Acta Seismologica Sinica, 1985, 7(1): 100 − 109. (in Chinese)
[18] 喻畑, 李小军. 四川、甘肃地区VS30经验估计研究[J]. 地震工程学报, 2015, 37(2): 525 − 533. doi: 10.3969/j.issn.1000-0844.2015.02.0525 YU Tian, LI Xiaojun. Empirical estimation of VS30 in the Sichuan and Gansu provinces [J]. China Earthquake Engineering Journal, 2015, 37(2): 525 − 533. (in Chinese) doi: 10.3969/j.issn.1000-0844.2015.02.0525
[19] JOYNER W B, BOORE D M. Peak horizontal acceleration and velocity from strong-motion records including records from the 1979 imperial valley, California, earthquake [J]. Bulletin of the Seismological Society of America, 1981, 71(6): 2011 − 2038. doi: 10.1785/BSSA0710062011
[20] GAO J, YAO J, CHEN L, et al. Optimized scheme for ground motion selection based on fuzzy synthesis decision-making [J]. Soil Dynamics and Earthquake Engineering, 2021, 142(3): 106580.
[21] YU X H, LYU D G, LI B. Relating seismic design level and seismic performance: A fragility-based investigation of RC moment-resisting frame buildings in China [J]. ASCE Journal of Performance of Constructed Facilities, 2017, 31(5): 04017075. doi: 10.1061/(ASCE)CF.1943-5509.0001069
[22] VISION S. Performance based seismic engineering of buildings [R]. Sacramento, California: Structural Engineers Association of California, 2000.